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Abstract. In the present paper, we introduced a new kind of soft generalized closed sets and soft
generalized open sets are called soft generalized ai-closed sets and soft generalized ai-open sets.
The relations among these two families and some other kinds of soft sets as like as soft
generalized closed, soft generalized i-closed, soft generalized a-closed and soft semi-generalized
closed sets are investigated and clarify by proofs and evidences.
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1. Introduction and Preliminaries

In 2019 (see [10]) Mohammed A.A and Abdullah B.S inserted types of inter-open and ii-open sets. In
1999, 2011 and 2015, Molodtsov and numerous different specialists introduced the concept of soft sets
and their properties (see [11], [14], [4]). In (2012, 2013) (see [3] and [6]) the definition of "soft semi-
open sets" and "soft & -open sets" was introduced individually in the soft topological spaces by Chen,
B. and Kannan, K. In 2020 (see [2]), the idea of soft i-open sets, was introduced by Askandar, S. W. and
Mohammed, A. A., which will use in this work.

In this article, soft topological space (X.7.E) denotes (sTs) . What's more, we denote the soft set

by (s5), int(K,E) and denote the sS's (K.E) Int(K.E) , Cli(K.E) , the soft interior and soft closure
(sOs)

respectively. The 7 elements are called soft open sets, , what's more, their complements are

called closed soft sets, (sCs) . s X Separately denote the soft null and soft absolute sets.

In the fragment 1, we give established basic hypothesis of the soft sets and soft topological spaces.
In addition, we give fundamental meanings of some soft generalized closed, soft i-open, soft i-closed
sets. In the segment 2, we characterize new ideas of soft generalized closed sets as soft generalized ai-
closed sets and explore its points of interest. Soft generalized ai-open sets are described in the third
section, and numerous significant results are determined.

Proposition 1.1: Consider(K A) ,(L’A) belongs to
(K.A4) U(L,A)=(K,A)" T(L,A)"
((K.4) N(L,A))*=(K.A)"N(L,A). ([14]).

Theorem 1.1: Pick (K.E) to be a soft set in

SS(X,)

and there is

(X.7.E) and there is
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In(K,E)* =(CI(K,E))"

CIK,E) =(In(K,E))

Int(K,E)=(CI(K,E)" )" (I5)).

Definition L.1: Let (7 £/ be a soft set (s5) in( X5 E) (FE) s named:

"Soft i-open  set", (sl0s) ¢ (0.E)=9%
(F.E)ECU(F.E)N(O.E)) (),

"Soft semi-open set", (s50s)if. o n(F.E) < Cl(Ini(F.E)) E
(0.E)#$.X \hercin (O E)E(F.E)ECHO.E)w 13},
v (5005) g (F.E)E Int(Cl(Int(F.E))) w(i4))

"Soft a-open set",

there exists a  sOs wherein,

b. If there exists a sOs

(F.E)

The union of all s/Os (individually, saOsand sSOs) over X contained in is named a

soft I-interior (individually, soft a-interior and soft Semi-interior) of a soft set (F.E) and designated
by IMCF.E) (i diiduatly, @01(F.E) g SInt(F.E )

The complement ofs/Os (individually, saOs andsSOs) is named soft i-closed (sICs)
(individually, soft a-closed (saCs) and soft semi-closed (8SCs)). The intersection of all s/Cs
(individually, saCsand sSCs) over X containing (F.E) i called the soft i-closure (individually, soft
a-closure and soft semi-closure) of (F.E) and designated by ICI(F.E) (individually, aCl(F.E)
and SCU(FLE)

Definition1.2: A (sS), (F.E) in (X.7,E) considers:

"Soft generalized closed set", (sGCs) if " CI(F.E)=(O.E) "wherein( £+ £) c(0.E) and
(O.E) is 4 sOsin(X T E) The complement of sGCs is named "soft generalized open set", (sGOs
(3D

Definition 1.3: A (s5), (F.E) in (X.2.E) considers:

Soft generalized o -closed set, (sGaCs) if " CI(F.E)S(O.E)n wherein (£ E) S(0.E) and
(O.E) is an saOsin (X TE) ([12)).

Soft « -generalized closed set, (saGCs) if " aCl((F.E)S(0,E)» wherein( £ E) C(O.E) and
(O.E) is an sOsin (X’T’E)([l]).

"Soft s*g-closed set", (S *GCs) if " CU(F.E)S(O.E)n yperein(FE)S(0.E) 4pq (O.E)
is an sSOsin (X7 E) (o).

Soft semi generalized closed set, (sSGCs) i
(O.E) is an sSOsin (X7 E) a7D.

The complement of sGaCs (resp.,saGCs, sS* GCsand sSGCs) is named soft generalized o -
open (sGaOs) (resp., soft o generalized opensaGOs , soft s*g opensS* GOsand soft semi

generalized opensSGOs. All sGaCs (resp.,saGCs, sS*GCs,sSGCs andsGSCs in (X,7,E)
d sGaCs(XE))(reSp. saGCs( X, ) sS*GCs(X, ) sSGCs(X ) andsGSCs(XE))‘

gnSCI(F,E)S(O0,E) (F.E)S(O.E)

wherein and

obtaine
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Definition 1.4:Consider (K.E) be an sS in Xz.E) . Pick "
T ={(G,E)(\(K,E):(G,E) et }" the thought of "soft topology" on (K.E) The soft topology
(K.E)

is called relative soft topology of = on (K.E) and {(K,E ),T( KE) }is defined as (X7, E) soft subspace

([13]).
Theorem 1.2: Each sOsis aslOs ([2])
Corollary 1.1: Each sCsis asICs ([2])
Theorem 1.3: Each sSOsis as/Os ([2]).
Corollary 1.2: EachsSCsis as/Cs.
Proof: Assume that (K.E) be an sSCs in (X7, E) , we get, (K.E) is asSOs, we have, (K.E)*

isa s/0s"(Theorem 1.3)". Henceforth, (K.E) {5 asICs.
Theorem 1.4: Each saOsis a sSOs([2]).
Corollary 1.3: Each saCsis asSCs.

c
Proof: Consider(K’ E) as ansaCs in(‘X’T’E), we get, (K.E) is asaOs, which implies to

C
(K.E)” isa sSOs"(Theorem 1.4)". Henceforth, (KE) is asSCs.
Theorem 1.5: Each saOsis a sIOs([2]).
Corollary 1.4: Each saCsis asICs.
c
Proof: Assume that (K.E) be ansaCs in (X7.E) , we get, (K.E) is asaOs , which implies to

c
(K.E)” isa s10s"(Theorem 1.5)". Henceforth, (K.E) is asICs.

2. Soft Generalized ¢i-Closed Sets
Definition 2.1: Let (K.E) be a (sS) in (X.7.E) , then (K.E) considers:

Soft generalized i -closed set, (sGalCs) if " ICI(F.E)S(O.E)n wherein" (K- £) C(OE)
and(O L) visa sa0sin(X T E) The group of all sGalCs is denoted bySGaICS(XE).
0 ICU(K,E)E (0, E ) vprcinn (K. E)E (O, E)
sGICs( X )'

Soft generalized i-closed set, (SGICs) i

(O.E)wis a sOsin(X T E) The group of all sGICs is designated by
Theorem 2.1: Each sICsis asGalCs .

Proof: Assume that as/Cs, (F.E) in(X’ ©.E) and (O.E) is a saOs wherein, (F.E)S(O.E)
, we get, " ICF.E)=(F.E)S(0,E)u Henceforth, (F.E) is asGalCs .

Theorem 2.2: If(K’E) C(LE)C ICZ(K’E), wherein, (K.E) isasGalCs, then so is (L’E).

Proof: Consider(L’E)i(O’E) and(O’E) be ansaOs in(X’T’E), then(K’E)g(O’E) .
Since (K.E) isasGalCs ,(L’ E)CICHK.E) , we conclude that " IC(LE)ZIC(K.E) ". We get"
ICI(LE)CIC(K.E)S(O.E) ". We obtained that" ICI(LE)S(0,E) ". Henceforth, (L.E) isa
sGalCs .

Theorem 2.3: If(K’E) C(W.E)S (X’T’E), wherein, (K.E) is ansGalCs in(X’T’E) , then
(K\E) issGalCs relative to(W,7,,E).

and
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Proof: Consider(K’E)i(O’E) (O.E) (W,E) (K.E)Z(W.,E)

(K.E)E(0.E)\(W.E) (O.E)

and isasaOs in , since , we get

is asaOs in(W,r,,,E), then, there exists asaOs (M.E)iy x

wherein, (O’E):(M’E)H(W’E), then (K.E)S(O.E)S(M.E) With(K’E) is ansGalCs in

(X.7.E) IC(K.E)S(M.E) by " ICIK,E)(\(W.E) "is a soft i-closure of (K.E) in

, We get, 1

(W,t,,E), we get, " ICUK,.E)\(W.E)E(O,E) ". Henceforth, (K.E) is asGalCs relative to
(W,t, ,E).

Theorem 2.4: If (K, E)(K,E) are sGalCs , then so is their intersection.

Proof: Consider (KL E) (KL E) as a sGadCsin( X0 E) and (0,E).(0,E) are any saOs
wherein(KiE)E(OLE) g (K E)E(OLE) 4o CHKLE)E(OLE) g
ICHK, E)E(0,E) by suppose). Since.r [CH(K,E) N(K,,E))EICKK, E)NICIK,,E)
we get, CI(K,.E) ﬁ(KPE NEWO,E) ﬁ(?Z’E ) and since the intersection between any two
saOs is asaOs, put +((0,E)\(0,,E))=(0,E) "with (0.E)jq asaOs,

ICI((KI’E)H(KPE))Q(O’E). Henceforth, (K, E)N(K,,E) isasGalCs
Theorem 2.5: Each sGalCs is asGICs.

Proof: Consider (K'E) i a sGalCsin(XTE) ang (OE) any sOswherein

(K,E)§(0,E)’ ICI(K,E)Z(O,E) (OE)

then since eachsOs is saOswith is asOs .

Henceforth, (K\E) is asGICs.
Theorem 2.6: EachsGaCs is asGalCs .

Proof: Assume that (K-E) is a sGaCsin(X TE) ang (O.E) g any saOswherein "

(K.E)E(O.E) v ICK,E)ECIK,E)E(0.E) vyt hat mean ICUKE)E(O.E) i

(O.E) is asaOs . Henceforth, (K.E) isasGalCs .

Theorem 2.7: Each sSGCs is asGalCs .

Proof: Consider (K-E) is an sSGCsin(XTE) ang(KE)S(O.E)  ypere (O.E) any
saOsandsSOs ,  since,  each sSCs is a sICs"(Corollary ~ 1.2)",  then
ICK(K,E) S SCI(K,E) S (O’E). Henceforth, (K.E) isasGalCs .

3. Soft Generalized ai-Open Sets

Definition 3.1: Let (K,E) bea (sS)in( X,7,E ), then (K, E ) considers as a Soft generalized i
-open set, (sGalOs) when its complement( K, E ) is asGalCs . The group of every sGalOs is
denoted by sGalOs( X . ).

Theorem 3.1: A soft set (K,E) in(X,7,E) is sGalOswhen and if only(U,E) C IInt(K ,E)
where (U,E ) isasaCs within(U,E) S (K,E).

Proof: Assume that(K,E) be sGalOswith " (U,E)Z(K,E)" and (U,E) is asaCs. Then
(K,E)" issGalCsand (U,E) is saOswith " (K,E)° &(U,E) ICI(K,E)° &(U,E)"".
Henceforth, (U,E) Z IInt(K,E ).
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Inverse, assume that (U,E)C IInt(K,E) with (U,E)Z(K,E) and (U,E) is asaCs.
Consider (M,E) as a saOscontaining(K,E ), thus, "(M,E)S SIlnt(K,E) ", then "
ICI(K,E)" & (M, E)". Henceforth, (K,E )¢ issGalCs . Which implies (K, E) besGalOs.

Theorem 3.2: If [/Int(K,E)Z (L,E)Z (K,E ), wherein, (K,E ) isasGalOs, thensois(L,E ).

Proof: Consider "IIn(K,E)Z(L,E)S(K,E)(L,LE)Z(O,E)" then "
(K.E)°S(LE) CICI(K,E)) " with(K,E) issGalCs. Thus, (L,E)" is sGalCs
"(Theorem 2.2)". Henceforth, (L, E ) issGalOs.

Corollary 3.1: EachsGalOs is asGIOs.

Proof: Consider (K,E) as ansGalOsin(X,7,E ), we get, (K,E)C is asGalCs , this implies
(K,E)¢ is sGICs"(Theorem 2.5)". Henceforth, (K, E )¢ is asGIOs.

Corollary 3.2: EachsGaOs is asGalOs.

Proof: Assume that (K, E) is ansGaOsin(X,7,E ), we have, (K,E)C is asGaCs , thus
(K,E)“is sGalCs "(Theorem 2.6)". Henceforth, (K,E ) is asGalOs.

Corollary 3.3: EachsSGOs is asGalOs.

Proof: Consider (K,E) is an sSGOsin(X,r,E), we get, (K,E) issSGCs, this implies
(K,E)“is sGalCs "(Theorem 2.7)". Henceforth, (K,E ) is asGalOs.

Theorem 3.3: If (K ,,E ),(K,,E ) are sGalOs, then so is their union.

Proof: Consider (K,,E),(K,,E) as a sGalOsin(X,1,E). We get, (K,,E)",(K,,E)are
sGalCs . By "(Theorem 2.4)", we get, " (K, E )¢ ﬁ(KZ,E)C Z((K,,E)D(KZ,E))C "isa sGalCs
. Henceforth, (K],E)D(KZ,E) isasGalOs.

4. Conclusions
The relation among ¥ GalCs , S GaCS, sGCs , S GICsgpg sSGCs , depends on the relation among

5a0s  sIOs  sSOsapq SOs
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