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bassiana. B. bassiana SK-8 was finally tested against 
adults and larvae of CPB under field conditions. LC50 
values were estimated as 3.42 × 106 and 1.15 × 107 
conidia ml–1 for adults and larvae, respectively. LC90 
values were estimated as 1.12 × 109 and 4.08 × 1010 
conidia ml−1 for adults and larvae, respectively. Con-
sequently, B. bassiana SK-8 seems to be a promising 
biocontrol control agent against CPB.

Keywords  Colorado potato beetle · Beauveria 
bassiana · Phylogeny · Biological control

Introduction

The Colorado potato beetle (CPB), Leptinotarsa 
decemlineata (Say) (Coleoptera: Chrysomelidae), 
causes significant economic damage to many agri-
culturally important plants such as potato, eggplant, 
and tomato. This insect has attracted a great atten-
tion in the scientific community, as it appeared as a 
major problem in the mid-nineteenth century. While 
CPB is already a great danger in potato-producing 
areas, it is increasingly expanding its geographical 
spread to other new regions of the world (Alyokhin 
et al. 2013). This insect pest is now present in many 
parts of the world including Canada, Europe, Central 
Asia, Russia, Kazakhstan, and China (Jacques 1988; 
Wilde and Hsiao 1981; Wang et al. 2017). Both lar-
vae and adults cause damage to the potato plant and 
can cause complete defoliation (Balasko et al. 2020). 
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It has also been reported to be effective in spreading 
several viruses that cause disease in potato (Sorokan 
et  al. 2020). A diverse and flexible life cycle, eco-
logical mobility, symbiotic relationship with various 
types of bacteria and its extraordinary adaptability to 
various stressors increase the spread of this pest and 
make it a very difficult pest to control (Alyokhin et al. 
2013; Sorokan et al. 2019, 2020).

Biological, biotechnological, cultural, and chemi-
cal control methods are used in the current CPB 
management. Among these methods, the chemical 
control is historically the most used and preferred 
method (Alyokhin et  al. 2008; Grafius and Douches 
2008; Balasko et  al. 2020). However, although the 
use of various chemical products suppressed and 
significantly reduced the pest population, CPB has 
developed resistance against the active substances 
over time. This pest has been developed resistance 
to 56 compounds from different insecticide classes 
which is available on the market (Scott et  al. 2015; 
Grafius 1997; Balasko et al. 2020). Due to this pesti-
cide resistance problem and the effects of chemicals 
on human and environmental health, different control 
methods are needed to be developed.

Although many natural enemies of CPB are identi-
fied, these are often inadequate in reducing the pest 
population to the required level (Capinera 2001). 
Besides these natural enemies, bacteria, viruses, 
fungi, nematodes, and protozoa cause disease in CPB 
and have the potential to be used in microbial con-
trol (Lacey 2008). Among these entomopathogenic 
microorganisms, Beauveria bassiana (Bals.) Vull. is 
the first used entomopathogenic fungus against CPB 
and successful results against both adults and larvae 
were obtained in the trials (Lacey et al. 2009).

Mycoinsecticides based on entomopathogenic 
fungi are environmentally friendly and have many 
advantages in biocontrol such as not having toxic 
effects on mammals, not developing resistance in 
insects, being suitable for development with bio-
technological and genetic engineering, being able 
to infect all developmental stages of their hosts and 
staying in the environment for a long time after appli-
cation (Rajula et  al. 2021; Wan 2003). Today, there 
are an increasing number of bioinsecticides mostly 
containing anamorphic genera such as Beauveria, 
Metarhizium and Isaria. Approximately 80% of the 
commercial products based on entomopathogenic 
fungi consist of Metarhizium and Beauveria species 

(Butt et  al. 2016; de Faria and Wraight 2007; Mas-
carin et al. 2016). In the control of CPB, there have 
been many studies related to entomopathogenic fungi 
(especially B. bassiana) and successful results have 
been obtained (Poprawski et  al. 1997; Wraight and 
Ramos 2002, 2005, 2015). Currently, although a lot 
of work has been done on isolation and characteriza-
tion of various entomopathogenic fungi for the target 
insect, it is still desirable to search for new and more 
potentially effective local entomopathogenic fungi 
strains since the choice and application of native iso-
lates can reduce future environmental impacts and 
may be better adapted to survive local conditions 
(Bilgo et al. 2018).

In this study, various entomopathogenic fungi 
were isolated from soil samples in potato fields. Gene 
sequencing (ITS, bloc, rpb1 and tef) and phylogenetic 
analysis were mainly used for species identification. 
The identified species were tested against adults and 
larvae of CPB under laboratory conditions to find 
out the most virulent isolate. Finally, spray applica-
tion of several concentrations onto infested plants in 
the field were performed, LC50 and LC90 values were 
calculated.

Materials and methods

Collection of soil samples

43 soil samples were collected from potato fields in 
the vicinities of Konya, Muğla and Denizli in Turkey, 
2020. Soil samples were collected as described in the 
study of Sevim et al. (2010a). Soil samples were used 
for fungal isolation within a week.

Insect bait method

Entomopathogenic fungi were isolated from soil sam-
ples according to the Galleria bait method with minor 
modifications (Zimmermann 1986). The fourth-fifth 
instar yellow mealworm larvae [(Tenebrio molitor 
L.) (Coleoptera: Tenebrionidae)] were used as bait 
insect. Infected larvae obtained from each soil sample 
were considered as one isolate (Sevim et al. 2010a). 
All fungal isolates were propagated from single 
conidium. To do this, 100 µl conidial suspensions of 
1 × 106 conidia  ml–1 were spread on PDAY (Potato 
dextrose agar + 1% yeast extract) and incubated at 
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25  °C for 2–3  days in the  dark. After that, a single 
colony for each isolate was transferred onto another 
PDAY and incubated at 25 °C for two weeks. Finally, 
they were cryopreserved at − 20  °C with 15% (v/v) 
glycerol for further studies in the Microbiology Labo-
ratory, Department of Plant Protection, Kırşehir Ahi 
Evran University.

Fungal identification

Morphological identification of the isolated fungi 
was performed according to the identification key of 
Humber (1997). Morphological identification of the 
isolated fungi was also confirmed by gene sequenc-
ing and phylogenic analysis. Genomic DNAs were 
extracted from fungi using Powersoil DNA isola-
tion kit (MO BIO Laboratories, Carlsbad, CA, USA) 
according to the manufacturer’s recommendations.

ITS1-5.8S-ITS2 gene region between the 18S and 
23S rRNA sub-units were first amplified for all fun-
gal isolates. The primer pairs of ITS5: 5′-GGA​AGT​
AAA​AGT​CGT​AAC​AAGG- 3′ as forward and ITS4: 
5′TCC​TCC​GCT​TAT​TGA​TAT​CG- 3′ as reverse were 
used for PCR amplification (White et al. 1990). The 
reaction and cycling conditions were adapted and per-
formed according to the study of Sevim et al. (2010a). 
In addition, the nuclear intergenic region (bloc), 
translation elongation factor-1 alpha (tef) and RNA 
polymerase II largest subunit (rbp1) gene sequences 
were carried out for further characterization of the 
most effective isolate (SK-8) used in field trial. The 
primer pairs of B5.1F (5′-CGA​CCC​GGC​CAA​CTA​
CTT​TGA-3′) as forward and B3.1R (5′-GTC​TTC​
CAG​TAC​CAC​TAC​GCC-3′) as reverse primers were 
used to amplify bloc gene region and PCR conditions 
were adapted as described in the study of Rehner et al. 
(2006). The partial sequence of tef gene region was 
amplified with primer pairs of EF1T (5′-ATG​GGT​
AAG​GAR​GAC​AAG​AC-3′) and 1567R (5′-ACHGTR​
CCR​ATA​CCA​CCSATCTT-3′) and PCR, cycling con-
ditions were adapted according to the study of Rehner 
and Buckley (2005). Finally, rpb1 gene region were 
amplified with the degenerate primers of RPB1Af 
(5′-GAR​TGY​CCDGGDCAY​TTY​GG-3′) and RPB1C 
(5′- CCNGCDATNTCR​TTR​TCC​ATR​TA-3′) and 
PCR conditions were described in the study of Stiller 
and Hall (1997). After performing PCRs, all products 
were sent to Macrogen for sequencing. The resulting 
DNA sequences were compared with DNA sequences 

at NCBI GenBank by Blast search to confirm species 
identification, and then phylogenetic analysis was 
performed. Also, the sequences were used to compare 
the isolate SK-8 with reference strains in the study of 
Rehner et al. (2011). All sequences were deposited in 
GenBank under the accession numbers given in Sup-
plementary Table S1.

Laboratory screening tests

Fifty ml of stock solutions of fungal isolates (1 × 106 
conidia  ml−1) were separately spread on PDAY and 
incubated at 25  °C for 2–3  days. At the end of the 
incubation period, single colonies were selected and 
transferred to another PDAY and incubated at 25 °C 
for four  weeks. After that, 10  ml of sterile 0.01% 
Tween 80 were added to each Petri dish  and spores 
were obtained by scraping them with glass rod. Spore 
suspensions were filtered into 50  ml sterile conical 
centrifuge tubes through two-layers of sterile cheese 
cloth to remove mycelium and agar pieces. The 
resulting suspensions were vortexed for 5  min for 
homogenization. Spore suspensions were adjusted to 
the desired concentrations based on Neubauer hemo-
cytometer derived counts. The viability of spores 
was tested by spreading 100 μl spore suspension on 
the PDAY agar and determining the germination rate 
after a 24 h incubation. Spores which produced germ 
tubes longer than  their diameter  were considered  to 
have germinated. Isolates with 95% germination rate 
or over were used in virulence tests (Sevim et  al. 
2010b).

A total of 24 fungal isolates were tested against 
both larvae and adults of CPB. Adults and larvae were 
collected from potato fields in Konya, Turkey. They 
were fed in the laboratory for three days to eliminate 
the injured and diseased individuals and the selected 
healthy insects were used in bioassays. Ten larvae 
(3rd and 4th instars) and adults were separately used 
for each repetition and all bioassays were repeated 
three times. Ten healthy larvae and adults were sepa-
rately placed in plastic boxes (20 × 20 × 20  cm) and 
a conidial concentration of 1 × 107 conidia  ml−1 of 
each isolate were sprayed on insects using an aero-
sol type sprayer (airbrush). Freshly collected potato 
leaves were used as food and were changed daily. The 
control group was inoculated with only sterile 0.01% 
Tween 80. After inoculation, all boxes were left 
to incubate at 28  °C for 15 days under a L:D 12:12 
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photoperiod. All boxes were examined for 15  days, 
dead larvae were counted, and percentage mortality 
values were calculated. The percent mycosis values 
were also calculated. For this, dead larvae and adults 
were washed with 1% sodium hypochlorite solution 
for 3  min for surface sterilization. Afterwards, they 
were washed with sterile distilled water three times 
and taken into sterile Petri dishes including moist fil-
ter paper and left to incubate at 28 °C and in the dark 
(Sevim et al. 2010c).

Outdoor tests

Based on the initial screening tests, the isolate SK-8 
was selected and used in small scale field trials. The 
conidial suspensions of the isolate SK-8 were pre-
pared as described in the screening tests. In the field 
trials, a total of thirty larvae (3rd and 4th instars) and 
adults were separately used for each conidial concen-
tration and repetition. All experiments were repeated 
three times. Cultural conditions were uniform for all 
plants of the trial and conformed to local agricultural 
practice. 25  m2 field was used as the trial area. Two 
adjacent potato plants in the area were separately 
selected for both larvae and adults and used sepa-
rately for each conidial concentration. Before apply-
ing conidial suspensions, 30 larvae and adults were 
released into each of the two potato plants for each 
concentration. Therefore, different experiment groups 
for each concentration were set. Before insects were 
placed on plants, weeds surrounding potato plants 
was removed to restrict larval movement between 
plants (Petek et  al. 2020). After that, 200  ml of 
each concentration (1 × 104, 1 × 105, 1 × 106, 1 × 107 
and 1 × 108 conidia  ml−1) belonging to B. bassi-
ana SK-8 were applied to the larvae and adults for 
10–15  s using the aerosol type sprayer. The control 
group was inoculated with only sterile 0.01% Tween 
80 for both larvae and adults. After inoculation, the 
upper part of each plant to ground were covered 
with a wooden cage with plastic holes which are too 
small for larvae and adults to escape. Then all plants 
were left to incubate for 15  days under field condi-
tions. All plants were examined during 15  days of 
incubation, the dead larvae and adults were counted, 
and the percentage mortality were calculated for 
each concentration. The average temperature and 
RH values for the date range in which field trials 
were performed were obtained from https://​tr.​freem​

eteo.​com/. The average temperature and RH values 
were 27.19 ± 0.4  °C (24–31  °C) and 66.81 ± 1.64% 
(58–79%), respectively.

Data analysis

All DNA sequences were edited with the BioEdit 
7.09 (Hall 1999) and their percentage similarities 
with other known DNA sequences in GenBank were 
determined by Blast search (Benson et al. 2012; Alts-
chul et al. 1990). Cluster analysis of DNA sequences 
were done with the ClustalW packed in the BioEdit 
and the obtained data were used in neighbor-joining 
(NJ) analysis in MEGA 11.0.10 (Tamura et al. 2021). 
The phylogenetic  tree was constructed  using the 
concatenated  sequences of bloc, rpb1 and tef gene 
regions. Alignment gaps were considered as miss-
ing data. The reliability of the generated phylogram 
was tested with 1.000 replicates by bootstrap analysis 
using the MEGA 11.0.10.

The data from the virulence tests were corrected 
using the  Abbott formula and percent mortalities 
were calculated (Abbott 1925). In addition, the per-
cent mycosis values were calculated as described 
above. One-way ANOVA followed by LSD post-hoc 
test was used to compare fungal isolates with each 
other in terms of mortality and mycoses. Before per-
forming ANOVA, all data were evaluated in terms of 
variance homogeneity using Levene statistics, and all 
percentage data were subjected to arcsin transforma-
tion. Calculation of LC50 and LC90 values were per-
formed by probit analysis. Pearson’s χ2 statistic for 
goodness-of-fit test was then calculated to evaluate 
a significant fit between the observed and expected 
regression models. All data obtained were analyzed 
using SPSS 16.0 statistical software.

Results

Twenty-four fungal isolates were obtained from 43 
soil samples and 55.8% of soil samples were posi-
tive with respect to the presence of entomopathogenic 
fungi. Localities, geographic  coordinates  and Gen-
Bank accession numbers for all isolates are given in 
Supplementary Table S1. Based on their colony mor-
phologies and macroscopic characters, all isolates 
were placed in two genera as Beauveria and Metarhi-
zium. ITS gene sequence analysis also confirmed the 

https://tr.freemeteo.com/
https://tr.freemeteo.com/
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morphological characterization and the isolates were 
identified as Beauveria bassiana (SK-1, SK-5, SK-8, 
SK-14, SK-16, SK-17, SK-28, SK-40, and SK-45) 
and Metarhizium sp. (SK-3, SK-9, SK-10, SK-12, 
SK-15, SK-21, SK-22, SK-24, SK-27, SK-29, SK-37, 
SK-42, SK-47, SK-49, and SK-50) (Supplementary 
Table S2). Recent phylogenetic studies on Beauveria 
and Metarhizium genera showed that some species in 
these genera are morphologically similar but phylo-
genetically distinct (Rehner et al. 2011; Bischoff et al. 
2009). To differentiate these similar species, different 
gene regions other than ITS should be used in phy-
logenetic analysis. Therefore, bloc, rpb1 and tef gene 
sequences were used for further characterization of 
the isolate SK-8 which was the most effective isolate 
in the screening tests and used in the field trial. Iso-
late SK-8 was compared with the reference strains 
in the study of Rehner et  al. (2011) and the concat-
enated tree generated using bloc, rpb1 and tef gene 

sequences showed that the isolate SK-8 was identical 
to B. bassiana (Fig. 1).

In the screening test against adults, significant 
differences were found amongst isolates and the 
highest mortalities were obtained from B. bassiana 
SK-1, SK-5, SK-8, SK-14, SK-16, SK-17, SK-28, 
SK-45 and Metarhizium sp. SK-9, SK-10, SK-15, 
SK-21, SK-22, SK-24, SK-27, SK-29, SK-47, SK-49 
(F24,50 = 6.85, p < 0.001). Among these, nine iso-
lates (B. bassiana SK-1, SK-8, SK-16, SK-17, 
SK-28 and Metarhizium sp. SK-10, SK-22, SK-24, 
and SK-49) caused mortalities ranging from 96 to 
83% and they were significantly different from the 
control (F24,50 = 6.85, p < 0.001). The other iso-
lates caused different mortalities (F24,50 = 6.85, 
p < 0.001) and they were not different from the 
control. In terms of mycosis, significant differ-
ences were found amongst isolates (F24,50 = 11.11, 
p < 0.001). The highest mycosis values were 

Fig. 1   The concatenated 
tree showing the phyloge-
netic position of the isolate 
SK-8 and the reference 
strains in the study of Reh-
ner et al. (2011) based on 
the concatenated sequences 
of bloc, rpb1 and tef gene 
regions. The tree was 
constructed using neighbor-
joining (N-J) analysis with 
p-distance correction. The 
bootstrap analysis was 
based on 1.000 pseudorep-
licates and bootstrap values 
with > 70% are indicated. 
The solid black circle 
indicates isolate SK-8. 
The scale at the bottom 
represents genetic distances 
in nucleotide substitutions 
per site
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obtained from B. bassiana SK-5, SK-8, SK-16, 
SK-17, and SK-28 (F24,50 = 11.11, p < 0.001) and 
they were significantly different from the control. 
The other isolates caused different mycosis values 
(F24,50 = 11.11, p < 0.001) and they were not dif-
ferent from the control (Fig. 2).

In the screening test against 3rd and 4th instar 
larvae, significant differences were found amongst 
isolates. The highest mortalities were obtained 
from B. bassiana SK-1, SK-5, SK-8, SK-14, SK-16, 
SK-17, SK-28, SK-40, SK-45 and Metarhizium sp. 
SK-3, SK-10, SK-12, SK-15, SK-24, SK-27, SK-29, 
SK-37, SK-42, SK-47, SK-49, SK-50 (F24,50 = 5.82, 
p < 0.001), ranging from 100 to 63% and all of them 
were different from the control, except for SK-5, 
SK-9, SK-21 and SK-22. The other isolates caused 
different mycosis values (F24,50 = 5.82, p < 0.001) 
and they were not different from the control. In 
terms of mycosis, significant differences were found 
amongst isolates (F24,50 = 7.11, p < 0.001). Nine iso-
lates (B. bassiana SK-1, SK-8, SK-16, SK-17, SK-28, 
SK-40, SK-45 and Metarhizium sp. SK-3, SK-27) 
caused the highest mycosis values and four of them 
(SK-8, SK-17, SK-28, and SK-45) were significantly 
different from the control (F24,50 = 7.11, p < 0.001). 
The other isolates caused different mycosis values 

(F24,50 7.11, p < 0.001) and they were not different 
from the control (Fig. 3).

LC50 values for isolate SK-8 in the outdoor 
tests were estimated as 3.42 × 106 and 1.15 × 107 
conidia ml−1 for adults and larvae, respectively. LC90 
values were estimated as 1.12 × 109 and 4.08 × 1010 
conidia  ml−1 for adults and larvae, respectively 
(Table 1).

Discussion

All fungal isolates examined had some degree of 
pathogenicity for both larvae and adult CPB, with 
considerable variability in response to the one dose 
used (1 × 107 conidia  ml−1). Several isolates caused 
80% or greater mortality under the conditions of the 
assays. Fungal outgrowth and sporulation were also 
variable among the isolates. The isolate selected for 
outdoor evaluation on sprayed, insect infested plants, 
demonstrated good efficacy. Storch and Dill (1987) 
tested B. bassiana (5 × 1012 and 5 × 1013  CFU ha-1) 
against CPB in the field and concluded that adequate 
control of L. decemlineata in Maine using B. bassi-
ana may be possible considering defoliation rate, 
average yield of tubers and the number of Colorado 

Fig. 2   Percent mortality (+ SE)  and mycosis of CPB adults 
after exposure of different fungal isolates obtained from soil 
samples in potato fields within 15  days. 1 × 107 conidia  ml−1 
spore suspensions were applied to adults. Mortality values was 
calculated using the Abbott’s formula (Abbott 1925). The dif-

ferent uppercase and lowercase letters represent the statistical 
difference among isolates with respect to mortality and myco-
sis, respectively, according to LSD multiple comparison test 
(p < 0.001). 0.01% Tween 80 was used as the control group
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potato beetle egg masses and adults. Poprawski et al. 
(1997) applied the unformulated conidia of B. bassi-
ana (5 × 1013 viable conidia  ha−1) as four rapid (at 
three  -to four day intervals) and early  season (at the 
green row and touch in row growth stages of potato) 
foliar applications. They determined the rate of myco-
sis in larval populations at > 90% two  days after the 
last B. bassiana application. Öztürk et  al. (2015) 
tested four different entomopathogenic fungi, three of 
which were B. bassiana, on 2nd and 3rd instar larvae, 
4th instar larvae and adults of CPB by spray and leaf 

dipping methods using the conidial concentration of 
1 × 108 conidia ml−1. In both application methods, all 
three isolates reached 100% mortality against 2nd, 3rd 
and 4th larval instars within seven days while the 
highest mortalities were 86.2% for spray method and 
69% for leaf dipping method against adults within 
the same time. Puza et al. (2021) applied B. bassiana 
(1.72 × 1011 spores per plot (25.2 m2)) against CPB in 
the field and they determined that the fungus reduced 
the number of emerging adults by 30% compared to 
the control sites within 14  days. Baki et  al. (2021) 

Fig. 3   Percent mortality (+ SE)  and mycosis of CPB larvae 
after exposure of different fungal isolates obtained from soil 
samples in potato fields within 15  days. 1 × 107 conidia  ml−1 
spore suspensions were applied to larvae. Mortality values was 
calculated using the Abbott’s formula (Abbott 1925). The dif-

ferent uppercase and lowercase letters represent the statistical 
difference among isolates with respect to mortality and myco-
sis, respectively, according to LSD multiple comparison test 
(p < 0.001). 0.01% Tween 80 was used as the control group

Table 1   Summary of probit analysis parameters from the virulence bioassays performed with different doses of Beauveria bassiana 
isolate SK-8 against adult and larvae of CPB under field conditions

a Slope of the concentration response of adult and larvae of CPB to B. bassiana isolate SK-8
b Pearson χ2 goodness-of-fit test on the probit model. There is no significant difference between the observed and expected regres-
sion models (p > 0.05)

Development stage Intercept ± SE Slope ± SEa LC50 (95% fiducial limits) LC90 (95% fiducial limits) Pearson goodness 
of fit testb

χ2 df p

Adult − 3.326 ± 0.541 0.509 ± 0.086 3.42 × 106 
(1.25 × 106–1.15 × 107)

1.12 × 109 
(1.73 × 108–3.74 × 1010)

1.045 3  > 0.05

Larvae − 2.550 ± 0.509 0.361 ± 0.080 1.15 × 107 
(2.8 × 106–1.21 × 108)

4.08 × 1010 
(1.49 × 109–1.36 × 1014)

0.665 3  > 0.05
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tested 14 different indigenous isolates of B. bassiana 
(1 × 107 conidia ml−1) against different developmental 
stages of CPB under laboratory conditions and stated 
that four isolates were highly virulent causing mor-
talities between 91.7 and 100% in larvae and between 
93.3 and 96.7% in adults within nine  days. In addi-
tion, these four isolates had the most egg  hatching 
inhibitory effects. To improve the efficacy of B. bassi-
ana, Anderson et  al. (1989) tested B. bassiana on 
CPB with five insecticide formulations and found that 
the fungus and insecticides (abamectin, triflumuron, 
thuringiensin, carbaryl and fenvalerate) were more 
effective than their use alone when used together. 
Similarly, Furlong and Groden (2001) determined a 
synergy between B. bassiana and imidacloprid. Also, 
Wraight and Ramos (2005) combined B. bassiana 
with Btt (Bacillus thuringiensis  subsp.  tenebrionis) 
and showed that the combination of the fungus and 
bacterium provided a significant reduction in larval 
populations of CPB. All these studies show that B. 
bassiana can have good potential in the control of 
CPB. B. bassiana SK-8, which was evaluated in this 
study, and  was shown to be effective on larvae and 
adults of CPB under both laboratory and field condi-
tions. The choice and application of native isolates 
may reduce future environmental impacts formed by 
selection pressure when new species of an organism 
are introduced into an environment. Moreover, native 
isolates might be adapted to local climatic conditions 
and can survive local conditions (Bilgo et al. 2018). 
For this reason, Turkish isolate B. bassiana SK-8 
seems to be a good candidate for further studies in the 
control of CPB.

It is interesting to mention that the isolate SK-8 
scored promising LC50 (1.15 × 107 and 3.42 × 106 
conidia  ml−1) and LC90 (4.08 × 1010 and 1.12 × 109 
conidia  ml−1) values against both larvae and adults 
of CPB compared to commercially formulated B. 
bassiana [Botanigard® 22WP (Lam International 
Co., Butte, MT, USA)] which is registered for use in 
the USA and other regions on potatoes  production. 
Botanigard® 22WP contains 4.4 × 1013 conidia kg-1. 
The label of this product states maximum concentra-
tion of the Beauveria formulation 62.5  g  per  100 l, 
which equals 2.75 × 107 conidia  ml−1, with a maxi-
mum application rate of 1.500 l spray ha−1.

Entomopathogenic fungal isolates represent dif-
ferent genotypes under the different field conditions, 
and these genotypes can interact with each other, 

host populations, and their environment (Meyling 
and Eilenberg 2007). In this sense, it is possible to 
say that the populations of B. bassiana and Metarhi-
zium spp. are affected by both abiotic and biotic fac-
tors in the habitat, separated into different genetic 
groups according to these factors and adapted to the 
particular environmental conditions. For instance, 
Bidochka et  al. (2002) showed that a genetic group 
of B. bassiana was associated with agricultural areas, 
two groups were associated with forest habitats, and 
the last group was associated with Canadian Arc-
tic. In the same study, certain relationships such as 
growth at different temperatures and UV resistance 
were found between different groups of B. bassiana. 
In addition, Bidochka et  al. (2001) showed that the 
same relationship among B. bassiana populations was 
also found in M. anisopliae populations in Canada. A 
similar study was conducted between different spe-
cies of Metarhizium spp. and a high genetic variabil-
ity between Metarhizium spp. isolates was detected in 
terms of conidial thermotolerance. M. anisopliae var. 
anisopliae and M. flavoviridae isolates were shown 
to be more sensitive to heat than M. anisopliae var. 
acridum isolates. Conversely, in the same study, 
many Metarhizium spp. isolates were inactive at low 
temperatures (Fernandes et  al. 2010). Maurer et  al. 
(1997) studied the genetic diversity of 38 B. bassiana 
isolates obtained from different geographical regions 
and insect orders. They determined that B. bassiana 
isolates was divided into different groups accord-
ing to their host range. Wang et  al. (2005) showed 
a certain relationship among B. bassiana, obtained 
from different geographical regions with respect to 
their geographical origin. Fernandes et al. (2009) also 
showed a clear genomic difference between Brazilian 
and USA B. bassiana isolates and larger geographi-
cal distances were associated with higher genetic 
distances. More importantly, even local populations 
of entomopathogenic fungi can be separated into dif-
ferent genetic groups according to their local habi-
tats. For example, Meyling et  al. (2006) determined 
that only a certain group of B. bassiana was found in 
organic farming areas in Denmark, while the other 
five groups existed in hedgerows adjacent to these 
farmlands and were genetically separated. Consider-
ing all these studies, it might be important to obtain 
indigenous biological control agents adapted to a spe-
cific or local environment, and the use of indigenous 
isolates may be more effective than non-local isolates, 
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cost considerations aside (Alfiky 2022; Klingen et al. 
2015; Sevim et al. 2010a). In this study, entomopath-
ogenic fungi (especially B. bassiana and Metarhi-
zium spp.) were widely found in soils of potato fields 
(55.8%). Considering that the isolates obtained from 
this study could be adapted to both biotic and abiotic 
factors in the environment in which they survive, it 
should be advantageous to use them against potato 
pests, especially CPB, in the study region under both 
inoculative and conservation biological control strate-
gies. Moreover, after application of the fungus on a 
large scale, the fungus may survive in the soil envi-
ronment for a long time, and this should be advanta-
geous against soil-dwelling larvae and overwintering 
adults. But it should be noted that fungal persistence 
in the soil is very variable and can be affected by 
many factors (Jaronski 2010).

Consequently, various entomopathogenic fungi 
were isolated from soil samples in potato fields and 
they were tested against adults and larvae of CPB 
under laboratory conditions. The most effective iso-
late was determined to be B. bassiana SK-8 and it was 
further characterized by multilocus phylogeny using 
bloc, rpb1 and tef gene sequences and its efficacy was 
evaluated in field trials. As a result, the indigenous 
isolate B. bassiana SK-8 appears to be a promising 
agent in the control of CPB. However, further stud-
ies such as horizontal transmission, the susceptibility 
to certain environmental factors and predisposition to 
mass production should be performed.
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