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FLAT ROTATIONAL SURFACES WITH POINTWISE

1-TYPE GAUSS MAP IN E4

Ferdag Kahraman Aksoyak∗ and Yusuf Yayli

Abstract. In this paper we study general rotational surfaces in
the 4- dimensional Euclidean space E4 and give a characterization
of flat general rotational surface with pointwise 1-type Gauss map.
Also, we show that a flat general rotational surface with pointwise
1-type Gauss map is a Lie group if and only if it is a Clifford torus.

1. Introduction

A submanifold M of a Euclidean space Em is said to be of finite type
if its position vector x can be expressed as a finite sum of eigenvectors
of the Laplacian ∆ of M , that is, x = x0 + x1 + ... + xk, where x0 is a
constant map, x1, ..., xk are non-constant maps such that ∆xi = λixi,
λi ∈ R, i = 1, 2, ..., k. If λ1, λ2,...,λk are all different, then M is said to
be of k−type. This definition was similarly extended to differentiable
maps, in particular, to Gauss maps of submanifolds [6].

If a submanifold M of a Euclidean space or pseudo-Euclidean space
has 1-type Gauss map G, then G satisfies ∆G = λ (G+ C) for some
λ ∈ R and some constant vector C. Chen and Piccinni made a general
study on compact submanifolds of Euclidean spaces with finite type
Gauss map and they proved that a compact hypersurface M of En+1

has 1-type Gauss map if and only if M is a hypersphere in En+1 [6].
Hovewer the Laplacian of the Gauss map of some typical well known

surfaces such as a helicoid, a catenoid and a right cone in Euclidean
3-space E3 take a somewhat different form, namely,

(1) ∆G = f (G+ C)
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for some non-zero smooth function f on M and some constant vector
C. A submanifold M of a Euclidean space Em is said to have point-
wise 1-type Gauss map if its Gauss map satisfies (1) for some non-zero
smooth function f on M and some constant vector C. A submanifold
with pointwise 1-type Gauss map is said to be of the first kind if the
vector C in (1) is zero vector. Otherwise, the pointwise 1-type Gauss
map is said to be of the second kind.

Surfaces in Euclidean space and in pseudo-Euclidean space with point-
wise 1-type Gauss map were recently studied in [7], [8], [10], [11], [12],
[13], [14]. Also Dursun and Turgay in [9] gave all general rotational
surfaces in E4 with proper pointwise 1-type Gauss map of the first kind
and classified minimal rotational surfaces with proper pointwise 1-type
Gauss map of the second kind. Arslan et al. in [2] investigated rotational
embedded surfaces with pointwise 1-type Gauss map. Arslan at el. in
[3] gave necessary and sufficient conditions for a Vranceanu rotational
surface to have pointwise 1-type Gauss map. Yoon in [19] showed that
flat Vranceanu rotational surface with pointwise 1-type Gauss map is a
Clifford torus.

In this paper, we study general rotational surfaces in the 4- dimen-
sional Euclidean space E4 and give a characterization of flat general
rotational surface with pointwise 1-type Gauss map. Also, we show that
a flat general rotational surface with pointwise 1-type Gauss map is a
Lie group if and only if it is a Clifford torus.

2. Preliminaries

Let M be an oriented n−dimensional submanifold in m−dimensional
Euclidean space Em. Let e1,...,en, en+1,...,em be an oriented local or-
thonormal frame in Em such that e1,...,en are tangent toM and en+1,...,em
normal to M. We use the following convention on the ranges of indices:
1 ≤ i, j, k,...≤ n, n+ 1 ≤ r, s, t,...≤ m, 1 ≤ A,B,C,...≤ m.

Let ∇̃ be the Levi-Civita connection of Em and∇ the induced connec-
tion on M . Let ωA be the dual-1 form of eA defined by ωA (eB) = δAB.
Also, the connection forms ωAB are defined by

deA =
∑

B

ωABeB, ωAB + ωBA = 0.
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Then we have

(2) ∇̃ei
ek

=

n∑

j=1

ωij (ek) ej +

m∑

r=n+1

hriker

and

(3) ∇̃es
ek

= −Ar(ek) +

m∑

r=n+1

ωsr (ek) er, Des
ek

=

m∑

r=n+1

ωsr (ek) er,

where D is the normal connection, hrik the coefficients of the second
fundamental form h and Ar the Weingarten map in the direction er.

For any real function f on M the Laplacian of f is defined by

(4) ∆f = −
∑

i

(
∇̃ei∇̃eif − ∇̃∇ei

ei
f
)
.

If we define a covariant differention ∇̄h of the second fundamental
form h on the direct sum of the tangent bundle and the normal bundle
TM ⊕ T⊥M of M by

(∇̄Xh
)
(Y,Z) = DXh (Y, Z)− h (∇XY, Z)− h (Y,∇XZ)

for any vector fieldsX, Y and Z tangent toM. Then we have the Codazzi
equation

(5)
(∇̄Xh

)
(Y,Z) =

(∇̄Y h
)
(X,Z)

and the Gauss equation is given by

(6) 〈R(X,Y )Z,W 〉 = 〈h (X,W ) , h (Y, Z)〉 − 〈h (X,Z) , h (Y,W )〉 ,
where the vectors X, Y, Z and W are tangent to M and R is the cur-
vature tensor associated with ∇ and the curvature tensor R is defined
by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Let us now define the Gauss map G of a submanifold M into G(n,m)
in ∧nEm, where G(n,m) is the Grassmannian manifold consisting of all
oriented n−planes through the origin of Em and ∧nEm is the vector space
obtained by the exterior product of n vectors in Em. In a natural way, we

can identify ∧nEm with some Euclidean space EN where N =

(
m
n

)
.

The map G : M → G(n,m) ⊂ EN defined by G(p) = (e1 ∧ ... ∧ en) (p) is
called the Gauss map of M, that is, a smooth map which carries a point
p in M into the oriented n−plane through the origin of Em obtained
from parallel translation of the tangent space of M at p in Em.
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Bicomplex number is defined by the basis {1, i, j, ij} where i, j, ij
satisfy i2 = −1, j2 = −1, ij = ji. Thus any bicomplex number x can be
expressed as x = x11 + x2i+ x3j + x4ij, ∀x1, x2, x3, x4 ∈ R. We denote
the set of bicomplex numbers by C2. For any x = x11+x2i+x3j+x4ij
and y = y11 + y2i+ y3j + y4ij in C2 the bicomplex number addition is
defined by

x+ y = (x1 + y1) + (x2 + y2) i+ (x3 + y3) j + (x4 + y4) ij.

The multiplication of a bicomplex number x = x11 + x2i + x3j + x4ij
by a real scalar λ is given by

λx = λx11 + λx2i+ λx3j + λx4ij.

With this addition and scalar multiplication, C2 is a real vector space.
Bicomplex number product, denoted by ·, over the set of bicomplex

numbers C2 is given by

x· y = (x1y1 − x2y2 − x3y3 + x4y4) + (x1y2 + x2y1 − x3y4 − x4y3) i

+(x1y3 + x3y1 − x2y4 − x4y2) j + (x1y4 + x4y1 + x2y3 + x3y2) ij.

Vector space C2 together with the bicomplex product · is a real algebra
Since the bicomplex algebra is associative, it can be considered in terms
of matrices. Consider a set of matrices is given by

Q =








x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1


 ; xi ∈ R , 1 ≤ i ≤ 4





.

The setQ together with matrix addition and scalar matrix multiplication
is a real vector space. Furthermore, this vector space together with
matrix product is a real algebra.

The transformation
g : C2 → Q

given by

g (x = x11 + x2i+ x3j + x4ij) =




x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1




is one to one and onto. Morever ∀x, y ∈ C2 and λ ∈ R, we have

g (x+ y) = g (x) + g (y) ,

g (λx) = λg (x) ,

g (xy) = g (x) g (y) .
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Thus the algebras C2 and Q are isomorphic [15].

Let x ∈ C2. Then x can be expressed as x = (x1 + x2i)+(x3 + x4i) j.
In this case, there are three different conjugations for bicomplex numbers
as follows:

xt1 = [(x1 + x2i) + (x3 + x4i) j]
t1 = (x1 − x2i) + (x3 − x4i) j,

xt2 = [(x1 + x2i) + (x3 + x4i) j]
t2 = (x1 + x2i)− (x3 + x4i) j,

xt3 = [(x1 + x2i) + (x3 + x4i) j]
t3 = (x1 − x2i)− (x3 − x4i) j.

3. Flat Rotational Surfaces with Pointwise 1-Type Gauss
Map in E4

In this section, we consider the flat rotational surfaces with pointwise
1-type Gauss map in Euclidean 4- space. Let consider the equation of
the general rotation surface given in [16].

ϕ (t, s) =




cosmt − sinmt 0 0
sinmt cosmt 0 0

0 0 cosnt − sinnt
0 0 sinnt cosnt







α1(s)
α2(s)
α3(s)
α4(s)


 ,

where α (s) = (α1 (s) , α2 (s) , α3 (s) , α4 (s)) is a regular smooth curve in
E4 on an open interval I in R and m, n are some real numbers which
are the rates of the rotation in fixed planes of the rotation. If we choose
the meridian curve α as α (s) = (x (s) , 0, y(s), 0) is unit speed curve and
the rates of the rotation m and n as m = n = 1, we obtain the surface
as follows:

(7) M : X (s, t) = (x (s) cos t, x (s) sin t, y(s) cos t, y(s) sin t) .

Let M be a general rotational surface in E4 given by (7). We consider
the following orthonormal moving frame {e1, e2, e3, e4} on M such that
e1, e2 are tangent to M and e3, e4 are normal to M :

e1 =
1√

x2 (s) + y2(s)
(−x (s) sin t, x (s) cos t,−y(s) sin t, y(s) cos t) ,

e2 =
(
x′ (s) cos t, x′ (s) sin t, y′(s) cos t, y′(s) sin t

)
,

e3 =
(−y′(s) cos t,−y′(s) sin t, x′ (s) cos t, x′ (s) sin t

)
,

e4 =
1√

x2 (s) + y2(s)
(−y(s) sin t, y(s) cos t, x (s) sin t,−x (s) cos t) ,
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where e1 = 1√
x2(s)+y2(s)

∂
∂t and e2 = ∂

∂s . Then we have the dual 1-forms

as:

ω1 =
√
x2 (s) + y2(s)dt and ω2 = ds.

By a direct computation we have components of the second fundamental
form and the connection forms as:

h311 = b(s), h312 = 0, h322 = c(s),

h411 = 0, h412 = −b(s), h422 = 0,

ω12 = −a(s)ω1, ω13 = b(s)ω1, ω14 = −b(s)ω2,

ω23 = c(s)ω2, ω24 = −b(s)ω1, ω34 = −a(s)ω1.

By covariant differentiation with respect to e1 and e2, a straightforward
calculation gives:

∇̃e1e1 = −a(s)e2 + b(s)e3,(8)

∇̃e2e1 = −b(s)e4,

∇̃e1e2 = a(s)e1 − b(s)e4,

∇̃e2e2 = c(s)e3,

∇̃e1e3 = −b(s)e1 − a(s)e4,

∇̃e2e3 = −c(s)e2,

∇̃e1e4 = b(s)e2 + a(s)e3,

∇̃e2e4 = b(s)e1,

where

(9) a(s) =
x(s)x′(s) + y(s)y′(s)

x2 (s) + y2(s)
,

(10) b(s) =
x(s)y′(s)− x′(s)y(s)

x2 (s) + y2(s)
,

(11) c(s) = x′(s)y′′(s)− x′′(s)y′(s).

The Gaussian curvature is obtained by

(12) K = det
(
h3ij

)
+ det

(
h4ij

)
= b(s)c(s)− b2(s).

If the surface M is flat, from (12) we get

(13) b(s)c(s)− b2(s) = 0.



Rotational Surfaces with Pointwise 1-type Gauss map 311

Furthermore, by using (5), (6) we obtain the equations of Gauss and
Codazzi as follows:

(14) a′ (s) + a2 (s) = b2(s)− b(s)c(s)

and

(15) b′ (s) = −2a(s)b(s) + a(s)c(s),

respectively.
By using (4), (8) and straight-forward computation, the Laplacian

∆G of the Gauss map G can be expressed as

∆G =
(
3b2 (s) + c2 (s)

)
(e1 ∧ e2) + (2a(s)b(s)− a(s)c(s)− c′ (s)) (e1 ∧ e3)

+ (−3a(s)b(s)− b′(s)) (e2 ∧ e4) +
(
2b2(s)− 2b(s)c(s)

)
(e3 ∧ e4) .(16)

Remark 3.1. Similar computations to above computations are given
for tensor product surfaces in [4].

Now we investigate the flat rotation surface with the pointwise 1-
type Gauss map. From (13), we obtain that b(s) = 0 or b(s) = c(s).
We assume that b(s) 6= c(s). Then b(s) is equal to zero and (15) implies
that a(s)c(s) = 0. Since b(s) 6= c(s), it implies that c(s) is not equal to
zero. Then we obtain as a(s) = 0. In that case, by using (9) and (10)
we obtain that α (s) = (x (s) , 0, y(s), 0) is a constant vector. This is a
contradiction. Therefore b(s) = c(s) for all s. From (14), we get

(17) a′ (s) + a2 (s) = 0

whose trivial solution and non-trivial solution are given by

a(s) = 0

and

a(s) =
1

s+ c
,

respectively. We assume that a(s) = 0. By (15) b = b0 is a constant,
and so is c. In that case by using (9), (10) and (11), x and y satisfy the
following differential equations

(18) x2 (s) + y2(s) = λ2 λ is a non-zero constant,

(19) x(s)y′(s)− x′(s)y(s) = b0λ
2,

(20) x′(s)y′′(s)− x′′(s)y′(s) = b0.

From (18) we may put

(21) x (s) = λ cos θ (s) , y (s) = λ sin θ (s) ,
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where θ (s) is some angle function. Differentiating (21) with respect to
s, we have

(22) x′(s) = −θ′(s)y (s) and y′(s) = θ′(s)x (s) .

By substituting (21) and (22) into (19), we get

θ (s) = b0s+ d, d = const.

And since the curve α is a unit speed curve, we have

b20λ
2 = 1.

Then we can write components of the curve α as:

x (s) = λ cos (b0s+ d) and y (s) = λ sin (b0s+ d) , b20λ
2 = 1.

On the other hand, by using (16) we can rewrite the Laplacian of the
Gauss map G with a(s) = 0 and b = c = b0 as follows:

∆G = 4b20 (e1 ∧ e2) ,

that is, the flat surface M is pointwise 1-type Gauss map with the func-
tion f = 4b20 and C = 0, that is, the Gauss map is of usual 1-type. Even
if it is a pointwise 1-type Gauss map of the first kind.

Now we assume that a(s) = 1
s+c . Since b(s) is equal to c(s), from (15)

we get
b′ (s) = −a(s)b(s),

or we can write

b′ (s) = − b(s)

s+ c
,

whose the solution is given by

b(s) = µa(s), µ is a constant.

By using (16) we can rewrite the Laplacian of the Gauss map G with
c(s) = b(s) = µa(s) as:

(23) ∆G =
(
4µ2a2 (s)

)
(e1 ∧ e2)+2µa2(s) (e1 ∧ e3)−2µa2(s) (e2 ∧ e4) .

We suppose that the flat rotational surface has pointwise 1-type Gauss
map. From (1) and (23), we get

(24) 4µ2a2 (s) = f + f 〈C, e1 ∧ e2〉 ,
(25) 2µa2(s) = f 〈C, e1 ∧ e3〉 ,
(26) −2µa2(s) = f 〈C, e2 ∧ e4〉 .
Then, we have

(27) 〈C, e1 ∧ e4〉 = 0, 〈C, e2 ∧ e3〉 = 0, 〈C, e3 ∧ e4〉 = 0.
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By using (25) and (26) we obtain

(28) 〈C, e1 ∧ e3〉+ 〈C, e2 ∧ e4〉 = 0.

By differentiating the first equation in (27) with respect to e1 and by
using (8), the third equation in (27) and (28), we get

(29) 2a(s) 〈C, e1 ∧ e3〉+ µa(s) 〈C, e1 ∧ e2〉 = 0.

Combining (24), (25) and (29) we then have

(30) µ
(
f − 4

(
a2 (s) + µ2a2 (s)

))
= 0.

We assume that µ 6= 0. Then

(31) f = 4
(
a2 (s) + µ2a2 (s)

)
,

that is, a smooth function f depends only on s. By differentiating f with
respect to s and by using the equality a′ (s) = −a2 (s), we get

(32) f ′ = −2a(s)f.

By differentiating (25) with respect to s and by using (8), (24), the third
equation in (27), (31), (32) and the equality a′ (s) = −a2 (s), we have

µa3 = 0.

Since a(s) 6= 0, it follows that µ = 0. This is a contradiction. So in
equation (30) µ = 0. Then we obtain that b = c = 0 and the surface M
is a totally geodesic. In that case Gauss map becomes harmonic.

Thus we can give the following theorem and corollary.

Theorem 3.2. Let M be the flat rotational surface given by the
parameterization (7). Then M has pointwise 1-type Gauss map if and
only if M is either totally geodesic or it is parameterized by
(33)

X (s, t) =

(
λ cos (b0s+ d) cos t, λ cos (b0s+ d) sin t,
λ sin (b0s+ d) cos t, λ sin (b0s+ d) sin t

)
, b20λ

2 = 1,

where b0, λ and d are real constants.

Corollary 3.3. Let M be a non totally geodesic flat rotational sur-
face given by the parameterization (7). If M has pointwise 1-type Gauss
map, then the Gauss map G on M is of 1-type.

Corollary 3.4. Let M be a non totally geodesic flat rotation surface
given by the parameterization (7). If M has pointwise 1-type Gauss
map, then the profile curve is a circle.
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Now we give a relationship between rotational surfaces with pointwise
1-type Gauss map and Lie groups. Let the hyperquadric P be given by

P = {x = (x1, x2, x3, x4) 6= 0; x1x4 = x2x3} .
We consider P as the set of bicomplex number

P = {x = x11 + x2i+ x3j + x4ij ; x1x4 = x2x3, x 6= 0} .
The components of P are easily obtained by representing bicomplex
number multiplication in matrix form.

P̃ =




Mx =




x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1


 ; x1x4 = x2x3, x 6= 0





.

Theorem 3.5. [15] The set of P together with the bicomplex number
product is a Lie group.

Proof. P̃ is a differentiable manifold and at the same time a group
with group operation given by matrix multiplication. The group func-
tion

· : P̃ × P̃ → P̃

defined by (x, y) → x · y−1 is differentiable. So (P, ·) can be made a Lie
group so that g is a isomorphism .

Remark 3.6. The surface M given by the parameterization (7) is a
subset of P

Remark 3.7. Let M be a Vranceanu surface. If the surface M is
flat, then it is given by

X (s, t) =
(
eks cos s cos t, eks cos s sin t, eks sin s cos t, eks sin s sin t

)
,

where k is a real constant [19]. In that case we can say that a flat
Vranceanu surface together with the bicomplex number product is a Lie
subgroup of P . Also, a flat Vranceanu surface with pointwise 1-type
Gauss map is a Clifford torus [19] and it is given by

X (s, t) = (cos s cos t, cos s sin t, sin s cos t sin s sin t)

and Clifford Torus together with the bicomplex number product is a Lie
subgroup of P . See for more details [1].

Theorem 3.8. Let M be a non totally geodesic flat rotation surface
with pointwise 1-type Gauss map given by the parameterization (33)
with d = 2kπ. Then M is a Lie group with bicomplex number product
if and only if it is a Clifford torus.
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Proof. We assume that M given by the parameterization (33) is a Lie
group with the group operation of bicomplex number product. Then we
have

(34) X (s1, t1) ·X (s2, t2) = λX(s1 + s2, t1 + t2).

Since M is a group (34) implies that λ = 1. Since b20λ
2 = 1, it follows

that b0 = ε, where ε = ±1. In that case the surface M is given by

X (s, t) = (cos εs cos t, cos εs sin t, sin εs cos t sin εs sin t)

and M is a Clifford torus, that is, the product of two plane circles
with the same radius. Conversely, Clifford torus is a flat rotational
surface with pointwise 1-type Gauss map which can be obtained by
the parameterization (33) and it is a Lie group with bicomplex number
product. This completes the proof.
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Rotational embeddings in E4 with pointwise 1-type Gauss map, Turk. J. Math.
35, 493-499, 2011.

[3] Arslan K., Bayram B.K., Kim, Y.H., Murathan, C. and Öztürk, G., Vranceanu
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