Honam Mathematical J. 38 (2016), No. 2, pp. 305-316
http://dx.doi.org/10.5831 /HMJ.2016.38.2.305

FLAT ROTATIONAL SURFACES WITH POINTWISE
1-TYPE GAUSS MAP IN E*

FERDAG KAHRAMAN AKSOYAK* AND YUSUF YAYLI

Abstract. In this paper we study general rotational surfaces in
the 4- dimensional Euclidean space E* and give a characterization
of flat general rotational surface with pointwise 1-type Gauss map.
Also, we show that a flat general rotational surface with pointwise
1-type Gauss map is a Lie group if and only if it is a Clifford torus.

1. Introduction

A submanifold M of a Euclidean space E™ is said to be of finite type
if its position vector & can be expressed as a finite sum of eigenvectors
of the Laplacian A of M, that is, x = xg + 21 + ... + x, where xg is a
constant map, x1,...,r; are non-constant maps such that Ax; = \;x;,
A € Ryi=1,2,..., k. If A, Ag,..., A are all different, then M is said to
be of k—type. This definition was similarly extended to differentiable
maps, in particular, to Gauss maps of submanifolds [6].

If a submanifold M of a Euclidean space or pseudo-Euclidean space
has 1-type Gauss map G, then G satisfies AG = X (G + C) for some
A € R and some constant vector C. Chen and Piccinni made a general
study on compact submanifolds of Euclidean spaces with finite type
Gauss map and they proved that a compact hypersurface M of E"*+!
has 1-type Gauss map if and only if M is a hypersphere in E**! [6].

Hovewer the Laplacian of the Gauss map of some typical well known
surfaces such as a helicoid, a catenoid and a right cone in Euclidean
3-space E? take a somewhat different form, namely,

(1) AG = f(G+C)
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for some non-zero smooth function f on M and some constant vector
C. A submanifold M of a Euclidean space E™ is said to have point-
wise 1-type Gauss map if its Gauss map satisfies (1) for some non-zero
smooth function f on M and some constant vector C. A submanifold
with pointwise 1-type Gauss map is said to be of the first kind if the
vector C' in (1) is zero vector. Otherwise, the pointwise 1-type Gauss
map is said to be of the second kind.

Surfaces in Euclidean space and in pseudo-Euclidean space with point-
wise 1-type Gauss map were recently studied in [7], [8], [10], [11], [12],
[13], [14]. Also Dursun and Turgay in [9] gave all general rotational
surfaces in E* with proper pointwise 1-type Gauss map of the first kind
and classified minimal rotational surfaces with proper pointwise 1-type
Gauss map of the second kind. Arslan et al. in [2] investigated rotational
embedded surfaces with pointwise 1-type Gauss map. Arslan at el. in
[3] gave necessary and sufficient conditions for a Vranceanu rotational
surface to have pointwise 1-type Gauss map. Yoon in [19] showed that
flat Vranceanu rotational surface with pointwise 1-type Gauss map is a
Clifford torus.

In this paper, we study general rotational surfaces in the 4- dimen-
sional Euclidean space E* and give a characterization of flat general
rotational surface with pointwise 1-type Gauss map. Also, we show that
a flat general rotational surface with pointwise 1-type Gauss map is a
Lie group if and only if it is a Clifford torus.

2. Preliminaries

Let M be an oriented n—dimensional submanifold in m—dimensional
Euclidean space E™. Let ey,...,en, €n+1,---,6; be an oriented local or-
thonormal frame in E™ such that eq,...,e,, are tangent to M and e, y1,...,em
normal to M. We use the following convention on the ranges of indices:
1<, j,k.<n,n+1<rs,t,..<m,1 <A B C,..<m.

Let V be the Levi-Civita connection of E™ and V the induced connec-
tion on M. Let wy be the dual-1 form of e4 defined by w4 (eg) = daB.
Also, the connection forms w4p are defined by

dea =) wapep, wap+wpa=0.
B
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Then we have

(2) Ve =N wiler) e+ Y. e
J=1

r=n-+41
and
- m m
(3) Ve, = —Ar(er) + Z wer (ex) er, Dey = Z wer (ex) er,
r=n+1 r=n-+1

where D is the normal connection, hl, the coefficients of the second

fundamental form h and A, the Weingarten map in the direction e,..
For any real function f on M the Laplacian of f is defined by

(4) Af= =3 (VeVef = Vgsf).

1

If we define a covariant differention VA of the second fundamental
form A on the direct sum of the tangent bundle and the normal bundle
TM & T+M of M by

(Vxh) (Y,Z) = Dxh(Y,Z) = h(VxY,Z) — h(Y,VxZ)

for any vector fields X, Y and Z tangent to M. Then we have the Codazzi
equation

) (Vh) (V.2) = (Vyh) (X.2)
and the Gauss equation is given by
6) (R(X,Y)Z,W) = (h(X,W),h(Y,Z)) = (h(X,Z),h(Y,W)),

where the vectors X, Y, Z and W are tangent to M and R is the cur-
vature tensor associated with V and the curvature tensor R is defined
by

R(X,Y)Z =VxVyZ —-VyVxZ — V[X’Y]Z.

Let us now define the Gauss map G of a submanifold M into G(n,m)
in A"E™, where G(n,m) is the Grassmannian manifold consisting of all
oriented n—planes through the origin of E” and A"E™ is the vector space
obtained by the exterior product of n vectors in E". In a natural way, we
m

n
The map G : M — G(n,m) C EY defined by G(p) = (e1 A ... Aey) (p) is
called the Gauss map of M, that is, a smooth map which carries a point
p in M into the oriented n—plane through the origin of E™ obtained
from parallel translation of the tangent space of M at p in E™.

can identify A"E™ with some Euclidean space EY where N =
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Bicomplex number is defined by the basis {1,14,7,ij} where i,7,ij
satisfy i2 = —1, j2 = —1, ij = ji. Thus any bicomplex number z can be
expressed as x = x11 + xot + x3j + T4%7, VX1, 22, 23, x4 € R. We denote
the set of bicomplex numbers by Cy. For any x = x11 4 x2i + 23 + x41j
and y = y11 + y2i + y3j + y4ij in Cy the bicomplex number addition is
defined by

r+y=(x14+y1)+ (x2+y2)i+ (x3+ys)j+ (x4 + ya)ij.

The multiplication of a bicomplex number x = x11 + xot + x3j + x4
by a real scalar A is given by

A = Azl + Axoi + Axgj + Axgeg.

With this addition and scalar multiplication, C5 is a real vector space.
Bicomplex number product, denoted by -, over the set of bicomplex
numbers Cy is given by

x Yy = (T1y1 — xaYo — T3y3 + Tays) + (T1y2 + Toy1 — X3Ys — T4Yy3)
+ (21y3 + 23y1 — Toys — TaY2) J + (T1ys + Tay1 + T2y3 + T3Yy2) 1]

Vector space Cs together with the bicomplex product - is a real algebra
Since the bicomplex algebra is associative, it can be considered in terms
of matrices. Consider a set of matrices is given by

r1 —To2 —XI3 Ty

x x —x —-x .
Q= 2 ! 4 3 ; ryeR, 1<i<4

r3 —T4 T1 2 —X2

Ty T3 T2 I

The set @ together with matrix addition and scalar matrix multiplication
is a real vector space. Furthermore, this vector space together with
matrix product is a real algebra.

The transformation

g:Cy—Q
given by
_ . . N B B e M
g ((E =x1+ Tol + T3] + 1;41]) - T3 —XI4 1 —x2

T4 X3 T2 T
is one to one and onto. Morever Vz,y € Co and A € R, we have
glz+y) = g@)+g9W),
g(Az) = Ag(z),
g(zy) = g@)g(y).
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Thus the algebras Cy and @ are isomorphic [15].

Let 2z € C. Then x can be expressed as x = (z1 + x21) + (3 + 247) j.
In this case, there are three different conjugations for bicomplex numbers
as follows:

g = [(w1 + 228) + (3 + 24i) J]" = (21 — 220) + (23 — 247) ],
a2 = [(w1 + 220) + (w3 + 24i) J]7? = (21 + 220) — (23 + 247) ,
a'® = [(z1 4 220) + (w3 + 24i) J]° = (21 — @20) — (w3 — 241) j.

3. Flat Rotational Surfaces with Pointwise 1-Type Gauss
Map in E*

In this section, we consider the flat rotational surfaces with pointwise
1-type Gauss map in Euclidean 4- space. Let consider the equation of
the general rotation surface given in [16].

cosmt —sinmt 0 0 a1(s)
sinmt  cosmt 0 0 as(s)

p(ts) = 0 0 cosnt —sinnt as(s) |’
0 0 sinnt  cosnt ay(s)

where a (s) = (a1 (s), a2 (s), a3 (s), a4 (s)) is a regular smooth curve in
E* on an open interval I in R and m, n are some real numbers which
are the rates of the rotation in fixed planes of the rotation. If we choose
the meridian curve a as o (s) = (z (s),0,y(s),0) is unit speed curve and
the rates of the rotation m and n as m = n = 1, we obtain the surface
as follows:

(7))  M: X(s,t)=(z(s)cost,z(s)sint,y(s)cost,y(s)sint).

Let M be a general rotational surface in E* given by (7). We consider
the following orthonormal moving frame {ej, ea, e3,e4} on M such that
e1, e are tangent to M and es, esq are normal to M :

1
e1 = —x (s)sint,z (s)cost, —y(s)sint, y(s)cost),
L= i s a (9 cost ()t () cos)
e = (2'(s)cost,a’(s)sint,y'(s)cost,y'(s)sint),
es = (—y'(s)cost,—y'(s)sint,a’ (s) cost,a’ (s)sint),
eq = ! (—y(s)sint,y(s)cost,x (s)sint, —x (s) cost),

22 (s) + y*(s)
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where e = m% and ey = %. Then we have the dual 1-forms

as:
w1 =22 (s) +y%(s)dt  and  wo = ds.

By a direct computation we have components of the second fundamental
form and the connection forms as:

h?l = b(S), h?Q =0, h§2 = C(S)v

h =0, h12 = —b(s), h32 =
wie = —a(s)wi, wiz=>b(s)w1, w4 = —b(s)wa,
wog = c(S)wa, wog = —b(s)w1, wss= —a(s)w;.

By covariant differentiation with respect to e; and eq, a straightforward
calculation gives:

(8) Ve el = —a(s)es + b(s)es,
Vee1 = —b(s)es,
Veea = a(s)er — b(s)ey,
Ve,e2 = c(s)es,
Vees = —b(s)er — a(s)eq,
Ve,e3 = —c(s)ea,
Veea = bls)es + a(s)es,
Vees = b(s)en,

where

o) sy = 2T+ vl (5)

(10) b(s) = 2 () — @ (5)y(s)

(11) c(s) = '(s)y"(s) — 2" (s)y'(s).
The Gaussian curvature is obtained by
(12) K = det (h?j) + det (hfj) = b(s)c(s) — b2(s).

If the surface M is flat, from (12) we get

(13) b(s)c(s) — b*(s) =
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Furthermore, by using (5), (6) we obtain the equations of Gauss and
Codazzi as follows:

(14) d' (5) 4 a? (s) = b*(s) — b(s)c(s)
and

(15) V (s) = —2a(s)b(s) + a(s)c(s),
respectively.

By using (4), (8) and straight-forward computation, the Laplacian
AG of the Gauss map G can be expressed as

AG = (37 (s) +c(s)) (e1 Aea) + (2a(s)b(s) — a(s)c(s) — ¢ (s)) (e1 Ae)
(16) + (—3a(s)b(s) — b'(s)) (e2 A es) + (2b%(s) — 2b(s)c(s)) (e3 A eq) .

Remark 3.1. Similar computations to above computations are given
for tensor product surfaces in [4].

Now we investigate the flat rotation surface with the pointwise 1-
type Gauss map. From (13), we obtain that b(s) = 0 or b(s) = c(s).
We assume that b(s) # c(s). Then b(s) is equal to zero and (15) implies
that a(s)c(s) = 0. Since b(s) # c(s), it implies that ¢(s) is not equal to
zero. Then we obtain as a(s) = 0. In that case, by using (9) and (10)
we obtain that « (s) = (x(s),0,y(s),0) is a constant vector. This is a
contradiction. Therefore b(s) = ¢(s) for all s. From (14), we get

(17) d (s)+a*(s)=0
whose trivial solution and non-trivial solution are given by
a(s) =0
and
1

als) = s+c’

respectively. We assume that a(s) = 0. By (15) b = by is a constant,
and so is c. In that case by using (9), (10) and (11), = and y satisfy the
following differential equations

(18) 2% (s) +y*(s) = A2 X is a non-zero constant,
(19) z(s)y'(s) — 2 (s)y(s) = boA?,
(20) 2'(8)y"(s) = 2"(s)y'(s) = bo.

From (18) we may put
(21) x(s) =Acosf(s), y(s)=Asinf(s),
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where 6 (s) is some angle function. Differentiating (21) with respect to
s, we have

(22) '(s) = —0'(s)y(s) and y'(s) =0'(s)z(s).
By substituting (21) and (22) into (19), we get
0(s) =bos+d, d=const.
And since the curve « is a unit speed curve, we have
BN = 1.
Then we can write components of the curve « as:
x(s) = Acos (bos +d) and y(s) = Asin(bps +d), DEIN? = 1.

On the other hand, by using (16) we can rewrite the Laplacian of the
Gauss map G with a(s) =0 and b = ¢ = by as follows:

AG = 413 (e1 N es),

that is, the flat surface M is pointwise 1-type Gauss map with the func-
tion f = 4b3 and C' = 0, that is, the Gauss map is of usual 1-type. Even
if it is a pointwise 1-type Gauss map of the first kind.

Now we assume that a(s) = ﬁ Since b(s) is equal to ¢(s), from (15)
we get

or we can write

whose the solution is given by

b(s) = pa(s), p is a constant.
By using (16) we can rewrite the Laplacian of the Gauss map G with
c(s) =b(s) = pa(s) as
(23) AG = (4p*a® (s)) (e1 A e2) +2ua®(s) (e1 A e3) —2ua®(s) (e2 Aey).
We suppose that the flat rotational surface has pointwise 1-type Gauss
map. From (1) and (23), we get

(24) 4p?a® (s) = f+ f(C,e1 Aea),
(25) 2ua?(s) = f(C, e Aes),
(26) —2pa®(s) = f(C,ex Aey).

Then, we have
(27) <C,61/\€4> =0, <C,€2/\€3> =0, (C,eg/\€4> =0.
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By using (25) and (26) we obtain
(28) (C,e1 Nes)+ (C,ea Neq) = 0.

By differentiating the first equation in (27) with respect to e; and by
using (8), the third equation in (27) and (28), we get

(29) 2a(s) (C,e1 N es) + pa(s) (C,e1 Aeg) = 0.
Combining (24), (25) and (29) we then have

(30) f (7~ 4(@2 () + 0 (5))) =0,

We assume that p # 0. Then

(31) [ =46 (s) + 120 (5)

that is, a smooth function f depends only on s. By differentiating f with
respect to s and by using the equality a’ (s) = —a? (s), we get

(32) f' = —2a(s)f.

By differentiating (25) with respect to s and by using (8), (24), the third
equation in (27), (31), (32) and the equality a’ (s) = —a? (s), we have

pa’ = 0.

Since a(s) # 0, it follows that g = 0. This is a contradiction. So in
equation (30) p = 0. Then we obtain that b = ¢ = 0 and the surface M
is a totally geodesic. In that case Gauss map becomes harmonic.

Thus we can give the following theorem and corollary.

Theorem 3.2. Let M be the flat rotational surface given by the
parameterization (7). Then M has pointwise 1-type Gauss map if and
only if M is either totally geodesic or it is parameterized by
(33)

~{ Acos(bps + d) cost, Acos (bys + d) sint, 9.2

X(s:1) = < Asin (bos + d) cost, Asin (bgs + d) sint )’ boA” =1,

where by, A\ and d are real constants.

Corollary 3.3. Let M be a non totally geodesic flat rotational sur-
face given by the parameterization (7). If M has pointwise 1-type Gauss
map, then the Gauss map G on M is of 1-type.

Corollary 3.4. Let M be a non totally geodesic flat rotation surface
given by the parameterization (7). If M has pointwise 1-type Gauss
map, then the profile curve is a circle.
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Now we give a relationship between rotational surfaces with pointwise
1-type Gauss map and Lie groups. Let the hyperquadric P be given by

P={x=(x1,22,23,24) #0; 2124 = 223} .
We consider P as the set of bicomplex number
P ={x =211+ x9i + x3j + x41j ; 124 = w223, T # 0} .

The components of P are easily obtained by representing bicomplex
number multiplication in matrix form.

ry —X2 —I3 T4
x2 x1 —x4 —I3
T3 —T4 T —Zx2
T4 x3 T2 x1

Theorem 3.5. [15] The set of P together with the bicomplex number
product is a Lie group.

P=<{M,= ; 14 = Toxs, x £ 0

Proof. P is a differentiable manifold and at the same time a group
with group operation given by matrix multiplication. The group func-
tion

:PxP—P
defined by (z,y) — x -y~ ! is differentiable. So (P,-) can be made a Lie
group so that g is a isomorphism . O

Remark 3.6. The surface M given by the parameterization (7) is a
subset of P

Remark 3.7. Let M be a Vranceanu surface. If the surface M is
flat, then it is given by

X (s,t) = (eks cos s cost, " cos ssint, e sin s cos t, e sinssint) ,

where k is a real constant [19]. In that case we can say that a flat
Vranceanu surface together with the bicomplex number product is a Lie
subgroup of P. Also, a flat Vranceanu surface with pointwise 1-type
Gauss map is a Clifford torus [19] and it is given by

X (s,t) = (cos scost,cos ssint,sin s costsin ssin t)

and Clifford Torus together with the bicomplex number product is a Lie
subgroup of P. See for more details [1].

Theorem 3.8. Let M be a non totally geodesic flat rotation surface
with pointwise 1-type Gauss map given by the parameterization (33)
with d = 2kw. Then M is a Lie group with bicomplex number product
if and only if it is a Clifford torus.
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Proof. We assume that M given by the parameterization (33) is a Lie
group with the group operation of bicomplex number product. Then we
have

(34) X (Sl,tl) - X (Sz,tg) = AX(Sl + s9,t1 + tQ).

Since M is a group (34) implies that A = 1. Since bZ\? = 1, it follows
that bg = €, where € = £1. In that case the surface M is given by

X (s,t) = (cosescost,cosessint,sines costsinessint)

and M is a Clifford torus, that is, the product of two plane circles
with the same radius. Conversely, Clifford torus is a flat rotational
surface with pointwise 1-type Gauss map which can be obtained by
the parameterization (33) and it is a Lie group with bicomplex number
product. This completes the proof. O
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