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Abstract. In this paper, we define the generalized bicomplex numbers
and give some algebraic properties of them. Also, we show that some
hyperquadrics in R

4 and R
4
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1. Introduction

In mathematics, a Lie group is a group which is also a differentiable manifold
with the property that the group operations are differentiable. To establish
group structure on the surface is quite difficult. Even if the spheres that ad-
mit the structure of a Lie group are only the 0-sphere S0 (real numbers with
absolute value 1), the circle S1 (complex numbers with absolute value 1),
the 3-sphere S3 (the set of quaternions of unit form) and S7 [3]. A manifold
M carrying n linearly independent non-vanishing vector fields is called par-
allelisable and a Lie group is parallelisable. For even n > 1 Sn is not a Lie
group because it can not be parallelisable as a differentiable manifold. Thus
Sn is parallelisable if and only n = 0, 1, 3, 7.

In [5] and [6], Mihai et al. deal with tensor product surfaces of Euclidean
planar curves and Lorentzian planar curves, respectively. Özkaldı and Yaylı
[7] showed that a hyperquadric P in R

4 is a Lie group by using bicomplex
number product. They determined some special subgroups of this Lie group
P, by using the tensor product surfaces of Euclidean planar curves. Karakuş
and Yaylı [4] showed that a hyperquadric Q in R

4
2 is a Lie group by using

bicomplex number product. They changed the rule of tensor product and
they gave a new tensor product rule in R

4
2. By means of the tensor product
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surfaces of a Lorentzian plane curve and a Euclidean plane curve, they deter-
mined some special subgroups of this Lie group Q. In [1,2], by using curves
and surfaces which are obtained by homothetic motion, were obtained some
special subgroups of these Lie groups P and Q, respectively. In [8], Ölmez
studied on generalized quaternions and applications.

In this paper, we define the generalized bicomplex numbers and give
some algebraic properties of them. Also, we show that some hyperquadrics in
R

4 and R
4
2 are Lie groups by using generalized bicomplex number product and

obtain Lie algebras of these Lie groups. Morever, by means of tensor product
surfaces, we determine some special Lie subgroups of these hyperquadrics
and obtain left invariant vector fields of these tensor product surfaces which
are Lie groups.

2. Preliminaries

Bicomplex number is defined by the basis {1, i, j, ij} where i, j, ij satisfy
i2 = −1, j2 = −1, ij = ji. Thus any bicomplex number x can be expressed as
x = x11+x2i+x3j+x4ij, ∀x1, x2, x3, x4 ∈ R. We denote the set of bicomplex
numbers by C2. For any x = x11+x2i+x3j+x4ij and y = y11+y2i+y3j+y4ij
in C2 the bicomplex number addition is defined as

x + y = (x1 + y1) + (x2 + y2)i + (x3 + y3)j + (x4 + y4)ij.

The multiplication of a bicomplex number x = x11 + x2i + x3j + x4ij by a
real scalar λ is defined as

λx = λx11 + λx2i + λx3j + λx4ij.

With this addition and scalar multiplication, C2 is a real vector space.
Bicomplex number product, denoted by ×, over the set of bicomplex

numbers C2 is given by

x × y = (x1y1 − x2y2 − x3y3 + x4y4) + (x1y2 + x2y1 − x3y4 − x4y3)i
+(x1y3 + x3y1 − x2y4 − x4y2)j + (x1y4 + x4y1 + x2y3 + x3y2)ij.

Vector space C2 together with the bicomplex number product × is a real
algebra [9].

Since the bicomplex algebra is associative, it can be considered in terms
of matrices. Consider the set of matrices

M =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

⎞

⎟
⎟
⎠ ; xi ∈ R, 1 ≤ i ≤ 4

⎫
⎪⎪⎬

⎪⎪⎭

.

The set M together with matrix addition and scalar matrix multiplication
is a real vector space. Furthermore, the vector space together with matrix
product is an algebra.

The transformation

g : C2 → M
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given by

g(x = x11 + x2i + x3j + x4ij) =

⎛

⎜
⎜
⎝

x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

⎞

⎟
⎟
⎠

is one to one and onto. Morever ∀x, y ∈ C2 and λ ∈ R, we have

g(x + y) = g(x) + g(y)
g(λx) = λg(x)
g(xy) = g(x)g(y).

Thus the algebras C2 and M are isomorphic.
Let x ∈ C2. Then x can be expressed as x = (x1 + x2i) + (x3 + x4i)j.

In that case, there is three different conjugations for bicomplex numbers as
follows:

xti = [(x1 + x2i) + (x3 + x4i)j]ti = (x1 − x2i) + (x3 − x4i)j
xtj = [(x1 + x2i) + (x3 + x4i)j]tj = (x1 + x2i) − (x3 + x4i)j
xtij = [(x1 + x2i) + (x3 + x4i)j]tij = (x1 − x2i) − (x3 − x4i)j.

[10]. Then we can write

x × xti = (x2
1 + x2

2 − x2
3 − x2

4) + 2(x1x3 + x2x4)j
x × xtj = (x2

1 − x2
2 + x2

3 − x2
4) + 2(x1x2 + x3x4)i

x × xtij = (x2
1 + x2

2 + x2
3 + x2

4) + 2(x1x4 − x2x3)ij.

3. Generalized Bicomplex Numbers

In this section we define generalized bicomplex numbers and give some alge-
braic properties of them.

Definition 1. A generalized bicomplex number x is defined by the basis
{1, i, j, ij} as follows

x = x11 + x2i + x3j + x4ij,

where x1, x2, x3 and x4 are real numbers and i2 = −α, j2 = −β, (ij)2 =
αβ, ij = ji, α, β ∈ R.

Definition 2. We denote the set of generalized bicomplex numbers by Cαβ .
For any x = x11 + x2i + x3j + x4ij and y = y11 + y2i + y3j + y4ij in Cαβ ,
the generalized bicomplex number addition is defined as

x + y = (x1 + y1) + (x2 + y2)i + (x3 + y3)j + (x4 + y4)ij

and the multiplication of a generalized bicomplex number x = x11 + x2i +
x3j + x4ij by a real scalar λ is defined as

λx = λx11 + λx2i + λx3j + λx4ij

Corollary 1. The set of generalized bicomplex numbers Cαβ is a real vector
space with this addition and scalar multiplication operations.
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Definition 3. Generalized bicomplex number product, denoted by ·, over the
set of generalized bicomplex numbers Cαβ is given by

x · y = (x1y1 − αx2y2 − βx3y3 + αβx4y4) + (x1y2 + x2y1 − βx3y4 − βx4y3) i

+ (x1y3 + x3y1 − αx2y4 − αx4y2) j + (x1y4 + x4y1 + x2y3 + x3y2) ij.

Theorem 1. Vector space Cαβ together with the generalized bicomplex prod-
uct · is a real algebra.

Proof. · : Cαβ × Cαβ → Cαβ ∀p, q, r ∈ Cαβ and λ ∈ R satisfy the following
conditions

i) p · (q + r) = p · q + p · r
ii) p · (q · r) = (p · q) · r
iii) (λp) · q = p · (λq) = λ (p · q)
So, the real vector space Cαβ is a real algebra with generalized bicomplex
number product. �

Since the generalized bicomplex algebra is associative, it can be consid-
ered in terms of matrices. Consider the set of matrices

Mαβ =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

x1 −αx2 −βx3 αβx4

x2 x1 −βx4 −βx3

x3 −αx4 x1 −αx2

x4 x3 x2 x1

⎞

⎟
⎟
⎠ ; xi ∈ R, 1 ≤ i ≤ 4

⎫
⎪⎪⎬

⎪⎪⎭

.

The set Mαβ together with matrix addition and scalar matrix multiplication
is a real vector space. Furthermore, the vector space together with matrix
product is an algebra.

Theorem 2. The algebras Cαβ and Mαβ are isomorphic.

Proof. The transformation

h : Cαβ → Mαβ

given by

h (x = x11 + x2i + x3j + x4ij) =

⎛

⎜
⎜
⎝

x1 −αx2 −βx3 αβx4

x2 x1 −βx4 −βx3

x3 −αx4 x1 −αx2

x4 x3 x2 x1

⎞

⎟
⎟
⎠

is one to one and onto. Morever ∀x, y ∈ Cαβ and λ ∈ R, we have

h (x + y) = h (x) + h (y)
h (λx) = λh (x)
h (x.y) = h (x) h (y) .

Thus the algebras Cαβ and Mαβ are isomorphic. �

Remark 1. In Theorem 2, we showed that any generalized bicomplex num-
ber is represented a matrix in form 4 × 4. So generalized bicomplex number
addition and product can be expressed as matrix addition and product too,
respectively.
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Definition 4. Let x ∈ Cαβ . Then x can be expressed as x = (x1 + x2i) +
(x3 + x4i) j. Conjugations of generalized bicomplex numbers with respect to
i, j, both i and j are given by

xti = [(x1 + x2i) + (x3 + x4i) j]ti = (x1 − x2i) + (x3 − x4i) j

xtj = [(x1 + x2i) + (x3 + x4i) j]tj = (x1 + x2i) − (x3 + x4i) j

xtij = [(x1 + x2i) + (x3 + x4i) j]tij = (x1 − x2i) − (x3 − x4i) j.

where xti , xtj and xtij denote conjugations of x with respect to i, j, both i
and j respectively. Also we can compute

x · xti =
(
x2
1 + αx2

2 − βx2
3 − αβx2

4

)
+ 2 (x1x3 + αx2x4) j

x · xtj =
(
x2
1 − αx2

2 + βx2
3 − αβx2

4

)
+ 2 (x1x2 + βx3x4) i

x · xtij =
(
x2
1 + αx2

2 + βx2
3 + αβx2

4

)
+ 2 (x1x4 − x2x3) ij.

Proposition 1. Conjugations of generalized bicomplex numbers with respect
to i, j, both i and j have following properties

i) (λp + δq)tk = λptk + δqtk

ii) (ptk)tk = p

iii) (p · q)tk = ptk · qtk ,

where p, q ∈ Cαβ , λ, δ ∈ R and tk represent the conjugations with respect to
i, j, both i and j.

Proof. The proofs of the properties can be easily seen by directly computa-
tion. �

4. Some Hyperquadrics and Lie Groups

In this section we show that some hyperquadrics together with generalized
bicomplex number product are Lie groups and find their Lie algebras. We
deal with the hyperquadric Mti

Mti =
{
x = (x1, x2, x3, x4) ∈ R

4
v : x1x3 + αx2x4 = 0, gti(x, x) �= 0

}

We consider Mti as the set of generalized bicomplex numbers

Mti =
{
x = x11 + x2i + x3j + x4ij ∈ R

4
v : x1x3 + αx2x4 = 0, gti(x, x) �= 0

}

The components of Mti are easily obtained by representing generalized bi-
complex number multiplication in matrix form

M̃ti =

⎧
⎪⎪⎨

⎪⎪⎩

x =

⎛

⎜
⎜
⎝

x1 −αx2 −βx3 αβx4

x2 x1 −βx4 −βx3

x3 −αx4 x1 −αx2

x4 x3 x2 x1

⎞

⎟
⎟
⎠, x1x3 + αx2x4 = 0, gti(x, x) �= 0

⎫
⎪⎪⎬

⎪⎪⎭

where gti is Euclidean or pseudo-Euclidean metric and it is defined by gti =
dx2

1 + αdx2
2 − βdx2

3 − αβdx2
4.

Remark 2. The norm of any element x on the hyperquadric Mti is given by
Nx = x · xti = gti(x, x).
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Now we define the hyperquadric Mtj as

Mtj =
{
x = (x1, x2, x3, x4) ∈ R

4
v : x1x2 + βx3x4 = 0, gtj (x, x) �= 0

}

We consider Mtj as the set of generalized bicomplex numbers

Mtj =
{
x = x11 + x2i + x3j + x4ij ∈ R

4
v : x1x2 + βx3x4 = 0, gtj (x, x) �= 0

}

The components of Mtj are easily obtained by representing generalized bi-
complex number multiplication in matrix form

M̃tj =

⎧
⎪⎪⎨

⎪⎪⎩

x =

⎛

⎜
⎜
⎝

x1 −αx2 −βx3 αβx4

x2 x1 −βx4 −βx3

x3 −αx4 x1 −αx2

x4 x3 x2 x1

⎞

⎟
⎟
⎠ , x1x2 + βx3x4 = 0, gtj (x, x) �= 0

⎫
⎪⎪⎬

⎪⎪⎭

where gtj is Euclidean or pseudo-Euclidean metric and it is defined by gtj =
dx2

1 − αdx2
2 + βdx2

3 − αβdx2
4.

Remark 3. The norm of any element x on the hyperquadric Mtj is given by
Nx = x · xtj = gtj (x, x).

We define the hyperquadric Mtij

Mtij =
{
x = (x1, x2, x3, x4) ∈ R

4
v : x1x4 − x2x3 = 0, gtij (x, x) �= 0

}

We consider Mtij as the set of generalized bicomplex numbers

Mtij =
{
x = x11 + x2i + x3j + x4ij ∈ R

4
v : x1x4 − x2x3 = 0, gtij (x, x) �= 0

}

The components of Mtij are easily obtained by representing generalized bi-
complex number multiplication in matrix form

M̃tij =

⎧
⎪⎪⎨

⎪⎪⎩

x =

⎛

⎜
⎜
⎝

x1 −αx2 −βx3 αβx4

x2 x1 −βx4 −βx3

x3 −αx4 x1 −αx2

x4 x3 x2 x1

⎞

⎟
⎟
⎠ , x1x4 − x2x3 = 0, gtij (x, x) �= 0

⎫
⎪⎪⎬

⎪⎪⎭

where gtij is Euclidean or pseudo-Euclidean metric and it is defined by gtij =
dx2

1 + αdx2
2 + βdx2

3 + αβdx2
4.

Remark 4. The norm of any element x on the hyperquadric Mtij is given by
Nx = x · xtij = gtij (x, x).

Theorem 3. The set of Mti with generalized bicomplex number product is a
Lie group.

Proof. M̃ti differentiable manifold and at the same time M̃ti is a group with
group operation given by matrix multiplication. The group function is given
by

. : M̃ti × M̃ti → M̃ti

(x, y) → x.y−1,

where y−1 is obtained as a element of Mti as follows:

y−1 =
yti

Ny
=

1
y2
1 + αy2

2 − βy2
3 − αβy2

4 .
(y1,−y2, y3,−y4) .

Since the transformation h is an isomorphism (Mti , ·) is a Lie group. �
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We denote the set of all unit generalized bicomplex numbers x on Mti

by M∗
ti . M∗

ti is defined as

M∗
ti = {x ∈ Mti : gti (x, x) = 1}

or

M∗
ti =

{
x ∈ Mti : x2

1 + αx2
2 − βx2

3 − αβx2
4 = 1

}

M∗
ti is a group with the group operation of generalized bicomplex multipli-

cation. So we can give the following corollary.

Corollary 2. M∗
ti is 2-dimensional Lie subgroup of Mti .

Theorem 4. The Lie algebra of Lie group Mti is sp {X1,X2,X4} such that
left invariant vector fields X1,X2,X4 are given by

X1 = (x1, x2, x3, x4)
X2 = (−αx2, x1,−αx4, x3)
X4 = (αβx4,−βx3,−αx2, x1)

Proof. Let us find the Lie algebra of Lie group Mti . Let

a (t) = a1 (t) 1 + a2 (t) i + a3 (t) j + a4 (t) ij

be a curve on Mti such that a (0) = 1, i.e. a1 (0) = 1, am (0) = 0 for m =
2, 3, 4. Differentiation of the equation

a1 (t) a3 (t) + αa2 (t) a4 (t) = 0

yields the equation

a′
1 (t) a3 (t) + a1 (t) a′

3 (t) + αa′
2 (t) a4 (t) + αa2 (t) a′

4 (t) = 0

Substituting t = 0, we obtain a′
3 (0) = 0. The Lie algebra is thus constituted

by vectors of the form ζ = ζm

(
∂

∂am

)∣
∣
∣
a=1

where m = 1, 2, 4. The vector
ζ is formally written in the form ζ = ζ1 + ζ2j + ζ4ij. Let us find the left
invariant vector field X on Mti for which X|a=1 = ζ. Let b (t) be a curve
on Mti such that b (0) = 1, b′ (0) = ζ. Then Lx (b (t)) = xb (t) is the left
translation of the curve b (t) by the generalized bicomplex number x. Let L∗

x

be the differentiation of Lx left translation. In that case L∗
x (b′ (0)) = xζ. In

particular, denote by Xm those left invariant vector fields on Mti for which

Xm|a=1 =
∂

∂am

∣
∣
∣
∣
a=1

where m = 1, 2, 4. These three vector fields are represented at the point a = 1
by the generalized bicomplex units 1, i, ij. For the components of these vector
fields at the point x = x11+x2i+x3j+x4ij, we have (X1)x = x1, (X2)x = xi
and (X4)x = xij.

X1 = (x1, x2, x3, x4) ,

X2 = (−αx2, x1,−αx4, x3) ,

X4 = (αβx4,−βx3,−αx2, x1) ,

where all the partial derivatives are at the point x. �
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Corollary 3. The Lie algebra of Lie group M∗
ti is sp {X2,X4}.

Theorem 5. The set of Mtj together with generalized bicomplex number prod-
uct is a Lie group.

Corollary 4. M∗
tj is 2-dimensional Lie subgroup of Mtj .

Theorem 6. The Lie algebra of Lie group Mtj is sp {X1,X3,X4} such that
left invariant vector fields X1,X3,X4 are given by

X1 = (x1, x2, x3, x4) ,

X3 = (−βx3,−βx4, x1, x2) ,

X4 = (αβx4,−βx3,−αx2, x1) .

Corollary 5. The Lie algebra of Lie group M∗
tj is sp {X3,X4}

Theorem 7. The set of Mtij together with generalized bicomplex number prod-
uct is a Lie group.

Corollary 6. M∗
tij is 2-dimensional Lie subgroup of Mtij .

Theorem 8. The Lie algebra of Lie group Mtij is sp {X1,X2,X3} such that
left invariant vector fields X1,X2,X3 are given by

X1 = (x1, x2, x3, x4) ,

X2 = (−αx2, x1,−αx4, x3) ,

X3 = (−βx3,−βx4, x1, x2) .

Corollary 7. The Lie algebra of Lie group M∗
tij is sp {X2,X3} .

5. Tensor Product Surfaces and Lie Groups

In this section we define the tensor product surfaces on the hyperquadrics
Mti , Mtj and Mtij . By means of tensor product surfaces, we determine some
special subgroups of these Lie groups Mti , Mtj and Mtij in R

4 and R
4
2.

5.1. Tensor Product Surfaces on Mti Hyperquadric and Some Special Lie
Subgroups

In this subsection, we change the definition of tensor product as follows:
Let γ : R → R

2
k (+ − αβ) and δ : R → R

2
t (+ α) be planar curves

in Euclidean or Lorentzian space. Put γ (t) = (γ1 (t) , γ2 (t)) and δ (s) =
(δ1 (s) , δ2 (s)) . Let us define their tensor product as

f = γ ⊗ δ : R2 → R
4
v (+α − β − αβ) ,

f (t, s) = (γ1 (t) δ1 (s) , γ1 (t) δ2 (s) ,−αγ2 (t) δ2 (s) , γ2 (t) δ1 (s)) . (1)

Tensor product surface given by (1) is a surface on Mti hyperquadric. Tangent
vector fields of f (t, s) can be easily computed as

∂f

∂t
= (γ′

1 (t) δ1 (s) , γ′
1 (t) δ2 (s) ,−αγ′

2 (t) δ2 (s) , γ′
2 (t) δ1 (s))

∂f

∂s
= (γ1 (t) δ′

1 (s) , γ1 (t) δ′
2 (s) ,−αγ2 (t) δ′

2 (s) , γ2 (t) δ′
1 (s)) . (2)
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By using (2), we have

g11 = g

(
∂f

∂t
,
∂f

∂t

)

= g1(γ′, γ′)g2 (δ, δ)

g12 = g

(
∂f

∂t
,
∂f

∂s

)

= g1(γ, γ′)g2 (δ, δ′)

g22 = g

(
∂f

∂s
,
∂f

∂s

)

= g1(γ, γ)g2 (δ′, δ′) ,

where g1 = dx2
1 − αβdx2

2 and g2 = dx2
1 + αdx2

2 are the metrics of R2
k and R

2
t ,

respectively.

Remark 5. Tensor product surface given by (1) is a surface in R
4 or R

4
2

according to the case of α and β. If we take as α = β = 1, we obtain a tensor
product surface of a Lorentzian plane curve and a Euclidean plane curve in
R

4
2. If we take as α = 1, β = −1, we obtain a tensor product surface of two

Euclidean plane curves in R
4. If we take as α = −1 , β = 1, we obtain a tensor

product surface of a Euclidean plane curve and a Lorentzian plane curve in
R

4
2. If we take as α = −1, β = −1 we obtain a tensor product surface of two

Lorentzian plane curves in R
4
2.

Now we investigate Lie group structure of tensor product surfaces given
by the parametrization (1) in R

4 or R4
2 according to above cases. Morever we

obtain left invariant vector fields of the tensor product surface that has the
structure of Lie group.

5.1.1. Case I: α = β = 1.

Proposition 2. Let γ : R → R
2
1 (+ −) be a hyperbolic spiral and δ : R → R

2

(+ +) be a spiral with the same parameter, i.e. γ (t) = eat (cosh t, sinh t) and
δ (t) = ebt (cos t, sin t) (a, b ∈ R) . Their tensor product is a one parameter
subgroup of Lie group Mti .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t (cosh t cos t, cosh t sin t,− sinh t sin t, sinh t cos t)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group (Mti , ·) . �

Corollary 8. Let γ : R → R
2
1 be a Lorentzian circle centered at O and δ :

R → R
2 be circle centered at O with the same parameter, i.e., γ (t) = (cosh t,

sinh t) and δ (t) = (cos t, sin t) . Then their tensor product is a one parameter
subgroup of Lie group M∗

ti .

Proof. Since gti (γ (t) ⊗ δ (t) , γ (t) ⊗ δ (t)) = 1, it follows that γ (t) ⊗ δ (t) ⊂
M∗

ti . If we take as a = b = 0 in Proposition 2, we obtain that γ is a Lorentzian
circle centered at O and δ is a circle centered at O. Then their tensor product
is a one parameter Lie subgroup in Lie group M∗

ti . �
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Proposition 3. Let ϕ (t) be tensor product of a Lorentzian circle centered at O
and a circle centered at O with the same parameter. Then the left invariant
vector field on ϕ (t) is X = X2 + X4, where X2 and X4 are left invariant
vector fields on M∗

ti .

Proof. Since ϕ (t) is tensor product of a Lorentzian circle centered at O and
a circle centered at O with the same parameter we write

ϕ (t) = (cosh t cos t, cosh t sin t,− sinh t sin t, sinh t cos t)

ϕ (0) = (1, 0, 0, 0) = e and ϕ′ (0) = (0, 1, 0, 1) = Xe. Then

L∗
g (Xe) = g · Xe = (x11 + x2i + x3j + x4ij) · (i + ij)

= X2 + X4

This completes the proof. �

Proposition 4. Let γ : R → R
2
1, γ (t) = eat (cosh t, sinh t) be a hyperbolic

spiral and δ : R → R
2 δ (s) = ebs (cos s, sin s) be a spiral (a, b ∈ R) . Then

their tensor product is 2-dimensional Lie subgroup of Mtij .

Proof. By using tensor product rule given by (1), we get

f (t, s) = eat+bs (cosh t cos s, cosh t sin s,− sinh t sin s, sinh t cos s)

Every point of f (t, s) is on the hyperquadric Mti . Since f (t, s) is both sub-
group and submanifold of a Lie group Mti , it is a 2-dimensional Lie subgroup
of Mtij . �

Proposition 5. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) be a Lorentzian circle

centered at O and δ : R → R
2 δ (s) = (cos s, sin s) be a circle centered at O

(a, b ∈ R) . Then their tensor product is 2-dimensional Lie subgroup of M∗
ti .

Proof. In Proposition 4 taking a = b = 0, we can see that the tensor product
surface f (t, s) ⊂ M∗

ti . Hence, it is 2-dimensional Lie subgroup of M∗
ti . �

Proposition 6. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) be a Lorentzian circle

at centered O and δ : R → R
2 δ (s) = (cos s, sin s) be a circle at centered

O (a, b ∈ R) . Then, the left invariant vector fields on tensor product surface
f (t, s) = γ (t)⊗ δ (s) are X2 and X4 which are the left invariant vector fields
on M∗

ti .

Proof. The unit element of 2-dimensional Lie subgroup is the point e =
f(0, 0). Let us find the left invariant vector fields on f(t, s) to the vectors

u1 =
∂

∂t

∣
∣
∣
∣
e

and u2 =
∂

∂s

∣
∣
∣
∣
e

for the vector u1 we obtain

L∗
g (u1) = g · u1 = (x11 + x2i + x3j + x4ij) · ij

= X4

Analogously, for the vector u2 we obtain left invariant vector field X2. �
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5.1.2. Case II: α = 1, β = −1.

Proposition 7. Let γ : R → R
2 (+ +) and δ : R → R

2 (+ +) be two spirals
with the same parameter, i.e. γ (t) = eat (cos t, sin t) and δ (t) = ebt (cos t, sin t)
(a, b ∈ R) . Then their tensor product is a one parameter subgroup of Lie group
Mti .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t
(
cos2 t, cos t sin t,− sin2 t, cos t sin t

)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group (Mti , ·) . �

Corollary 9. Let γ : R → R
2 and δ : R → R

2 be two circles centered at O with
the same parameter, i.e., γ (t) = (cos t, sin t) and δ (t) = (cos t, sin t) . Then
their tensor product is a one parameter subgroup of Lie group M∗

ti .

Proposition 8. Let ϕ (t) be tensor product of two circles centered at O with the
same parameter. Then the left invariant vector field on ϕ (t) is X = X2+X4,
where X2 and X4 are left invariant vector fields on M∗

ti .

Proposition 9. Let γ : R → R
2, γ (t) = eat (cos t, sin t) and δ : R → R

2

δ (s) = ebs (cos s, sin s) be two spirals (a, b ∈ R) . Then their tensor product is
2-dimensional Lie subgroup of Mtij .

Proof. By using tensor product rule given by (1), we get

f (t, s) = eat+bs (cos t cos s, cos t sin s,− sin t sin s, sin t cos s)

Every point of f (t, s) is on the hyperquadric Mti . Since f (t, s) is both sub-
group and submanifold of a Lie group Mti , it is a 2-dimensional Lie subgroup
of Mtij . �

Corollary 10. Let γ : R → R
2, γ (t) = (cos t, sin t) and δ : R → R

2 δ (s) =
(cos s, sin s) be two circles centered at O (a, b ∈ R) . Then their tensor product
is 2-dimensional Lie subgroup of M∗

ti .

Proposition 10. Let γ : R → R
2
1, γ (t) = (cos t, sin t) and δ : R → R

2 δ (s) =
(cos s, sin s) be two circles centered at O (a, b ∈ R) . Then, the left invariant
vector fields on tensor product surface f (t, s) = γ (t) ⊗ δ (s) are X2 and X4

which are the left invariant vector fields on M∗
ti .

5.1.3. Case III: α = −1, β = −1.

Proposition 11. Let γ : R → R
2
1 (+ −) and δ : R → R

2
1 (+ −) be two hy-

perbolic spirals with the same parameter, i.e. γ (t) = eat (cosh t, sinh t) and
δ (t) = ebt (cosh t, sinh t) (a, b ∈ R) . Then their tensor product is a one para-
meter subgroup of Lie group Mti .
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Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t
(
cosh2 t, cosh t sinh t, sinh2 t, cosh t sinh t

)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group (Mti , ·). �

Corollary 11. Let γ : R → R
2
1 and δ : R → R

2
1 be two Lorentzian circles

centered at O with the same parameter, i.e., γ (t) = (cosh t, sinh t) and δ (t) =
(cosh t, sinh t) . Then their tensor product is a one parameter subgroup of Lie
group M∗

ti .

Proposition 12. Let ϕ (t) be tensor product of two Lorentzian circles centered
at O with the same parameter. Then the left invariant vector field on ϕ (t) is
X = X2 + X4, where X2 and X4 are left invariant vector fields on M∗

ti .

Proposition 13. Let γ : R → R
2
1, γ (t) = eat (cosh t, sinh t) and δ : R → R

2
1

δ (s) = ebs (cosh s, sinh s) be two spirals (a, b ∈ R) . Then their tensor product
is 2-dimensional Lie subgroup of Mti .

Proof. By using tensor product rule given by (1), we get

f (t, s) = eat+bs (cosh t cosh s, cosh t sinh s,− sinh t sinh s, sinh t cosh s)

Every point of f (t, s) is on the hyperquadric Mti . Since f (t, s) is both sub-
group and submanifold of a Lie group Mti , it is a 2-dimensional Lie subgroup
of Mti . �

Corollary 12. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) and δ : R → R

2
1 δ (s) =

(cosh s, sinh s) be two Lorentzian circles centered at O (a, b ∈ R) . Then their
tensor product is 2-dimensional Lie subgroup of M∗

ti .

Proposition 14. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) and δ : R → R

2
1 δ (s) =

(cosh s, sinh s) be two Lorentzian circles centered at O (a, b ∈ R) . Then, the
left invariant vector fields on tensor product surface f (t, s) = γ (t)⊗ δ (s) are
X2 and X4 which are the left invariant vector fields on M∗

ti .

Remark 6. If we take as α = β = 1 in the hyperquadric Mti , the hyperquadric
Mti coincides the hyperquadric Q in the paper studied by Karakuş Ö. and
Yaylı [4], where the hyperquadric Q is given by

Q =
{
x = (x1, x2, x3, x4) �= 0 x1x3 + x2x4 = 0, x2

1 + x2
2 − x2

3 − x2
4 �= 0

}
.

In [4], they showed that the hyperquadric Q is a Lie group by using bicomplex
number product. Also they defined a new tensor product surface in R

4
2 as

follows:

(γ ⊗ δ) (t, s) = (γ1(t)δ1 (s) , γ1(t)δ2 (s) ,−γ2(t)δ2 (s) , γ2(t)δ1 (s))

where γ : R → R
2
1 and δ : R → R

2 is respectively, a Lorentzian plane curve
and a Euclidean plane curve. By means of this tensor product surfaces, they
determined some special Lie subgroups of this Lie group Q. So, the case I in
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Sect. 5.1 coincides the paper studied by Karakuş and Yaylı [4]. Hence, it can
be considered that the Sect. 5.1 is a generalization of that study.

5.2. Tensor Product Surfaces on Mtj Hyperquadric and Some Special Lie
Subgroups

In this subsection, we change the definition of tensor product as follows:
Let γ : R → R

2
k (+ − αβ) and δ : R → R

2
t (+ β) be planar curves

in Euclidean or Lorentzian space. Put γ (t) = (γ1 (t) , γ2 (t)) and δ (s) =
(δ1 (s) , δ2 (s)) . Let us define their tensor product as

f = γ ⊗ δ : R2 → R
4
v (+ α − β − αβ) ,

f (t, s) = (γ1 (t) δ1 (s) ,−βγ2 (t) δ2 (s) , γ1 (t) δ2 (s) , γ2 (t) δ1 (s)) (3)

tensor product surface given by (3) is a surface on Mtj hyperquadric. Tangent
vector fields of f (t, s) can be easily computed as

∂f

∂t
= (γ′

1 (t) δ1 (s) ,−βγ′
2 (t) δ2 (s) , γ′

1 (t) δ2 (s) , γ′
2 (t) δ1 (s))

∂f

∂s
= (γ1 (t) δ′

1 (s) ,−βγ2 (t) δ′
2 (s) , γ1 (t) δ′

2 (s) , γ2 (t) δ′
1 (s)) (4)

By using (4), we have

g11 = g

(
∂f

∂t
,
∂f

∂t

)

= g1(γ′, γ′)g2 (δ, δ)

g12 = g

(
∂f

∂t
,
∂f

∂s

)

= g1(γ, γ′)g2 (δ, δ′)

g22 = g

(
∂f

∂s
,
∂f

∂s

)

= g1(γ, γ)g2 (δ′, δ′)

where g1 = dx2
1 − αβdx2

2 and g2 = dx2
1 + βdx2

2 are the metrics of R2
k and R

2
t ,

respectively.

Remark 7. Tensor product surface given by (3) is a surface in R
4 or R

4
2

according to the case of α and β. If we take as α = β = 1, we obtain a tensor
product surface of a Lorentzian plane curve and a Euclidean plane curve in
R

4
2. If we take as α = 1, β = −1, we obtain a tensor product surface of

a Euclidean plane curve and a Lorentzian plane curve in R
4
2. If we take as

α = −1, β = 1, we obtain a tensor product surface of two Euclidean plane
curves in R

4. If we take as α = −1, β = −1 we obtain a tensor product
surface of two Lorentzian plane curves in R

4
2.

Now we investigate Lie group structure of tensor product surfaces given
by the parametrization (3) in R

4 or R4
2 according to above cases. Morever we

obtain left invariant vector fields of the tensor product surface that has the
structure of Lie group.

5.2.1. Case I α = β = 1.

Proposition 15. Let γ : R → R
2
1 (+ −) be a hyperbolic spiral and δ : R → R

2

(+ +) be a spiral with the same parameter, i.e. γ (t) = eat (cosh t, sinh t) and
δ (t) = ebt (cos t, sin t) (a, b ∈ R) . Their tensor product is a one parameter
subgroup of Lie group Mtj .
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Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t (cosh t cos t,− sinh t sin t, cosh t sin t, sinh t cos t)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group

(
Mtj , ·

)
. �

Corollary 13. Let γ : R → R
2
1 be a Lorentzian circle centered at O and

δ : R → R
2 be circle centered at O with the same parameter, i.e., γ (t) =

(cosh t, sinh t) and δ (t) = (cos t, sin t) . Then their tensor product is a one
parameter subgroup of Lie group M∗

tj .

Proposition 16. Let ϕ (t) be tensor product of a Lorentzian circle centered at
O and a circle centered at O with the same parameter. Then the left invariant
vector field on ϕ (t) is X = X3 + X4, where X3 and X4 are left invariant
vector fields on M∗

tj .

Proposition 17. Let γ : R → R
2
1, γ (t) = eat (cosh t, sinh t) be a hyperbolic

spiral and δ : R → R
2 δ (s) = ebs (cos s, sin s) be a spiral (a, b ∈ R) . Then

their tensor product is 2-dimensional Lie subgroup of Mtj .

Proof. By using tensor product rule given by (3), we get

f (t, s) = eat+bs (cosh t cos s,− sinh t sin s, cosh t sin s, sinh t cos s)

Every point of f (t, s) is on the hyperquadric Mtj . Since f (t, s) is both sub-
group and submanifold of a Lie group Mtj , it is a 2-dimensional Lie subgroup
of Mtj . �

Proposition 18. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) be a Lorentzian circle

and δ : R → R
2 δ (s) = (cos s, sin s) be a circle (a, b ∈ R) . Then their tensor

product is 2-dimensional Lie subgroup of M∗
tj .

Proposition 19. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) be a Lorentzian circle

at centered O and δ : R → R
2 δ (s) = (cos s, sin s) be a circle at centered

O (a, b ∈ R) . Then, the left invariant vector fields on tensor product surface
f (t, s) = γ (t)⊗ δ (s) are X3 and X4 which are the left invariant vector fields
on M∗

tj .

5.2.2. Case II α = −1, β = 1.

Proposition 20. Let γ : R → R
2 (+ +) and δ : R → R

2 (+ +) be two spirals
with the same parameter, i.e. γ (t) = eat (cos t, sin t) and δ (t) = ebt (cos t, sin t)
(a, b ∈ R) . Then their tensor product is a one parameter subgroup of Lie group
Mtj .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t
(
cos2 t,− sin2 t, cos t sin t, cos t sin t

)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)
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for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group

(
Mtj , ·

)
. �

Corollary 14. Let γ : R → R
2 and δ : R → R

2 be two circles centered at O
with the same parameter, i.e., γ (t) = (cos t, sin t) and δ (t) = (cos t, sin t) .
Then their tensor product is a one parameter subgroup of Lie group M∗

tj .

Proposition 21. Let ϕ (t) be tensor product of two circles centered at O with
the same parameter. Then the left invariant vector field on ϕ (t) is X =
X3 + X4, where X3 and X4 are left invariant vector fields on M∗

tj .

Proposition 22. Let γ : R → R
2, γ (t) = eat (cos t, sin t) and δ : R → R

2

δ (s) = ebs (cos s, sin s) be two spirals (a, b ∈ R) . Then their tensor product is
2-dimensional Lie subgroup of Mtj .

Proof. By using tensor product rule given by (3), we get

f (t, s) = eat+bs (cos t cos s,− sin t sin s, cos t sin s, , sin t cos s)

Every point of f (t, s) is on the hyperquadric Mtj . Since f (t, s) is both sub-
group and submanifold of a Lie group Mtj , it is a 2-dimensional Lie subgroup
of Mtj . �

Corollary 15. Let γ : R → R
2, γ (t) = (cos t, sin t) and δ : R → R

2 δ (s) =
(cos s, sin s) be two circles centered at O (a, b ∈ R) . Then their tensor product
is 2-dimensional Lie subgroup of M∗

tj .

Proposition 23. Let γ : R → R
2
1, γ (t) = (cos t, sin t) and δ : R → R

2 δ (s) =
(cos s, sin s) be two circles centered at O (a, b ∈ R) . Then, the left invariant
vector fields on tensor product surface f (t, s) = γ (t) ⊗ δ (s) are X3 and X4

which are the left invariant vector fields on M∗
tj .

5.2.3. Case III α = −1, β = −1.

Proposition 24. Let γ : R → R
2
1 (+ −) and δ : R → R

2
1 (+ −) be two hy-

perbolic spirals with the same parameter, i.e. γ (t) = eat (cosh t, sinh t) and
δ (t) = ebt (cosh t, sinh t) (a, b ∈ R) . Then their tensor product is a one para-
meter subgroup of Lie group Mtj .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t
(
cosh2 t, sinh2 t, cosh t sinh t, cosh t, sinh t

)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group

(
Mtj , ·

)
. �

Corollary 16. Let γ : R → R
2
1 and δ : R → R

2
1 be two Lorentzian circles

centered at O with the same parameter, i.e., γ (t) = (cosh t, sinh t) and δ (t) =
(cosh t, sinh t) . Then their tensor product is a one parameter subgroup of Lie
group M∗

tj .
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Proposition 25. Let ϕ (t) be tensor product of two Lorentzian circles centered
at O with the same parameter. Then the left invariant vector field on ϕ (t) is
X = X3 + X4, where X3 and X4 are left invariant vector fields on M∗

tj .

Proposition 26. Let γ : R → R
2
1, γ (t) = eat (cosh t, sinh t) and δ : R → R

2
1

δ (s) = ebs (cosh s, sinh s) be two spirals (a, b ∈ R) . Then their tensor product
is 2-dimensional Lie subgroup of Mtj .

Proof. By using tensor product rule given by (3), we get

f (t, s) = eat+bs (cosh t cosh s, sinh t sinh s, cosh t sinh s, sinh t cosh s)

Every point of f (t, s) is on the hyperquadric Mtj . Since f (t, s) is both sub-
group and submanifold of a Lie group Mtj , it is a 2-dimensional Lie subgroup
of Mtj . �

Corollary 17. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) and δ : R → R

2
1 δ (s) =

(cosh s, sinh s) be two Lorentzian circles centered at O (a, b ∈ R) . Then their
tensor product is 2-dimensional Lie subgroup of M∗

tj .

Proposition 27. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) and δ : R → R

2
1 δ (s) =

(cosh s, sinh s) be two Lorentzian circles centered at O (a, b ∈ R) . Then, the
left invariant vector fields on tensor product surface f (t, s) = γ (t)⊗ δ (s) are
X3 and X4 which are the left invariant vector fields on M∗

tj .

5.3. Tensor Product Surfaces on Mtij Hyperquadric and Some Special Lie
Subgroups

In this subsection, we use the definition of tensor product given by Mihai.
Let γ : R → R

2
k (+ β) and δ : R → R

2
t (+α) be planar curves in Euclid-

ean or Lorentzian space. Put γ (t) = (γ1 (t) , γ2 (t)) and δ (s) = (δ1 (s) , δ2 (s)) .

f = γ ⊗ δ : R2 → R
4
v (+ α β αβ) ,

f (t, s) = (γ1 (t) δ1 (s) , γ1 (t) δ2 (s) , γ2 (t) δ1 (s) , γ2 (t) δ2 (s)) (5)

tensor product surface given by (5) is a surface on Mtij hyperquadric. Tangent
vector fields of f (t, s) can be easily computed as

∂f

∂t
= (γ′

1 (t) δ1 (s) , γ′
1 (t) δ2 (s) , γ′

2 (t) δ1 (s) , γ′
2 (t) δ2 (s))

∂f

∂s
= (γ1 (t) δ′

1 (s) , γ1 (t) δ′
2 (s) , γ2 (t) δ′

1 (s) , γ2 (t) δ′
2 (s)) (6)

By using (6), we have

g11 = g

(
∂f

∂t
,
∂f

∂t

)

= g1(γ′, γ′)g2 (δ, δ)

g12 = g

(
∂f

∂t
,
∂f

∂s

)

= g1(γ, γ′)g2 (δ, δ′)

g22 = g

(
∂f

∂s
,
∂f

∂s

)

= g1(γ, γ)g2 (δ′, δ′)

where g1 = dx2
1 + βdx2

2 and g2 = dx2
1 + αdx2

2 are the metrics of R2
k and R

2
t ,

respectively.
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Remark 8. Tensor product surface given by (5) is a surface in R
4 or R

4
2

according to the case of α and β. If we take as α = β = 1, we obtain a tensor
product surface of two Euclidean plane curves in R

4. If we take as α = 1,
β = −1, we obtain a tensor product surface of a Lorentzian plane curve and a
Euclidean plane curve in R

4
2. If we take as α = −1, β = 1, we obtain a tensor

product surface of a Euclidean plane curve and a Lorentzian plane curve in
R

4
2. If we take as α = −1, β = −1 we obtain a tensor product surface of two

Lorentzian plane curves in R
4
2.

Now we investigate Lie group structure of tensor product surfaces given
by the parametrization (5) in R

4 or R4
2 according to above cases. Morever we

obtain left invariant vector fields of the tensor product surface that has the
structure of Lie group.

5.3.1. Case I α = β = 1.

Proposition 28. Let γ : R → R
2 (+ +) and δ : R → R

2 (+ +) be two spirals
with the same parameter, i.e. γ (t) = eat (cos t, sin t) and δ (t) = ebt (cos t, sin t)
(a, b ∈ R) . Then their tensor product is a one parameter subgroup of Lie group
Mtij .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t
(
cos2 t, cos t sin t, cos t sin t, sin2 t

)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group

(
Mtij , ·

)
. �

Corollary 18. Let γ : R → R
2 and δ : R → R

2 be two circles centered at O
with the same parameter, i.e., γ (t) = (cos t, sin t) and δ (t) = (cos t, sin t) .
Then their tensor product is a one parameter subgroup of Lie group M∗

tij .

Proposition 29. Let ϕ (t) be tensor product of two circles centered at O with
the same parameter. Then the left invariant vector field on ϕ (t) is X =
X2 + X3, where X2 and X3 are left invariant vector fields on M∗

tij .

Proposition 30. Let γ : R → R
2, γ (t) = eat (cos t, sin t) and δ : R → R

2

δ (s) = ebs (cos s, sin s) be two spirals (a, b ∈ R) . Then their tensor product is
2-dimensional Lie subgroup of Mtij .

Proof. By using tensor product rule given by (5), we get

f (t, s) = eat+bs (cos t cos s, cos t sin s, sin t cos s, sin t sin s)

Every point of f (t, s) is on the hyperquadric Mtij . Since f (t, s) is both
subgroup and submanifold of a Lie group Mtij , it is a 2-dimensional Lie
subgroup of Mtij . �

Corollary 19. Let γ : R → R
2, γ (t) = (cos t, sin t) and δ : R → R

2 δ (s) =
(cos s, sin s) be two circles centered at O (a, b ∈ R) . Then their tensor product
is 2-dimensional Lie subgroup of M∗

tij .
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Proposition 31. Let γ : R → R
2
1, γ (t) = (cos t, sin t) and δ : R → R

2 δ (s) =
(cos s, sin s) be two circles centered at O (a, b ∈ R) . Then, the left invariant
vector fields on tensor product surface f (t, s) = γ (t) ⊗ δ (s) are X2 and X3

which are the left invariant vector fields on M∗
tij .

5.3.2. Case II α = 1, β = −1.

Proposition 32. Let γ : R → R
2
1 (+ −) be a hyperbolic spiral and δ : R → R

2

(+ +) be a spiral with the same parameter, i.e. γ (t) = eat (cosh t, sinh t) and
δ (t) = ebt (cos t, sin t) (a, b ∈ R) . Their tensor product is a one parameter
subgroup of Lie group Mtij .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t (cosh t cos t, cosh t sin t, sinh t cos t, sinh t sin t)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group

(
Mtij , ·

)
. �

Corollary 20. Let γ : R → R
2
1 be a Lorentzian circle centered at O and

δ : R → R
2 be circle centered at O with the same parameter, i.e., γ (t) =

(cosh t, sinh t) and δ (t) = (cos t, sin t) . Then their tensor product is a one
parameter subgroup of Lie group M∗

tij .

Proposition 33. Let ϕ (t) be tensor product of a Lorentzian circle centered at
O and a circle centered at O with the same parameter. Then the left invariant
vector field on ϕ (t) is X = X2 + X3, where X2 and X3 are left invariant
vector fields on M∗

tij .

Proposition 34. Let γ : R → R
2
1, γ (t) = eat (cosh t, sinh t) be a hyperbolic

spiral and δ : R → R
2 δ (s) = ebs (cos s, sin s) be a spiral (a, b ∈ R) . Then

their tensor product is 2-dimensional Lie subgroup of Mtij .

Proof. By using tensor product rule given by (5), we get

f (t, s) = eat+bs (cosh t cos s, cosh t sin s, sinh t cos s, sinh t sin s)

Every point of f (t, s) is on the hyperquadric Mtij . Since f (t, s) is both
subgroup and submanifold of a Lie group Mtij , it is a 2-dimensional Lie
subgroup of Mtij . �

Proposition 35. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) be a Lorentzian circle

and δ : R → R
2 δ (s) = (cos s, sin s) be a circle (a, b ∈ R) . Then their tensor

product is 2-dimensional Lie subgroup of M∗
tij .

Proposition 36. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) be a Lorentzian circle

at centered O and δ : R → R
2 δ (s) = (cos s, sin s) be a circle at centered

O (a, b ∈ R) . Then, the left invariant vector fields on tensor product surface
f (t, s) = γ (t)⊗ δ (s) are X2 and X3 which are the left invariant vector fields
on M∗

tij .
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5.3.3. Case III α = −1, β = −1.

Proposition 37. Let γ : R → R
2
1 (+ −) and δ : R → R

2
1 (+ −) be two hy-

perbolic spirals with the same parameter, i.e. γ (t) = eat (cosh t, sinh t) and
δ (t) = ebt (cosh t, sinh t) (a, b ∈ R) . Then their tensor product is a one para-
meter subgroup of Lie group Mtij .

Proof. We obtain

ϕ (t) = γ (t) ⊗ δ (t) = e(a+b)t
(
cosh2 t, cosh t sinh t, cosh t, sinh t, sinh2 t

)

It can be easily seen that

ϕ (t1) · ϕ (t2) = ϕ (t1 + t2)

for all t1, t2. Also ϕ−1 (t) = ϕ (−t) . Hence (ϕ (t) , ·) is a one parameter Lie
subgroup of Lie group

(
Mtij , ·

)
. �

Corollary 21. Let γ : R → R
2
1 and δ : R → R

2
1 be two Lorentzian circles

centered at O with the same parameter, i.e., γ (t) = (cosh t, sinh t) and δ (t) =
(cosh t, sinh t) . Then their tensor product is a one parameter subgroup of Lie
group M∗

tij .

Proposition 38. Let ϕ (t) be tensor product of two Lorentzian circles centered
at O with the same parameter. Then the left invariant vector field on ϕ (t) is
X = X2 + X3, where X2 and X3 are left invariant vector fields on M∗

tij .

Proposition 39. Let γ : R → R
2
1, γ (t) = eat (cosh t, sinh t) and δ : R → R

2
1

δ (s) = ebs (cosh s, sinh s) be two spirals (a, b ∈ R) . Then their tensor product
is 2-dimensional Lie subgroup of Mtij .

Proof. By using tensor product rule given by (5), we get

f (t, s) = eat+bs (cosh t cosh s, cosh t sinh s, sinh t cosh s, , sinh t sinh s)

Every point of f (t, s) is on the hyperquadric Mtij . Since f (t, s) is both
subgroup and submanifold of a Lie group Mtij , it is a 2-dimensional Lie
subgroup of Mtij . �

Corollary 22. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) and δ : R → R

2
1 δ (s) =

(cosh s, sinh s) be two Lorentzian circles centered at O (a, b ∈ R) . Then their
tensor product is 2-dimensional Lie subgroup of M∗

tij .

Proposition 40. Let γ : R → R
2
1, γ (t) = (cosh t, sinh t) and δ : R → R

2
1 δ (s) =

(cosh s, sinh s) be two Lorentzian circles centered at O (a, b ∈ R) . Then, the
left invariant vector fields on tensor product surface f (t, s) = γ (t)⊗ δ (s) are
X2 and X3 which are the left invariant vector fields on M∗

tij .

Remark 9. If we take as α = β = 1 in the hyperquadric Mtij , the hyper-
quadric Mtij coincides the hyperquadric P in the paper studied by
Özkaldı and Yaylı [7], where the hyperquadric P is given by

P = {x = (x1, x2, x3, x4) �= 0; x1x4 = x2x3} .
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In [7], they showed that the hyperquadric P is a Lie group by using bicomplex
number product. Also they use the tensor product surface in R

4 as follows:

(γ ⊗ δ) (t, s) = (γ1(t)δ1 (s) , γ1(t)δ2 (s) , γ2(t)δ1 (s) , γ2(t)δ2 (s))

where γ : R → R
2 and δ : R → R

2 are Euclidean plane curves. They deter-
mined some special Lie subgroups of this Lie group P by using the tensor
product surfaces of Euclidean planar curves. So the case I in Sect. 5.1.2 coin-
cides the paper studied by Özkaldı and Yaylı [7]. Hence, it can be considered
that the Sect. 5.1.2 is a generalization of that study.
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Sıddıka Özkaldı Karakuş
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