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Abstract

In this paper, we study spacelike rotational surfaces which are called
boost invariant surfaces in Minkowski 4-space E

4
1. We give necessary and

sufficient condition for flat spacelike rotational surface to have pointwise
1-type Gauss map. Also, we obtain a characterization for boost invariant
marginally trapped surface with pointwise 1-type Gauss map.
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1 Introduction

The notion of finite type mapping was introduced by B.Y. Chen in late 1970’s.
A pseudo- Riemannian submanifold M of the m−dimensional pseudo-Euclidean
space E

m
s is said to be of finite type if its position vector x can be expressed as a

finite sum of eigenvectors of the Laplacian ∆ of M , that is, x = x0+x1+ ...+xk,
where x0 is a constant map, x1, ..., xk are non-constant maps such that ∆xi =
λixi, λi ∈ R, i = 1, 2, ..., k. If λ1, λ2,...,λk are all different, then M is said to
be of k−type. This notion of finite type immersions is naturally extended to
differentiable maps of M in particular, to Gauss maps of submanifolds [7].

If a submanifold M of a Euclidean space or pseudo-Euclidean space has 1-
type Gauss map G, then G satisfies ∆G = λ (G+ C) for some λ ∈ R and
some constant vector C. Chen and Piccinni made a general study on compact
submanifolds of Euclidean spaces with finite type Gauss map and they proved
that a compact hypersurface M of En+1 has 1-type Gauss map if and only if M
is a hypersphere in E

n+1 [7].
Hovewer the Laplacian of the Gauss map of some typical well-known surfaces

such as a helicoid, a catenoid and right cone in 3-dimensional Euclidean space E3

and a helicoids of the 1st,2nd and 3rd kind, conjugate Enneper’s surface of the
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second kind and B-scrolls in 3- dimensional Minkowski space E3
1 take a somewhat

different form namely,
∆G = f (G+ C) (1)

for some non-zero smooth function f on M and some constant vector C. This
equation is similar to an eigenvalue problem but the smooth function f is not
always constant. So a submanifold M of a pseudo-Euclidean space E

m
s is said to

have pointwise 1-type Gauss map if its Gauss map satisfies (1) for some smooth
function f on M and some constant vector C. A submanifold with pointwise 1-
type Gauss map is said to be of the first kind if the vector C in (1) is zero vector.
Otherwise, the pointwise 1-type Gauss map is said to be of the second kind.

Surfaces in Euclidean space and in pseudo-Euclidean space with pointwise
1-type Gauss map were recently studied in [6], [9], [10], [11], [13], [14], [15],
[16], [20], [23], [24]. Also Dursun and Turgay in [12] gave all general rotational
surfaces in E

4 with proper pointwise 1-type Gauss map of the first kind and
classified minimal rotational surfaces with proper pointwise 1-type Gauss map of
the second kind. Arslan et al. in [3] investigated rotational embedded surface
with pointwise 1-type Gauss map. Arslan at el. in [4] gave necessary and sufficent
conditions for Vranceanu rotation surface to have pointwise 1-type Gauss map.
Yoon in [26] showed that flat Vranceanu rotation surface with pointwise 1-type
Gauss map is a Clifford torus and in [25] studied rotation surfaces in the 4-
dimensional Euclidean space with finite type Gauss map. Kim and Yoon in [21]
obtained the complete classification theorems for the flat rotation surfaces with
finite type Gauss map and pointwise 1-type Gauss map. The authors in [1]
studied flat general rotational surfaces in the 4- dimensional Euclidean space E

4

with pointwise 1-type Gauss map and they showed that a non-planar flat general
rotational surfaces with pointwise 1-type Gauss map is a Lie group if and only if
it is a Clifford Torus. Also they gave a characterization for flat general rotation
surfaces with pointwise 1-type Gauss map in the 4- dimensional pseudo-Euclidean
space E

4
2 [2].

On the other hand, trapped surfaces, introduced by Penrose in 1965, have a
fundamental role in the study of the singularity theorems in General Relativity.
If the mean curvature vector of a surface in E4

1 is timelike everywhere, ıt is called
trapped surfaces; if the mean curvature vector is always null (the mean curvature
vector is proportional to one of the null normals), the surface is called marginally
trapped surface. Since the mean curvature of such spacelike surface H satisfy
‖H‖ = 0, in mathematical literature these surfaces are called quasi-minimal. In
general relativity, marginally trapped surfaces are used the study of the surfaces
of black hole.

S.Haesen and M. Ortega in [18] and [19] classified marginally trapped sur-
faces which are invariant under a spacelike rotations and boost transformations
in Minkowski 4-space. Also B. Y. Chen classify marginally trapped Lorentzian
flat surfaces and biharmonic surfaces in the Pseudo Euclidean space E4

2 [8].Milou-
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sheva in [22] studied marginally trapped surface with pointwise 1-type Gauss map
in Minkowski 4-space and proved that marginally trapped surface is of pointwise
1-type Gauss map if and only if it has parallel mean curvature vector field.

In this paper, we study spacelike surfaces which are invariant under boost
transformation (hyperbolic rotations) in Minkowski 4-space. We give a charac-
terization of flat spacelike rotational surface with pointwise 1-type Gauss map.
Also we obtain a characterization for boost invariant marginally trapped surface
with pointwise 1-type Gauss map and give an example of such surfaces.

2 Preliminaries

Let Em
s be the m−dimensional pseudo-Euclidean space with signature (s,m−s).

Then the metric tensor g in Em
s has the form

g =
m−s
∑

i=1

(dxi)
2 −

m
∑

i=m−s+1

(dxi)
2

where (x1, ..., xm) is a standard rectangular coordinate system in Em
s .

LetM be an n−dimensional pseudo-Riemannian submanifold of am−dimensional
pseudo-Euclidean space Em

s . We denote Levi-Civita connections of Em
s and M by

∇̃ and ∇, respectively. Let e1,...,en, en+1,...,em be an adapted local orthonor-
mal frame in E

m
s such that e1,...,en are tangent to M and en+1,...,em normal to

M. We use the following convention on the ranges of indices: 1 ≤ i, j, k,...≤ n,
n+ 1 ≤ r, s, t,...≤ m, 1 ≤ A,B,C,...≤ m.

Let ωA be the dual-1 form of eA defined by ωA (X) = 〈eA, X〉 and εA =
〈eA, eA〉 = ±1. Also, the connection forms ωAB are defined by

deA =
∑

B

εBωABeB, ωAB + ωBA = 0

Then we have

∇̃ei
ek

=
n

∑

j=1

εjωij (ek) ej +
m
∑

r=n+1

εrh
r
iker

and

∇̃es
ek

= −
n

∑

j=1

εjh
s
kjej +

m
∑

r=n+1

εrωsr (ek) er, Des
ek

=

m
∑

r=n+1

ωsr (ek) er, (2)

where D is the normal connection, hr
ik the coefficients of the second fundamental

form h. The mean curvature vector H of M in E
m
s is defined by

H =
1

n

m
∑

s=n+1

n
∑

i=1

εiεsh
s
iies
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and the Gaussian curvature K of M is given by

K =

m
∑

s=n+1

εs (h
s
11h

s
22 − hs

12h
s
21)

Also normal curvature tensor RD of M in E
m=n+2
s is given by

RD(ej , ek; er, es) =

n
∑

i=1

εi
(

hr
ikh

s
ij − hr

ijh
s
ik

)

(3)

We recall that a surface M in E
4
1 is called extremal surface if its mean curvature

vector vanishes. If its Gaussian curvature vanishes, the surface M is called flat
surface. If its normal curvature tensor RD vanishes identically then a surface M

in E
4
1 is said to have flat normal bundle.
For any real function f on M the Laplacian ∆f of f is given by

∆f = −εi
∑

i

(

∇̃ei∇̃eif − ∇̃
∇

ei
ei

f
)

(4)

Let us now define the Gauss map G of a submanifold M into G(n,m) in ∧n
E
m
s ,

where G(n,m) is the Grassmannian manifold consisting of all oriented n−planes
through the origin of Em

s and ∧n
E
m
s is the vector space obtained by the exterior

product of n vectors in E
m
s . Let ei1 ∧ ... ∧ ein and fj1 ∧ ... ∧ fjnbe two vectors of

∧n
E
m
s , where {e1, ...,em} and {f1, ...,fm} are orthonormal bases of Em

s . Define an
indefinite inner product 〈, 〉 on ∧n

E
m
s by

〈ei1 ∧ ... ∧ ein , fj1 ∧ ... ∧ fjn〉 = det (〈eil , fjk〉) .

Therefore, for some positive integer t, we may identify ∧n
E
m
s with some Euclidean

space E
N
t where N =

(

m

n

)

. The map G : M → G(n,m) ⊂ EN
t defined by

G(p) = (e1 ∧ ... ∧ en) (p) is called the Gauss map of M, that is, a smooth map
which carries a point p in M into the oriented n−plane in E

m
s obtained from

parallel translation of the tangent space of M at p in E
m
s .

3 Boost Invariant Surfaces with Pointwise 1-

Type Gauss Map in E4
1

In this section, we consider spacelike surfaces in the Minkowski space E4
1 which

are invariant under the following subgroup of direct, linear isometries of E4
1 :

G =























cos t − sin t 0 0
sin t cos t 0 0
0 0 1 0
0 0 0 1









: t ∈ R















,
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well-known as boost isometries.

ϕ (t, s) =









cos t − sin t 0 0
sin t cos t 0 0
0 0 1 0
0 0 0 1

















α1(s)
0

α3(s)
α4(s)









M : ϕ (t, s) = (α1(s) cosh t, α1(s) sinh t, α3(s), α4(s)) (5)

where the profile curve of M is unit speed spacelike curve, that is, − (α′

1(s))
2 +

(α′

3(s))
2 + (α′

4(s))
2 = 1. We choose a moving frame e1, e2, e3, e4 such that e1, e2

are tangent to M and e3, e4 are normal to M which are given by the following:

e1 = (α′

1(s) cosh t, α
′

1(s) sinh t, α
′

3 (s) , α
′

4 (s))

e2 = (sinh t, cosh t, 0, 0)

e3 =
1

√

1 + (α′
1(s))

2
((1 + (α′

1(s))
2
) cosh t, (1 + (α′

1(s))
2
) sinh t

, α′

1(s)α
′

3(s), α
′

1(s)α
′

4(s)

e4 =
1

√

1 + (α′
1(s))

2
(0, 0,−α′

4(s), α
′

3(s))

Then it is easily seen that

〈e1, e1〉 = 〈e2, e2〉 = 〈e4, e4〉 = 1, 〈e3, e3〉 = −1

we have the dual 1-forms as:

ω1 = ds and ω2 = α1(s)dt (6)

By a direct computation we have components of the second fundamental form
and the connection forms as:

h3
11 = −c(s), h3

12 = 0, h3
22 = −b(s) (7)

h4
11 = d(s), h4

12 = 0, h4
22 = 0

ω12 = a(s)b(s)ω2, ω13 = −c(s)ω1, ω14 = d(s)ω1 (8)

ω23 = −b(s)ω2, ω24 = 0, ω34 = a(s)d(s)ω1

5



By covariant differentiation with respect to e1 and e2 a straightforward calculation
gives:

∇̃e1e1 = c(s)e3 + d(s)e4 (9)

∇̃e2e1 = a(s)b(s)e2

∇̃e1e2 = 0

∇̃e2e2 = −a(s)b(s)e1 + b(s)e3

∇̃e1e3 = c(s)e1 + a(s)d(s)e4

∇̃e2e3 = b(s)e2

∇̃e1e4 = −d(s)e1 + a(s)d(s)e3

∇̃e2e4 = 0

where

a(s) =
α′

1(s)
√

1 + (α′
1(s))

2
(10)

b(s) =

√

1 + (α′
1(s))

2

α1(s)
(11)

c(s) =
α′′

1(s)
√

1 + (α′
1(s))

2
(12)

d(s) =
−α′′

3(s)α
′

4(s) + α′′

4(s)α
′

3(s)
√

1 + (α′
1(s))

2
(13)

The Gaussian curvature K of M is given by

K = −b(s)c(s) (14)

The mean curvature H of M is given by

H =
1

2
(−h1e3 + h2e4) h1 = − (b+ c) and h2 = d (15)

By using (4) , (9) and straight-forward computation, the Laplacian ∆G of the
Gauss map G can be expressed as

∆G = A(s) (e1 ∧ e2) +B(s) (e2 ∧ e3) +D(s) (e2 ∧ e4) (16)

where
A(s) = d2 (s)− b2 (s)− c2 (s) (17)

B(s) = b′ (s) + c′ (s) + a(s)d2 (s) (18)

D(s) = d′ (s) + a(s)d (s) (b (s) + c (s)) (19)

6



Theorem 1. Let M be the flat rotation surface given by the parametrization (5).
Then M has pointwise 1-type Gauss map if and only if the profile curve of M is
parametrized by

α1(s) = a1 (20)

α3(s) =
1

a2

(

1 + a21
)

1

2 cos (a2s + a3)

α4(s) = − 1

a2

(

1 + a21
)

1

2 sin (a2s+ a3)

or

α1(s) = b1s + b2 (21)

α3(s) =

∫

(

1 + b21
)

1

2 cos (b ln |b1s+ b2|) ds

α4(s) =

∫

(

1 + b21
)

1

2 sin (b ln |b1s+ b2|) ds

where a1, a2, a3 b1 6= 0, b2, b3 and b = b3

b1(1+b2
1)

1

2

are real constants.

Proof. Let M be the flat rotation surface given by the parametrization (5). We
suppose that M has pointwise 1-type Gauss map. By using (1) and (16), we have

f + f 〈C, e1 ∧ e2〉 = A(s) (22)

f 〈C, e2 ∧ e3〉 = −B(s)

f 〈C, e2 ∧ e4〉 = D(s)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e3 ∧ e4〉 = 0 (23)

By differentiating (23) covariantly with respect to s, we have

−a(s)B(s) + A(s)− f = 0

a(s)D(s) = 0

D(s) = 0

In this case, firstly, we assume that a(s) = 0 and D(s) = 0. From (10), we obtain
that α1(s) = a1. Since the profile curve is unit speed spacelike curve, we can write
(α′

3(s))
2 + (α′

4(s))
2 = 1 + a21. Also we can put

α′

3(s) =
(

1 + a21
) 1

2 cos θ (s) (24)

α′

4(s) =
(

1 + a21
)

1

2 sin θ (s)

7



where θ is smooth angle function. On the other hand, since D(s) = 0, from (19)
we obtain as

d (s) = a2, a2 is non zero constant. (25)

By using (13), (24) and (25) we get

θ (s) = a2s+ a3 (26)

So from (24) and (26) we have

α3(s) =
1

a2

(

1 + a21
)

1

2 cos (a2s + a3)

α4(s) = − 1

a2

(

1 + a21
)

1

2 sin (a2s+ a3)

Now we assume that a(s) 6= 0 and D(s) = 0. Since M is flat, (12) and (14) imply
that

α1(s) = b1s+ b2 (27)

for some constants b1 6= 0 and b2 = 0. Since the profile curve is unit speed
spacelike curve, we can write (α′

3(s))
2 + (α′

4(s))
2 = 1 + b21. Also we can put

α′

3(s) =
(

1 + b21
)

1

2 cos θ (s) (28)

α′

4(s) =
(

1 + b21
) 1

2 sin θ (s)

where θ is smooth angle function. By using (10), (11) and (19), we get

d(s) =
b3

b1s+ b2
(29)

On the other hand, by using (13), (27) and (28) we have

d(s) =
(

1 + b21
)

1

2 θ′ (s) (30)

By combining (29) and (30) we obtain

θ (s) = b ln |b1s+ b2| (31)

where b = b3

b1(1+b2
1)

1

2

. So by substituting (31) into (28) we can write

α3(s) =

∫

(

1 + b21
)

1

2 cos (b ln |b1s+ b2|) ds

α4(s) =

∫

(

1 + b21
)

1

2 sin (b ln |b1s+ b2|) ds

8



Conversely, the surface M which is parametrized by (20) and (21) is pointwise
1-type Gauss map for

f(s) = −a(s)b′(s)− a2(s)d2(s) + d2(s)− b2(s)

and

C(s) =
a(s)b′(s) + a2(s)d2(s)

f(s)
(e1 ∧ e2) +

b′(s) + a(s)d2(s)

f(s)
(e2 ∧ e3)

where it can be easily seen that e1 (C(s)) = 0 and e2 (C(s)) = 0. This completes
the proof.

Corollary 1. Let M be the flat rotation surface given by the parametrization (5).
If M has pointwise 1-type Gauss map then the profile curve of M is a helix curve.

We will also use the following theorems and corollary.

Theorem 2. [17] Let M be an oriented maximal surface in the Minkowski space
E4

1 . Then M has pointwise 1-type Gauss map of the first kind if and only if M
has flat normal bundle. Hence the Gauss map G satisfies (1.1) for f = ‖h‖2 and
C = 0.

Theorem 3. [18] Let M be a spacelike rotational surface in Minkowski 4-space
given by the parametrization (5). If M marginally trapped surface then

α3(s) =

∫

(

1 + (α′

1)
2
)

1

2

cos θ (s) ds (32)

α4(s) =

∫

(

1 + (α′

1)
2
)

1

2

sin θ (s) ds

and

θ (s) = −ǫ

∫

1 + (α′

1)
2 + α′

1α
′′

1

α1

(

1 + (α′
1)

2)
1

2

(33)

where ǫ = ±.

Corollary 2. [18] Let M be a spacelike rotational surface in Minkowski 4-space
given by the parametrization (5). If M is a extremal surface then a unit profile
curve is given by

α (s) =

(

f(s), 0, cos ζ0
√
a1 arctan

(

s+ a2

f(s)

)

, sin ζ0
√
a1 arctan

(

s+ a2

f(s)

))

,

where f(s) =
√

a1 − (s+ a2)
2and a1, a2, ζ0 ∈ R, a1 > 0, being integration con-

stants. In particular, the surface M is immersed in a totally geodesic Lorentzian
3-space.

9



Theorem 4. Let M be the marginally trapped surface given by the parametriza-
tion (5) in Minkowski 4-space. Then M has pointwise 1-type Gauss map if and
only if the profile curve is given by or

α1(s) = (λ1 − 1)
1

2

(

u2 (s) + λ2
)

1

2 (34)

α3(s) =

∫
(

λ1u
2 + λ2

u2 + λ2

)
1

2

cos θ (s) ds

α4(s) =

∫ (

λ1u
2 + λ2

u2 + λ2

)
1

2

sin θ (s) ds

and

θ (s) = −ǫ
λ1

(λ1 − 1)
1

2

∫

(u2 + λ2)
1

2

λ1u2 + λ2
ds

where u (s) = δs+ λ3, λ = λ2

λ1−1
, λ1, λ2, λ3, a1 and a2 are real constants.

Proof. Let M be marginally trapped surface. This means ‖H‖ = 0 that is
〈H,H〉 = 0. By using (15), we get

− (b(s) + c(s)) = ǫd(s) (35)

where ǫ = ±. In this case, by using (35) we can rewrite the Laplacian ∆G of the
Gauss map G as

∆G = A(s) (e1 ∧ e2)− ǫN(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) (36)

where
N(s) = d′ (s)− ǫa(s)d2 (s) (37)

We assume that M has pointwise 1-type Gauss map. Then we have

f + f 〈C, e1 ∧ e2〉 = A(s) (38)

f 〈C, e2 ∧ e3〉 = ǫN(s)

f 〈C, e2 ∧ e4〉 = N(s)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e3 ∧ e4〉 = 0 (39)

By differentiating (39) covariantly with respect to s, we have

ǫa(s)N(s) + A(s)− f = 0

a(s)N(s) = 0

N(s) = 0

10



In this case, firstly, we assume that a(s) = 0 and N(s) = 0. From (10) and (12),
we obtain that α1(s) = a1 and c(s) = 0, respectively. Hence from (35) we get

− b(s) = ǫd(s) (40)

By using (40) and (17) we obtain that A(s) = 0. So we have that f = 0. This is
a contradiction.

Now we assume that a(s) 6= 0 and N(s) = 0. By combining (10), (11), (12),
(13), (35) and (37), we obtain a differential equation as follows:

(

1 + (α′

1(s))
2
+ α′

1(s)α
′′

1(s)
)′

α1(s)
(

1 + (α′

1(s))
2
)

= 0

Since α1 > 0 and 1 + (α′

1(s))
2 6= 0 we have

1 + (α′

1(s))
2
+ α′

1(s)α
′′

1(s) = λ1

whose the solition

α1(s) = (λ1 − 1)
1

2

(

(δs+ λ3)
2 +

λ2

(λ1 − 1)2

)
1

2

(41)

By using (33) and (41) we get

θ (s) = −ǫµ

∫

(u2 + λ)
1

2

λ1u2 + λ
ds (42)

where u(s) = δs+ λ3, λ = λ2

λ1−1
and µ = λ1

(λ1−1)
1

2

.

Conversely, the surface M which is parametrized by (34) has pointwise 1-type
Gauss map with

f(s) = 2b (s) c (s)

and
C(s) = 0

This completes the proof.

Corollary 3. Let M be marginally trapped surface given by the parametrization
(5) in Minkowski 4-space. Then M has pointwise 1-type Gauss map then M is
pointwise 1-type Gauss map of the first kind.

Corollary 4. Let M be a spacelike rotational surface in Minkowski 4-space given
by the parametrization (5). If M is extremal surface then M has pointwise 1-type
Gauss map of the first kind.

Proof. We assume thatM is a spacelike rotational surface given by the parametriza-
tion (5). In that case by using (3) and (7) we obtain that M has flat normal
bundle. Hence from Theorem (2) If M is extremal surface then M has pointwise
1-type Gauss map of the first kind.
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Vranceanu surface in E4 with pointwise 1-type Gauss map, Indian J. Pure.
Appl. Math. 42, 41-51, 2011.
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