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1 INTRODUCTION

Infectious diseases represent a major worldwide
threat to human health [8]. Salmonella species are
enteric pathogens and a world leading cause of bacte�
rial foodborne illness [21]. Essential virulence strate�
gies of the enteric pathogen S. Typhimurium include
survival and replication within the macrophage which
are critical to defense against bacterial infection [35].
It has been reported that some mutants of S. Typhimu�
rium such as purine, prymidine, histidine and aro�
matic amino acid auxotrophs, cannot survive within
the macrophage, are avirulent [13, 27, 22]. These
studies clearly showed that the metabolic flexibility
and adaptation to intracellular environment were
important for intracellular survival and replication of
S. Typhimurium.

The histidine operon of S. Typhimurium is a cluster
of nine genes that code for the ten enzymes that cata�
lyze histidine biosynthesis. In the first step of this
pathway, a phosphoribosyl transferase, encoding by
hisG gene, catalyses condensation of ATP and
5'�phosphoribosyl 1�pyrophosphate (PRPP) to form
N'�5'�phosphoribosyl�ATP (PRATP) [25]. Although
avirulent characteristics of S. Typhimurium mutants
bearing nonfunctional activities which are required for
histidine biosynthesis were concluded that due to auxo�
tropy, and, polar and pleitropic effect of these muta�
tions [4, 6, 10, 14, 21, 22], there is no direct impacts of
these mutations on Salmonella pathogenicity.

1 The article is published in the original.

The aim of this study was to determine the effect of
hisG gene on pathogenicity associated protein expres�
sion of S. Typhimurium LT2.

MATERIALS AND METHODS

Mutation Assay

HisG gene mutant (Δhis87) of S. Typhimurium LT2
was selected from a library of random T�POP insertion
mutants (34) and T�POP insertion site was cloned by
inverse PCR (23) using the primer pair 5'�GCACT�
TGTCTCCTGTTTACTCC�3' and 5'�CGCTTTTC�
CCGAGATCATATG�3' for amplification. PCR
products were cloned into Escherichia coli DH5α
using the vector PCR2.1 (Invitrogen) and the respec�
tive nucleotide sequences were determined.

Total Protein Extraction

S. Typhimurium strains was grown in 20 mL Luria
Bertani (LB) broth medium at 37°C for 18 h with shak�
ing (200 rpm). 500 μL of these fresh cells were inocu�
lated to 50 mL Erlenmeyer flasks and incubated for 6 h
with shaking (200 rpm). Growing cells were harvested
by centrifugation (7500 rpm, 10 min). Cell residues was
resuspended in 25 mL PBS (phosphate buffered saline)
and this step repeated twice. After supernatants were
removed, 1 mL of total protein extraction solution
(Bio�Rad ReadyPrep Total Protein Extraction Kit,
United States), 10 μL pH 3–10 ampholyte and 11 μL
TBP (tributyl phosphate) was added on the tubes. In
order to complete cell lysis, sonication process was per�
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formed (60 Amp, for 5 × 10 s) (Ultrasonic processor,
Sonics, Vibra cell, Taiwan). At final stage, cell debris
was precipitated by centrifugation (15000 rpm, 25 min)
and supernatants was transferred to new tubes. For pro�
tein quantitation, RC DC protein assay was carried out
(Bio�Rad RC DC Protein Assay, United States). BSA
(bovine serum albumin) has been used as a standart pro�
tein to ensure equal protein loading. The experiments
was carried out as triplicate.

2D Gel Analysis

The first step of sodium dodecyl sulfate (SDS) two
dimensional gel electrophoresis was rehydratation
process. 24 cm pH 3–10 NL (non�linear) strips were
used for that process (Bio�Rad Ready IPG Strip,
United States). Samples which contain 150 μg/mL
protein were mixed with rehydratation buffer includ�
ing 8 M urea, 2% CHAPS (3�[(3�cholamidopropyl)�
dimethylammonio]�1�propanesulfonate), 0.5% IPG
Buffer, 0.02% bromphenolblue, with DTT (2.8 mg/mL).
The final volume was 450 μL. Following the at
15000 centrifugation rpm for 5 min, samples were
loaded into wells. Mineral oil was added on the wells to
prevent evaporation. Active rehydratation was per�
formed for 15 h, at 20°C, 50 V (Protean IEF Cell, Bio�
Rad, United States). Once rehydratation process was
completed, IEF (Isoelectric focusing) was initiated at
80000 V�h. The focused IPG strips were equilibrated
with equilibration buffer I (DTT, 0.5 M Tris�HCl
(pH 6.8), 10% SDS (w/v), glycerol) and equilibration
buffer II (Iodoacetamide, 0.5 M Tris�HCl (pH 6.8),
10% SDS (w/v), glycerol) for 10 min. Strips were
loaded into dodeca electrophoresis apparatus (Pro�
tean Plus Dodeca Cell, Bio�Rad, United States) to
seperate proteins according to their molecular
weights. The running conditions for stacking gel were
at 18°C, 125 V, and for seperating gel were at 18°C,
200 V (16). After running, the gels were stained with
reference to silver nitrate staining method (30).

MALDI�TOF Analysis

Spot analysis were performed between mutant and
wild type also replicates. The spots which was
detected by using PD Quest programme was excised
from the gels (The Proteome Works Spot Cutter, Bio�
Rad, United States) and transferred to 96 microwell
plates. Following the trypsinisation and lyophilization
steps, samples were mixed with matrix CHCA (sinap�
inic acid) (1 : 1) and analysed by MALDI�TOF�MS
(Matrix�Assisted Laser Desorption/Ionization�Time
of Flight�Mass Spectrometry). Five peptide mixture
(20 pmol/μL ACTH 18�39, 1000 pmol/μL Renin 1–
14, 10.000 pmol/μL Substance P, 20.000 pmol/μL
Angiotensin and 1000 pmol/μL Glu�Fib) was used for
calibration. The data obtained from MALDI�TOF�MS
were analysed by MASCOT/Mass Finger Print
search engine (32).

RESULTS AND DISCUSSION

Sequence comparision using the BLAST algorithm
at NCBI (http://www.ncbi.nlm.nih.gov/) revealed that
the T�POP insertion muation was occured at hisG gene
of histidine operon of S. Typhimurium LT2 (Δhis87).

Protein patterns of 2�D gel electrophoresis showed
that 4 different protein spots detected at S. Typhimu�
rium LT2 extracts were not found at S. Typhimurium
Δhis87 extracts. The spot numbers of these protein
were; 7507, 6309, 2512 and 6308 (Figs. 1–4).

After protein spots were excised from the gels, they
were identified by MALDI�TOF�MS. 9 common
peptides were determined between protein spot 7507
and Arginine�tRNA ligase (913.6503, 2274.6172,
2274.9465, 2275.8030, 891.5310, 1343.2618,
1344.1228, 892.6037, 1117.9342 Dalton) (Fig. 5).

5 common peptides were detected between protein
spot 6309 and secreted effector protein SifA (1060.5424,
1061.5332, 1304.9124, 1144.8882, 912.5651 Dalton)
(Fig. 6).

6 common peptides were detected between protein
spot 2512 and GMP synthase (glutamine�hydrolys�
ing) (871.3944, 1020.8837, 1021.0162, 1060.6323,
1434.5200, 1305.3115 Dalton) (Fig. 7).

5 common peptides were detected between protein
spot 6308 and Guanine nucleotide exchange factor
SopE (1304.1641, 1143.9009, 928.7015, 1117.1028,
1898.6469 Dalton) (Fig. 8).

Histidine biosynthesis is an cross�road that plays
important role in cellular metabolism being intercon�
nected to both the de novo synthesis of purines and to
nitrogen metabolism (15). Mutational analyses of the
histidine operon showed that hisG gene, the first gene
of this operon encoding ATP phosphpribosyl phos�
phptransferase enzyme, influenced related and unre�
lated traits in Salmonella. Polarity effects of hisG gene
mutations are well documented in Salmonella and
other bacteria [11, 24, 10, 2, 12, 15, 26] but there is a
limited information about pleitropic effects of this
gene [13, 21]. Here we first reported that the inser�
tional inactivation of the hisG gene has resulted the
repression of the proteins; ArgRS (arginine�tRNA
synthetase, ArgRS), SopE (guanine nucleotide
exchange factors for the RhoGTPase), SifA (secreted
effector protein) and GuaA (guanosine monophos�
phate synthetase or GMP synthase).

GuaA is a glutamine amido transferase that cataly�
ses the glutamine or NH3 dependent synthesis of
GMP from xanthosine 5'�monophosphate. De novo
synthesis of guanine nucleotides is essential for DNA
and RNA synthesis. It also provides GTP, which is a
key regulator and energy source in many cellular pro�
cesses [29, 35]. SifA protein that encoded in Salmo�
nella pathogenicity island�2 (SPI�2) is an effector of
the type three secretion system (TTSS). After the
infection of non�phagocytic host cells, Salmonella
enterica serovars build up Salmonella containing vacu�
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(a) (b)

Fig. 1. (a) S. Typhimurium LT2, (b) S. Typhimurium Δhis87 (7507).

Fig. 2. Comparative protein profile analysis (a) S. Typhimurium LT2, (b) S. Typhimurium Δhis87 (6309).

(a) (b)
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(a) (b)

Fig. 3. Comparative protein profile analysis (a) S. Typhimurium LT2, (b) S. Typhimurium Δhis87 (2512).

(a) (b)

Fig. 4. Comparative protein profile analysis (a) S. Typhimurium LT2, (b) S. Typhimurium Δhis87 (6308).
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Fig. 5. Common peptides with Arginine�tRNA ligase in protein spot 7507.
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Fig. 7. Common peptides with GMP synthase in protein spot 2512.
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ole (SCV) to survive and replicate itself in the host.
Formation of Salmonella�induced filament (Sif) pro�
vides an appropriate niche for replication of Salmo�
nella. SifA shows its function by activating RhoA fam�
ily GTPases [1, 17, 18]. Guanine nucleotide exchange
factor SopE is encoded in Salmonella pathogenicity
island�1 (SPI�1) and one of the effectors of type III
secretion system. It is essential for membrane ruffling in
the host. SopE induces membrane ruffling by stimulat�
ing GDP/GTP nucleotide exchanging in Rho GTPases
and activates Rac�1 and Cdc42 cell signal transduc�
tion cascade. SopE plays a crucial role both rearrange�
ment of cytoslceloton and production of proinflam�
matory cytokines [5, 19]. GMP synthase, SopE and
SifA production regulation is mainly subject to strin�
gent control, growth�phase dependent regulation,
purine repression and their activities coupled to the
DNA replication cycle [7, 3, 33, 22, 31]. According to

our results purine auxotrophic character of hisG
mutant, resulted from direct repression of GMP syn�
thetase in the absence of ATP phospho�ribosyl phos�
photransferase, directly effected the production of the
Salmonella virulence factors SopE and SifA.

ArgRS catalyses ATP + L�arginine + tRNA(Arg) =
AMP + diphosphate + L�arginyl�tRNA(Arg) reaction
(28). Regulation of ArgRS synthesis seems to be impor�
tant in histidine auxotrophy to prevent waste of cellular
resources by synthesis of components at a level beyond
what is required for efficient growth [20]. It has been
determined that histidine�transporter encoded by
hisJOMP operon, induced by histidine auxotrophy, is a
member of arginine regulon. The corresponding gene
products are part of the lysine, arginine and ornithine
amino acids uptake system is strongly repressed by argi�
nine. Therefore a stronger arginine�dependent repres�
sion is incompatible with histidine uptake (9). Our
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Fig. 8. Common peptides with Guanine nucleotide exchange factor SopE in protein spot 2512.
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results shows that argRS regulation is related with the
production of ATP phosphpribosyl phosphptransferase
enzyme production to cope with this problem under
histidine auxotrophic conditions.

This study shows that the first enzyme of histidine
biosynthetic pathway is very important for Salmonella
Typhimurium pathogenicity. Determination of the
regulatory roles of hisG gene mutations at molecular
level will play a crucial role for understanding the glo�
bal regulation of Salmonella infection.
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