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Abstract—The four-dimensional Ising model is simulated on the Creutz cellular automaton (CCA) near the
infinite-lattice critical temperature for the lattice with the linear dimension 4 ≤ L ≤ 22. The temperature
dependence of Binder parameter ( ) are analyzed for the lattice with the linear dimension 4 ≤ L ≤ 22. In this
study conducted highly detailed, two different types of behavior were determined as a result of varying linear
lattice dimension. The infinite lattice critical temperatures are obtained to be  in inter-
val 4 ≤ L ≤ 12 and  in interval 14 ≤ L ≤ 22. The finite and infinite lattice critical expo-
nents for the order parameter, the magnetic susceptibility and the specific heat are computed from the results
of simulations by using finite-size scaling relations. Critical linear lattice size have been identified as .
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INTRODUCTION
While the four-dimensional Ising model is not

directly applicable to real magnetic systems, it is useful
to investigate the influence of dimensionality on phase
transitions [1]. The Creutz cellular automaton [2] has
proven to be a fast alternative research tool in Ising
model investigations near the critical regions of the
lattices [3, 6]. As the dimension or the lattice size
increases, the simulation of the Ising model by the
conventional Monte Carlo method becomes impracti-
cal and faster algorithms are need. The Creutz cellular
automaton does not require high-quality random
numbers, it is an order of magnitude faster than the
conventional Monte Carlo method, and compared to
Q2R cellular automaton [4], it has the advantage of
fluctuating internal energy from which the specific
heat can be computed.

The purpose of this study is determined to critical
linear lattice dimension.

EXPERIMENTAL
The four-dimensional Ising model with nearest-

neighbor pair interactions is simulated on the Creutz
cellular automaton near the infinite-lattice critical
temperature for the lattice with the linear dimension
4 ≤ L ≤ 22. Three variables are associated with each

site of the lattice. The value of each site is determined
from its value and those of its nearest-neighbors at the
previous time step. The updating rule, which defines a
deterministic cellular automaton, is as follows: of the
three variables on each site, the first one is the Ising
spin Bi. Its value may be 0, or 1, or 2. The Ising spin
energy of the lattice for the model is given with

, where , 〈i, j〉 denotes

the sum over all nearest neighbor pairs of sites. The
second variable is for the momentum variable conju-
gate to the spin (the demon). The kinetic energy asso-
ciated with the demon, , is an integer, which is
equal to the change in the Ising spin energy for any
spin f lip. The total energy , is conserved.
The third variable provides a checkerboard style
updating, and so it allows the simulation of the Ising
model on a cellular automaton.

The simulations are carried out on simple hypercu-

bic lattices  of linear lattice dimensions 4 ≤ L ≤ 22
with periodic boundary conditions. The cellular

automaton develops  sweeps for each run with 1 run
for each total energy. The simulations were studied for

 and  values in the interval 
and , respectively. Differ from our pre-
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vious work [8], simulations were carried out by scan-
ning more frequently the energy (E/J) interval.

RESULTS AND DISCUSSION

The temperature dependence of the functions for
the magnetic susceptibility ( ), the specific heat (C),
and order parameter (M) analyzed for the lattice with
the linear dimension 4 ≤ L ≤ 22 are illustrated in Fig. 1.

Differ from our previous work [8], the tempera-
ture dependence of Binder parameter ( ) are ana-
lyzed for the lattice with the linear dimension 4 ≤
L ≤ 22. The temperature variation of the Binder

χ

Lg

parameter has been shown in Fig. 2. The intersec-
tion point of the  curves gives the infinite lattices
critical temperature  as  [5]. As shown in
Figs. 2a and 2b, the  curves indicate two different
behaviors in interval 4 ≤ L ≤ 22. For L = 4, 6, 8, 10,
12 the intersection point of curves gives

 (Fig. 2c) and for L = 14, 16,
18, 20, 22 the intersection point of curves gives

 (Fig. 2d) approximately.

The finite-size lattice critical temperatures

obtained from the susceptibility maxima  and

Lg
cT → ∞L

Lg

= ±c 6.6845 0.0006T

= ±c 6.6807 0.0024T

χ
c ( )T L

Table 1. The critical exponent values of the order parameter and the magnetic susceptibility for  and  on each
value of L

L

4 0.4745 ± 0.0007 0.4908 ± 0.0009 0.3594 ± 0.0025 0.3840 ± 0.0035

6 0.4839 ± 0.0001 0.4954 ± 0.0001 0.3723 ± 0.0012 0.3941 ± 0.0020

8 0.4861 ± 0.0038 0.4979 ± 0.0001 0.3823 ± 0.0007 0.3966 ± 0.0012

10 0.4886 ± 0.0001 0.4984 ± 0.0001 0.3854 ± 0.0014 0.3998 ± 0.0024

12 0.4888 ± 0.0008 0.5004 ± 0.0014 0.3882 ± 0.0017 0.3994 ± 0.0027

14 0.4924 ± 0.0001 0.4949 ± 0.0002 0.3680 ± 0.0001 0.3997 ± 0.0027

16 0.4935 ± 0.0001 0.4962 ± 0.0001 0.3704 ± 0.0001 0.4020 ± 0.0004

18 0.4954 ± 0.0001 0.4978 ± 0.0003 0.3731 ± 0.0002 0.4055 ± 0.0006

20 0.4967 ± 0.0001 0.4989 ± 0.0001 0.3743 ± 0.0006 0.4067 ± 0.0027

22 0.4976 ± 0.0001 0.4999 ± 0.0001 0.3769 ± 0.0004 0.4078 ± 0.0003

L

4 1.0610 ± 0.0238 1.1047 ± 0.0254 1.4163 ± 0.0095 1.4743 ± 0.0096

6 1.0446 ± 0.0004 1.0777 ± 0.0001 1.3403 ± 0.0046 1.4106 ± 0.0089

8 1.0368 ± 0.0002 1.0589 ± 0.0002 1.3198 ± 0.0065 1.3967 ± 0.0071

10 1.0215 ± 0.0005 1.0490 ± 0.0003 1.3193 ± 0.0013 1.3290 ± 0.0013

12 1.0129 ± 0.0004 1.0314 ± 0.0001 1.3011 ± 0.0014 1.3080 ± 0.0014

14 1.0531 ± 0.0013 1.0678 ± 0.0003 1.4254 ± 0.0158 1.4749 ± 0.0162

16 1.0468 ± 0.0004 1.0564 ± 0.0002 1.4237 ± 0.0036 1.4113 ± 0.0353

18 1.0400 ± 0.1762 1.0446 ± 0.1772 1.3987 ± 0.0008 1.4071 ± 0.0008

20 1.0369 ± 0.0708 1.0418 ± 0.0712 1.3402 ± 0.0125 1.3217 ± 0.0054

22 1.0322 ± 0.0019 1.0361 ± 0.0009 1.3238 ± 0.0462 1.3008 ± 0.0245

c ( )T L ∞c ( )T

β χ
c( ( ))T L β ∞χ
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c( ( ))T L γ ∞c( ( ))T
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Fig. 1. The temperature dependence of the order parameter (M). the magnetic susceptibility (χ), and (C) the specific heat.
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the specific heat maxima  are determined. The
dependences of the critical temperatures  and

 obtained from the magnetic susceptibility or
the specific heat maxima are given with

. The finite-size scal-
ing relation for  and  are used to get the
critical temperatures of the infinite lattice in Fig. 3. As
can be seen from the Fig. 3, by varying lattice linear
dimension in range 4 ≤ L ≤ 22 two different types of

 and  behavior have been detected.

C
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The computed values of the critical temperatures
( ) for the infinite lattice are  = 6.6807 ±
0.0134 (4 ≤ L ≤ 12),  = 6.6844 ± 0.0339 (14 ≤ L ≤
22), for  and  (4 ≤ L ≤
12),  (14 ≤ L ≤ 22) for .

These critical temperatures is in agreement with
the results that obtained from the intersection point of
the  curves.

The critical exponents [6–8] for the order parame-
ter and the magnetic susceptibility are computed from

∞c ( )T ∞c ( )T
∞c ( )T

χ
cT ∞ = ±c ( ) 6.6810 0.0394T

∞ = ±c ( ) 6.6871 0.0255T C
cT

Lg

Table 2. The infinite lattice critical exponents values of the order parameter and the magnetic susceptibility for  and 

L

0.474 ± 0.0007 0.4908 ± 0.0009 0.3594 ± 0.0025 0.3840 ± 0.0035

0.4839 ± 0.0001 0.4954 ± 0.0001 0.3723 ± 0.0012 0.3941 ± 0.0020

L

1.0610 ± 0.0238 1.1047 ± 0.0254 1.4163 ± 0.0095 1.4743 ± 0.0096

1.0446 ± 0.0004 1.0777 ± 0.0001 1.3403 ± 0.0046 1.4106 ± 0.0089

c ( )T L ∞c ( )T

β χ
c( ( ))T L β ∞χ

c( ( ))T β χ
c( ( ))T L β ∞χ

c( ( ))T

≤ ≤4 12L

≤ ≤14 22L

γ χ
c( ( ))T L γ ∞χ

c( ( ))T γ χ
c( ( ))T L γ ∞χ

c( ( ))T

≤ ≤4 12L

≤ ≤14 22L
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Fig. 2. (a) The Binder cumulant as a function of  in interval , (b) the figure on the right side is enlargement
around the critical point, (c) the Binder cumulant as a function of  in interval , and (d) the Binder cumulant as
a function of  in interval .
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the results of simulations on each lattice for these
 and  (Table 1).

These critical exponents are plotted against 1/L.
The data lie on straight lines, and their extrapolations
to 1/L → 0 give the infinite lattice critical exponents
(Table 2).

The critical exponents , , and  for the
order parameter, the magnetic susceptibility and the

c ( )T L ∞c ( )T

β ν/ γ ν/ α ν/

specific heat are obtained from the results of simula-
tions by using finite-size scaling relations [6] (Table 3).

As seen from Tables 2 and 3 the critical exponents
and finite-size scaling functions show two different
behaviors to be in interval 4 ≤ L ≤ 12 and in interval
14 ≤ L ≤ 22.

The temperature dependence of finite-size scaling
functions [6–8] for magnetic susceptibility (χ), the
specific heat (C) (Fig. 4), order parameter (M), and
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Fig. 3. (a) The plots of  against  with . (b) The plots of  against  with
.
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Fig. 4. The temperature dependence of finite-size scaling functions for the specific heat in interval  (a), 
(b),  (c).
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Binder parameter ( ) show two different behaviors to
be in interval 4 ≤ L ≤ 12 and in interval 14 ≤ L ≤ 22.

CONCLUSION

The Ising model in  dimension is simulated
on the Creutz cellular automaton for finite-size lat-
tices with the linear dimensions 4 ≤ L ≤ 22. In this
study conducted with great precision, two different
types of behavior were determined as a result of vary-
ing linear lattice dimension. Critical size dimension
have been identified as . The average value of
these two different behaviors is in agreement with the
results of other studies [7, 8].
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