Journal of Molecular Structure 1030 (2012) 157-167

Contents lists available at SciVerse ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Structural and vibrational studies on (*E*)-2-(2-hydroxy benzyliden amino)-3-phenyl propionic acid using experimental and DFT methods

H. Saleem^{a,*}, Y. Erdogdu^b, S. Subashchandrabose^a, V. Thanikachalam^c, J. Jayabharathi^c, N. Ramesh Babu^a

^a Dept. of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India

^b Dept. of Physics, Ahi Evran University, 40040 Kirsehir, Turkey

^c Dept. of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India

ARTICLE INFO

Article history: Received 17 December 2011 Received in revised form 3 April 2012 Accepted 5 April 2012 Available online 12 April 2012

Keywords: Phenylalanine Salicylaldehyde FT-IR FT-Raman TED

ABSTRACT

The structural and spectroscopic properties of (*E*)-2-(2-hydroxy benzyliden amino)-3-phenyl propionic acid ((*E*)-2-HBAPPA) has been investigated by using theoretical and experimental methods. Using the computational studies the most stable conformer was identified. Density functional theory (DFT) calculations of 16 (*E*)-2-HBAPPA conformers have been performed to find the optimized structure and the computed vibrational wavenumbers of the most stable one. The FT Raman and FT-IR spectra of (*E*)-2-HBAPPA molecule have been recorded and analyzed. A detailed interpretation of the FT-IR, FT-Raman and harmonic wavenumbers obtained at B3LYP/6-311++G(d,p) level was reported. The vibrational assignments were studied using TED method. Intra-molecular charge transfer between nitrogen and hydroxyl hydrogen (C=N···H-O) has been studied. First order hyperpolarizability (β_0) has been calculated. Electronic excitation of (*E*)-2-HBAPPA was recorded in the visible region and compared with calculated TD-DFT results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The *ortho*-hydroxy Schiff bases have received much attention in different areas such as biology, coordination chemistry, technological applications and chemical physics [1–4]. Salicylideneaniline Schiff bases which has long-ranged π -electron delocalization capacity affecting whole molecule during the proton transfer reaction, O—H···N \leftrightarrow H···N [5,6]. The easiest intra molecular interaction of this type of compound leads the molecule, used as a potential material for molecular memory, photo switch device and models of biological system [7–9].

The pharmaceutical studies [10–12], revealed great potential in the application of *ortho*-hydroxy acylaromatic Schiff bases as cancer fighters. Schiff bases compound also exhibit a wide range of biological activities such as anti-HIV [13–15] anti-tumor [16], anti-viral activity [17] antimicrobial activity [18], and anti-inflammatory activity [19].

The present work mainly deals with detailed structural conformation, experimental FT-IR and FT-Raman spectra, intra-molecular hydrogen bonding, vibrational assignments using total energy distribution (TED) and NLO activity as well as DFT/B3LYP calculations for (*E*)-2-HBAPPA. The vibrational spectral features

* Corresponding author.
 E-mail addresses: saleem_h2001@yahoo.com (H. Saleem), yusuferdogdu@
 gmail.com (Y. Erdogdu), sscbphyscis@gmail.com (S. Subashchandrabose).

of (E)-2-HBAPPA compound have not been subject of detailed analysis so far. Herein, the investigated results have been reported. The experimental and theoretical results support each other, and the calculations are valuable for providing a reliable insight into the vibrational spectra and molecular properties.

2. Experimental details

2.1. Synthesis

This compound was synthesized by mixing the salicylaldehyde in ethanol and sodium salt of phenylalanine in ethanol–water (50% v/v). The mixture was heated and refluxed on a mantel about 5 h. The reaction mixture was cooled to room temperature and neutralized by 1:1 HCl. The white Schiff base was separated, filtered off, washed thoroughly with deionised water ethanol mixture followed by ether wash. The product obtained was dried over vacuum desiccators. The melting point of the compound is 114 °C (lit 114 °C) [20].

2.2. FT-Raman and FT-IR spectra

The FT-Raman spectrum of (*E*)-2-HBAPPA was recorded using the 1064 nm line of a Nd:YAG laser as excitation wavelength in the region 10–3500 cm⁻¹ on a Bruker model IFS 66 V spectrophotometer equipped with an FRA 106 FT-Raman module accessory.

^{0022-2860/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molstruc.2012.04.011

The spectral measurements were carried out at Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala, India. The FT-IR spectrum of this compound was recorded in the region 400–4000 cm⁻¹ on an IFS 66 V spectrophotometer using the KBr pellet technique. The spectrum was recorded at room temperature, with a scanning speed of 10 cm⁻¹ per minute and at the spectral resolution of 2.0 cm⁻¹ in CISL Laboratory, Annamalai University, and Tamilnadu, India. The UV spectrum was recorded using Perkin Elmer, Lambda 35, UV/ Vis Spectrometer-Integrated Sphere.

3. Computational details

The calculations were performed at DFT levels on a Pentium 1V/ 3.02 GHz personal computer using Gaussian 03W [21] program package, invoking gradient geometry optimization [21,22]. In order to establish the stable possible conformations, the conformational space of title compound was scanned with molecular mechanic simulations. This calculation was performed with the Spartan 08 program [23]. For meeting the requirements of both accuracy and computing economy, theoretical methods and basis sets should be considered. Density functional theory (DFT) has been proved to be extremely useful in treating electronic structure of molecules. The basis set 6-311++G(d,p) was used for the conformational analysis. The optimized structural parameters were used in the vibrational frequency calculations at the DFT level to characterize all stationary points as minima. Then, vibrationally averaged nuclear positions of (E)-2-HBAPPA were used for harmonic vibrational frequency calculations resulting in IR and Raman frequencies together with intensities and Raman depolarization ratios. In the present work, the DFT method B3LYP/6-311++G(d,p) were used for the computation of molecular structure, vibrational frequencies and energies of optimized structures. The vibrational modes were assigned on the basis of TED analysis for higher basis set (B3LYP/ 6-311++G(d,p)), using SOM program [24].

It should be noted that Gaussian 03W package able to calculate the Raman activity. The Raman activities were transformed into Raman intensities using Raint program [25] by the expression:

$$I_i = 10^{-12} \times (v_0 - v_i)^4 \times \frac{1}{v_i} \times RA_i$$
(1)

where I_i is the Raman intensity, RA_i is the Raman scattering activities, v_i is the wavenumber of the normal modes and v_0 denotes the wavenumber of the excitation laser [26].

4. Results and discussion

4.1. Molecular geometry

The numbering scheme for (*E*)-2-HBAPPA is shown in Fig. 1 Optimized bond parameters were calculated by using B3LYP with 6-311++G(d,p) basis set. To find stable conformer, a meticulous conformational analysis was carried out for the title compound. Rotating 10 each degree intervals around the free rotation bonds, conformational space of the title compound was scanned by molecular mechanic simulations and then full geometry optimizations of these structures were performed by B3LYP/6-311++G(d,p) method. Results of geometry optimizations were indicated that the title compound is rather flexible molecule and, in theory, may have at least 16 conformers are shown in Fig. 2. Ground state energies, zero point corrected energies (Eelect. + ZPE), relative energies and dipole moments of conformers were presented in Table 1. Zero point corrections have not caused any significant changes in the stability order.

The optimized geometrical parameters are calculated using B3LYP/6-311++G(d,p) basis set and also listed in the Table 2. In the present work, the introduction of hydroxyl group in the phenyl ring causes some changes in the C–C and C=C bond lengths. As it is evident from the NBO analysis, the bond distance of C_1 - C_2 (1.401), C₃-C₄ (1.407), C₅-C₆ (1.401) and C₂-C₃ (1.420), C₄-C₅ (1.384), C_1 — C_6 (1.387 Å) are belongs to C—C and C=C bonds, respectively. In which C=C bond distance is lesser than C-C bond with an exception, which (C_2-C_3) may be due to the formation of intramolecular hydrogen bond between $N_{23} \cdots H_{22}$. The C_{14} -- C_{25} bond distance (1.514 \AA) is greater than the $\overline{C_3}$ - $\overline{C_{11}}$ (1.452 \AA) bond. The reason may also be due to formation of N₂₃···H₂₂. The increase of $C_2 = C_3$ bond length is due to transfer of lone pair of electron from LPO₂₁ to C₂–C₃, which accept 33.26 kJ/mol energy during the intramolecular interaction, through $n \rightarrow \pi^*$ transition. This C₂-C₃ bond length is supported from the literature [27,28].

The bond distance of C₁₃—N₂₃ and C₁₁=N₂₃ are calculated about 1.461 and 1.284 Å respectively, using B3LYP/6-311++G(d,p) level. These values are in agreement with X-ray diffraction data of Khalaji et al. [27]. The carbonyl group (C₁₇=O₁₈) bond length 1.203 Å B3LYP/6-311++G(d,p) is shorter than C₁₇—O₁₉ (1.353 Å). This is due to π electron localization in C=O. The intra-molecular interaction between nitrogen and hydrogen (H₂₂···N₂₃) of OH group is calculated as 1.758 Å. This is further supported by increasing and decreasing the bond length of O₂₁—H₂₂ and C₂—O₂₁ respectively.

It is evident from the Table S1; the C_2 – O_{21} – H_{22} bond angle is positively deviated (~0.50°) from C_{17} – O_{19} – H_{20} , which is due to N_{23} ··· H_{22} . The highest bond angle 125.82° is observed for

Fig. 1. The optimized structure of (E)-2-(2-hydroxy benzylidene amino)-3-phenyl propionic acid (E)-2HBAPPA.

Fig. 2. All possible conformers of (E)-2HBAPPA.

 C_{13} — C_{17} — O_{18} while C_3 — C_2 — O_{21} has lower value 122.05°. This is also due to the formation of hydrogen bond. The above mentioned bond angles are comparable with Wang et al. [28] and Choudhury and Guru Row [29]. All the possible bond parameters are listed in Table S1.

4.2. Vibrational assignments

The molecule (*E*)-2-HBAPPA contains carboxylic, hydroxyl, methylene and amino groups. It also consists of 35 atoms, hence one can have 99 normal modes of vibrations. The harmonic wave-number calculations were performed with B3LYP/6-311++G(d,p)

level basis sets. The title molecule belongs to C_1 point group symmetry. The recorded FT-IR, FT-Raman and calculated wavenumbers, intensities (IR, Raman), force constant and reduced mass are given in Table 2. The comparisons of experimental and theoretical spectra are shown in Fig. 3 (FT-IR), and Fig. 4 (FT-Raman). The total energy distributions for all fundamental vibrations were calculated using scaled quantum mechanics (SQMs) method at B3LYP/6-311++G(d,p) level [24].

4.2.1. O—H vibrations

The O–H vibrations are extremely sensitive to formation of hydrogen bonding [30]. The O–H stretching band is characterized

Table 1	
Energetics of the conformers calculated at the B3LYP/6-311++G(d,p) level for (E)-2-HBAPPA.	

Conformers	E (Hartree)	ΔE (kcal/mol)	E_0 (Hartree)	ΔE_o (kcal/mol)	Dip. Mom. (D)
1	-899.4276787	0.000	-899.148553	0.000	5.734
2	-899.4258804	1.128	-899.146749	1.132	5.1314
3	-899.4176265	6.308	-899.139411	5.737	7.9904
4	-899.4154509	7.673	-899.137339	7.037	7.7469
5	-899.4153587	7.731	-899.13686	7.337	5.3891
6	-899.4146429	8.180	-899.136406	7.622	7.4491
7	-899.4136486	8.804	-899.13604	7.852	4.4509
8	-899.4135281	8.880	-899.135776	8.018	4.351
9	-899.4132263	9.069	-899.135494	8.195	3.4047
10	-899.412589	9.469	-899.134915	8.558	3.1123
11	-899.4125709	9.480	-899.135061	8.466	3.3276
12	-899.4120259	9.822	-899.133875	9.211	7.912
13	-899.4116909	10.032	-899.133507	9.442	7.3625
14	-899.4114878	10.160	-899.133433	9.488	4.9419
15	-899.4090454	11.693	-899.131027	10.998	7.2872
16	-899.4034218	15.221	-899.125329	14.573	5.5116

Eo, zero point corrected energy, (Dip.Mom. - dipole moment).

by a very broad band appear in the range $3400-3600 \text{ cm}^{-1}$ [31]. Stretching of O—H band is characterized by a very broad band appear at 3400 cm^{-1} by Meganathan et al. [32]. In the present investigation, the O—H stretching band is recorded at 3293 and 3435 cm^{-1} as weak broad band using FT-IR whereas there is no Raman counterpart. The calculated hydroxyl group, stretching vibration appeared at 3144 and 3626 cm^{-1} (mode nos: 98, 99) by using B3LYP/6-311++G(d,p) basis set. The TED values 90% support the present assignments.

Krishnakumar and Mathammal [33], have studied the in-plane bending vibration of O—H appeared at 1463, 1294, 1160 cm⁻¹ 1340 cm⁻¹, while the Sundaraganesan et al. [34] and Selverstein et al. [35], were recorded in the range of 1440–1395 cm⁻¹. In the present work, the O—H in-plane bending modes observed at 1413 (strong) in FT-IR and 1413 (medium) in FT-Raman spectra. This mode is appeared with the mixer of C—C—H vibrations and their contributions are 31 and 10 for 73 and 64 mode numbers, respectively. These assignments are further supported by harmonic values. Out-of-plane bending mode of OH group appeared at 745 (strong) and 747 cm⁻¹ (medium) band in FT-IR and FT-Raman spectra, respectively. The calculated Γ_{O-H} values 746, 818 cm⁻¹ (mode nos: 34, 38/B3LYP/6-311++G(d,p)) are well coincide with the experimental and literature values [36].

4.2.2. C-H vibrations

The phenyl ring C—H vibration is observed at 3095 cm^{-1} as broad and low intense band in FT-IR spectrum [37]. In (*E*)-2-HBAP-PA molecule, the carbon bonded hydrogen atom stretching vibrations are observed at 3084, 3067, 3063 cm⁻¹ as medium strong band in FT-IR and 3064 cm⁻¹ (strong) in FT-Raman. The computed wavenumbers for the same mode are assigned in the range of $3092-3045 \text{ cm}^{-1}/B3LYP/6-311++G(d,p)/mode$ nos: 97–89. In which mode nos: 97 (sym), 94 (asym) and 95 (sym), 96 (asym) are belongs to C—H stretching vibrations in phenyl and phenol rings respectively. The observed bands 2925 (FT-IR)/2925 (FT-Raman) and 2866 (FT-IR)/2864 (FT-Raman) are belongs to C₁₁—H₁₂ and C₁₃—H₁₅ stretching vibrations, which are supported by TED and harmonic values (B3LYP/6-311++G(d,p)/mode nos: 86, 85). These assignments are also find support from Wang et al. [28].

In the present study, the FT-IR/FT-Raman bands at 1311, 1209, 1154, 1130/1312, 1216, 1159 cm⁻¹ and at 912, 851/851, 831 cm⁻¹, respectively in (E)-2-HBAPPA have been designated to δ_{C-H} and Γ_{C-H} modes. In aromatic compounds, the C–H in-plane bending wavenumber appeared in the range of 1000–1300 cm⁻¹ and C–H out-of-plane bending vibration appeared in the range of

750–1000 cm⁻¹ [34,36]. In (*E*)-2-(2-hydroxy benzyliden amino)-3-methyl butanoic acid ((*E*)-2HBAMBA), the C—H in-plane bending vibration has appeared at 1295, 1294, 1236, 1181, 1140 and 1074 cm⁻¹ in FT-IR spectrum. Similarly, the observed bands 942, 833, 746: FT-IR and 964, 946 cm⁻¹: FT-Raman are assigned to Γ_{C-H} mode. The scaled vibrations are at 1310, 1219, 1164, 1139 and 971, 956, 922, 844, 831 cm⁻¹ (B3LYP/6-311++G(d,p)/mode nos: 68, 63, 59, 57 and 47, 46, 43, 40, 39) correspond to δ_{C-H} and Γ_{C-H} respectively. These assignments are in the expected range and also find support from the literature [35]. The observed as well as calculated values are find support from the ((*E*)-2HBAMBA) [37]. The mode nos: 72 (1369 cm⁻¹)/48 (979 cm⁻¹) are belongs to δC_{11} —H₁₂/ ΓC_{11} —H₁₂ mode respectively.

4.2.3. Methylene group vibrations

For the assignment of CH₂ group frequencies basically six fundamentals can be associated to each CH₂ group namely, CH₂ symmetric, CH₂ asymmetric, scissoring and rocking, which belong to in-plane vibration. In addition to that, CH₂ wagging and twisting modes of CH₂ groups would be expected to be depolarized for out-of-plane symmetry species. The CH₂ asymmetric stretching vibrations are generally observed in the region 3100–3000 cm⁻¹, while the symmetric stretching appears between 3000 and 2900 cm⁻¹ [38–41]. For (*E*)-2-HBAPPA, the recorded FT-IR and FT-Raman were shown peaks belongs to CH₂ symmetric stretching at 2956 (medium) and 2964 cm^{-1} (weak) respectively, whereas the asymmetric stretching mode appeared at 3007 cm⁻¹ (FT-IR: medium) and 3009 cm⁻¹ (FT-Raman: weak). The theoretical calculation for CH₂ symmetric and asymmetric vibrations appeared at 2951 and 3001 cm^{-1} (mode no: 87, 88) respectively, by using B3LYP/6-311++G(d,p) basis sets. From these observations, the methylene group stretching values are correlated well with the theoretical values and also agree well with above literature values. The TED values are also support the assignments.

The scissoring mode of CH_2 group gives rise to a characteristic band near 1415 cm⁻¹ in FT-IR and 1400 cm⁻¹ in Raman spectra. The twisting, wagging and rocking vibration appears in the region 1400–900 cm⁻¹ [42]. The observed band at 1444 cm⁻¹ (both FT-IR and FT-Raman) and the corresponding calculated wavenumber for this mode at 75, is 1439 cm⁻¹/B3LYP/6-311++G(d,p) are attributed CH₂ scissoring vibration. This is supported by TED value (16%). The wagging and rocking modes are calculated at 69 and 9. The observed FT-IR 146 cm⁻¹ as a very strong band assigned to CH₂ rocking. These assignments are comparable with the literature [43] and also find support from TED.

4	C	4
L	b	т
-	-	-

 Table 2

 Vibrational wave numbers obtained for (E)-2-HBAPPA at B3LYP/6-311++G(d,p) [harmonic frequency (cm⁻¹), IR, Raman intensities (km/mol)].

Mode no.	Calculated and ob	served frequenci	es $(cm^{-1})^{a}$	Intensities		Vibrational assignments TED $\ge 10\%^d$		
	6-311++G(d p)	FT-IR	FT-Raman	IR _c ^b	RS _c ^c			
	0 311 × G(u,p)	11 IK	i i Rumun		= 1.00			
<i>v</i> ₁	21			0.03	74.62	$\Gamma_{C11N23C13C14}(14) + \Gamma_{C25C14C13N23}(18)$ (201)		
<i>v</i> ₂	28			0.12	51.92	$\Gamma_{C11N23C13C14}(20) + \Gamma_{C11N23C13H15}(16) + \Gamma_{C11N23C13C17}(24)$		
<i>v</i> ₃	37			0.00	24.99	$\Gamma_{C13N23C11C3}(19)$		
<i>v</i> ₄	43			0.32	31.09	$\Gamma_{018C17C13N23}(21) + \Gamma_{019C17C13N23}(27)$		
v ₅	54			0.06	33.10	$\delta_{\text{C25C14C13}}(10) + \Gamma_{\text{C27C25C14C13}}(16) + \Gamma_{\text{C27C25C14H24}}(12)$		
v ₆	79			0.19	17.23	$\Gamma_{c25c14c13c17}(14)$		
V7	103		100	0.12	5.35	$\delta_{N23C11C3}(17) + \delta_{C11N23C13}(13)$		
v ₈	116		126vs	0.07	11.20	$T_{N23C11C3C4}(17) + T_{C11-N23-C13-C17}(10)$		
<i>v</i> ₉	165		143vs	0.12	6.22	$\delta_{C14C13C17}(26) + \Gamma_{C11N23C13C14}(11)$		
v ₁₀	205		213m	0.18	1.37	$T_{C4C3C2021}(14) + T_{021C2C1C6}(13)$		
v ₁₁	216			0.01	7.19	$v_{\rm cc}(11) + \Gamma_{\rm cccc}(26)$		
v ₁₂	249			0.70	3.34	$\delta_{C4C3C11}(12) + \delta_{018C17C13}(14) + \delta_{019C17C13}(11)$		
V ₁₃	313		317m	1.06	4.18	$T_{\text{H12C11C3C2}}(10) + T_{\text{N23C11C3C2}}(17)$		
v ₁₄	333			0.09	2.41	$I_{C13N23C11C3}(13) + (05)$		
v ₁₅	347		267	0.11	0.44	$\delta_{c26c25c14}(21) + \delta_{c27c25c14}(25)$		
v ₁₆	357	44.0	36/W	0.17	0.74	$\delta_{C11C3C2}(16) + \delta_{C11N23C13}(16)$		
v ₁₇	402	410W		0.00	0.15	$I_{C32C28C26C25}(19) + I_{C32C30C27C25}(19)$		
v ₁₈	418	427W		0.42	2.39	$\delta_{C4C3C11}(11) + \delta_{O19C17C13}(12)$		
V ₁₉	446			0.76	2.11	$v_{cc}(10) + \delta_{ccc}(10) + \delta_{occ}(10)$		
V ₂₀	452	472 -	470	1.22	2.08	$\delta_{021C2C1}(28) + \delta_{C3C2021}(26)$		
V ₂₁	457	4/3s	4/2m	0.74	0.60	$I_{\text{cccc}}(23)$		
V ₂₂	527	523VS		4.59	1.76	$\delta_{\text{OCC}}(16) + I_{\text{CCCC}}(14)$		
V ₂₃	542			1.55	1.36	$I_{\text{clc6c5c4}}(14)$		
V ₂₄	551			2./1	5.44	$\delta_{C3C2C1}(11)$		
V ₂₅	579			15.61	0.34	$I_{\rm H20019C17C13}(18)$		
V26	586	606	C05	2.88	0.75	$\partial_{\text{CCC}}(21) \tag{12} + 5 \tag{14} + 5 \tag{16} + 5 \tag{17}$		
V ₂₇	615	606m	605W	0.03	2.43	$\partial_{C28C26C25}(13) + \partial_{C30C27C25}(14) + \partial_{C32C28C26}(16) + \partial_{C32C30C27}(15)$		
V ₂₈	621	622W	622m	5.32	2.06	$\delta_{018C17C13}(13) + \delta_{018C17O19}(16) + I_{H20019C17C13}(17) + I_{H20019C17O18}(16)$		
V ₂₉	649	670		0.34	2.60	$I_{\rm H20019C17018}(12)$		
v ₃₀	690	679m		8.31	0.08	$I_{\text{H35C32C28C26}(11)} + I_{\text{H35C32C30C27}(11)}$		
V ₃₁	722	6985		1.57	0.44	$I_{C3C2C1H7}(10) + I_{C11C3C2021}(11)$		
V ₃₂	/3/			3.24	0.76	$V_{\rm CC}(14) + I_{\rm CCCH}(28)$		
V ₃₃	739	745	747	13.23	0.31	$T_{H9C5C4C3}(19) + T_{C1C6C5H9}(16) + T_{H10C6C1C2}(11)$		
V ₃₄	740	745VS	/4/111	8.94	1.22	$I_{\rm H20019C17018}(10)$		
V ₃₅	772	7755		2.90	10.65	$V_{C2C1}(11) + V_{C3C2}(21)$		
v ₃₆	/98			0.63	6.61	V _{C17C13} (18)		
V ₃₇	809			0.85	7.93	$V_{c25c14}(17)$		
V ₃₈	818		001-	12.86	0.11	$I_{H22021C2C1}(41) + I_{H22021C2C3}(46)$		
V ₃₉	831	051-	8315	0.08	0.14	$I_{\text{HCCC}}(49) + I_{\text{CCCH}}(34) + I_{\text{HCCH}}(16)$		
V ₄₀	844	8515	851W	0.15	0.13	$I_{C5C6C1H7}(13) + I_{H10C6C5H9}(11) + I_{O21C2C1H7}(20)$		
V ₄₁	870			2.83	0.58	$\partial_{C1C6C5}(13) + \partial_{C6C5C4}(12)$		
V ₄₂	901	012-		0.57	0.25	$I_{\rm H34C30C27H31}(12) + I_{\rm H35C32C28H33}(10)$		
V ₄₃	922	912111		0.06	0.11	$I_{H9C5C4H8}(33)$		
V44	946	0.47	05.4	0.44	0.89	$I_{\text{H33C28C26H29}}(10) + I_{\text{H34C30C27H31}}(20)$		
V45	955	947W	954W	0.14	0.09	$V_{\rm CC}(13)$		
V46	950			0.01	0.00	$I_{\text{H10C6C1H7}}(30) + I_{\text{H10C6C5H9}}(28)$ $E_{\text{H10C6C1H7}}(30) + E_{\text{H10C6C5H9}}(28)$ (18)		
V47	971			0.05	0.02	$I_{\text{H33C28C26H29}}(10) + I_{\text{H35C32C28H33}}(24) + I_{\text{H35C32C30H34}}(10)$		
V48	979	0.96m		1.12	4.06	$I_{H12C11C3C2}(12) + I_{H12C11C3C4}(17) + I_{C13N23C11H12}(20)$		
V49	904 1012	980111	1005.00	0.07	14.00	$V_{\text{CC}}(35) \neq 0_{\text{CCC}}(42)$		
V50	1015		100378	1.44	14.92	$v_{C6C1}(10) + v_{C6C5}(32)$		
	1016			1 10	10.27			
V51	1010			1.10	10.57	$v_{C32C28}(23) + v_{C32C30}(24)$		
V52	1020	1026m	1025	5.05	1.00	$v_{C14C13}(55) + v_{N23C13}(22)$		
V53	1055	1074m	10222	5.07	1.00	$v_{C14C13(12)} + v_{N23C13(33)}$		
V54	1100	107411		0.01	0.42	$V_{C28C26(13)} + V_{C30C27(13)} + O_{CCH(31)}$		
V55	1102			20.97	0.43	$v_{C5C4}(10) + v_{H10C6C5}(10)$		
V56	1104	1120.0		50.67	0.78	$V_{019C17}(55) + O_{H20019C17}(15)$ s (15) s (14) s (14) s (12)		
V57	1142	1150W		4.00	4.05	$\partial_{\text{H9C5C4}}(15) + \partial_{\text{C6C5H9}}(14) + \partial_{\text{H10C6C1}}(14) + \partial_{\text{H10C6C5}}(15)$		
V58	1142	1154	1150	0.11	0.81	$o_{\text{H34C30C27}}(11) + o_{\text{C32C30H34}}(10) + o_{\text{H35C32C28}}(19) + o_{\text{H35C32C30}}(19)$		
V59	1104	11541115	1159111	0.12	0.12	$\partial_{\text{H29C26C25}}(10) + \partial_{\text{H33C28C26}}(10) + \partial_{\text{C32C28H33}}(10)$		
V60	11/1		1187147	9.55	2.05 8.50	$v_{H20019C17}(10) + v_{H24C14C13}(12)$ $v_{respect}(37) + \delta_{rest}(14)$		
V61	1101		1107W	5.28	8.J9 7.46	$V_{C25C14}(J) + V_{CCH}(I4)$		
V62	1210	12000	12160	J.20 7.76	7.40 27.61	$v_{C2C1(22)} + v_{C11(C3(21))}$ $v_{C2C1(22)} + \delta_{C2C1(C3(21))} + \delta_{C2C1(21)} + \delta_{C2C1(21)}$		
V63	1215	1209111	12105	2.20	27.01	$v_{C4C3}(20) + v_{H8C4C3}(17) + v_{C5C4H8}(14)$ $\delta_{v_{1}v_{2}v_{3}}(23) + \Gamma_{v_{1}v_{2}v_{3}}(16)$		
V64	1254			1 5 6	1.31	$\sigma_{H20019C17(23) + 1} CCCH(10)$ $\delta_{10019C17(23) + \delta_{10019C17(23)}} (14) + \delta_{10019C17(23)} (14)$		
V65	1200	1204-		1.00	2.21	$v_{H16C14C13}(13) + v_{H20019C17}(14) + v_{CCH}(14)$		
V66	1273	1294111		15.42	0.62	$v_{021(2)}(33) + v_{0CH(10)}$ $v_{020000}(14) + v_{000000}(14) + v_{00000}(10) + v_{0000}(10)$		
V67	1234	1211	1317147	0.20	22.04	$\frac{v_{C26C25}(17) + v_{C27C25}(17) + v_{C32C28}(10) + v_{C32C30}(10)}{\delta_{v_{100}} + \delta_{v_{100}} + \delta$		
V68	1310	WIICI	131200	1.01	1 90	$v_{H29(26(25(13) + 0)(28(26(29(11) + 0)(31(27(25(13) + 0)(30(27(31(12) + 0)))))))))))$		
V69	1271			1.01	1.09	$v_{\text{LL}}(13) + 1_{\text{HCCC}}(10)$		
¥70	1321	1341c	1340m	2 27	1 Q1	$v_{0,0,0,1}(11)$		
×71 V=0	1369	13413	1340111	5.57	4.06	$5019(1/(11) + \delta_{100000000}(23))$		
v72	1003			0.20	4.00	vH12C11C3(11) ' vH12C11N23(23)		

Table	2 ((continued)
-------	-----	-------------

Mode no.	Calculated and ob	ies (cm ⁻¹) ^a	Intensities		Vibrational assignments TED $\ge 10\%^d$	
	6-311++G(d,p)	FT-IR	FT-Raman	IR _c ^b	RS _c ^c	
V73	1400	1413s	1413m	6.96	6.99	$v_{C6C1}(11) + \delta_{H22O21C2}(36)$
V74	1433			1.11	0.83	$\delta_{H16C14H24}(15)$
V75	1439	1444w	1444s	1.50	2.71	$\delta_{H16C14H24}(16)$
v ₇₆	1442	1457m		11.67	39.27	$v_{C3C2}(14) + v_{C5C4}(12) + v_{O21C2}(14)$
V77	1476			2.93	0.39	$\Gamma_{\text{HCCC}}(31) + \delta_{\text{CCH}}(30)$
V78	1477	1503vs		6.18	6.18	$v_{C6C5}(15) + \delta_{H9C5C4}(11) + \delta_{H22O21C2}(23)$
V79	1559		1553w	14.21	28.50	$v_{C3C2}(11) + v_{C6C1}(18) + v_{C6C5}(13) + \delta_{H22O21C2}(19)$
V80	1568			0.20	0.20	$v_{c26c25}(16) + v_{c27c25}(15) + v_{c32c28}(19) + v_{c32c30}(20)$
v ₈₁	1589	1587vs	1588m	2.33	11.81	$v_{c28c26}(21) + v_{c30c27}(22)$
v ₈₂	1606		1606s	20.77	28.63	$v_{C2C1}(20) + v_{C5C4}(20) + \delta_{H22O21C2}(11)$
v ₈₃	1619	1619vs		60.35	60.35	$v_{N23C11}(62)$
v ₈₄	1757	1773w		56.63	1.23	$v_{C17=O18}(86)$
v ₈₅	2908	2866m	2864w	4.74	2.22	v _{C13H15} (99)
v ₈₆	2918	2925m	2925s	8.32	2.11	v _{C11H12} (99)
V87	2951	2956m	2964w	2.93	2.85	$v_{C14H16}(73) + v_{C14H24}(27)$
v ₈₈	3001	3007m	3009w	0.97	0.97	$v_{C14H16}(27) + v_{C14H24}(73)$
v ₈₉	3045	3036m		1.82	1.39	$v_{C27H31}(81) + v_{C30H34}(16)$
V ₉₀	3054			0.70	1.45	v _{C4H8} (90)
v ₉₁	3058			0.03	2.56	$v_{C28H33}(39) + v_{C32H35}(40)$
v ₉₂	3066	3063m	3064vs	1.68	3.47	v _{C6H10} (80)
V ₉₃	3067	3067m		3.10	3.20	$v_{C28H33}(36) + v_{C30H34}(43)$
V94	3077			3.52	1.66	$v_{C26H29}(23) + v_{C30H34}(29) + v_{C32H35}(41)$
V ₉₅	3084	3084m		2.46	9.89	$v_{C1H7}(73) + v_{C5H9}(12) + v_{C6H10}(14)$
v ₉₆	3086			2.48	3.75	$v_{C1H7}(19) + v_{C5H9}(67)$
V ₉₇	3092			1.48	9.29	$v_{C26H29}(63) + v_{C28H33}(20)$
v ₉₈	3144	3293w		100.00	3.77	v _{021H22} (93)
v ₉₉	3626	3435w		13.94	2.70	v _{019H20} (100)

v: Stretching, δ : bending, Γ : Torsion, vw: very week, w: week, m: medium, s: strong, vs: very strong.

^a Calculated and observed vibrational frequencies [scaling factor: 0.9608].

^b Relative IR absorption intensities normalized with highest peak absorption equal to 100.

^c Relative Raman intensities calculated by Eq. (1) and normalized to 100.

^d Total energy distribution calculated B3LYP 6-311++G(d,p) level, TED less than 10% are not shown.

4.2.4. C=0, C-0 vibrations

Vibrational analysis of carboxylic acid is made on the basis of carbonyl and hydroxyl group. The carbonyl stretching frequency has been most extensively studied by infrared spectroscopy [43]. This multiply bonded group is highly polar and therefore gives rise to an intense infrared absorption band. The carbon-oxygen double bond is formed by $p_{\pi}-p_{\pi}$ bonding between carbon and oxygen. Because of the different electro negativities of carbon and oxygen atoms, the bonding electrons are not equally distributed between the two atoms. The following two resonance forms contribute to the bonding of the carbonyl group $>C=0 \leftrightarrow C^+-0^-$. The lone pair of electrons on oxygen also determines the nature of the carbonyl group. As discussed earlier in the geometry of the molecule, due to the intra-molecular hydrogen bond existing among the carbonyl and hydroxyl group, the C=O stretching wave number shifts to a lower value typically absorbs very strongly in the 1660-1715 cm⁻¹ region [44].

In (*E*)-2-HBAPPA, the band appeared at 1773 cm^{-1} as weak band in FT-IR is belongs to C=O group, while the Raman counterpart is absent. The corresponding calculated wavenumber is at 1757 cm^{-1} (mode nos: 84). The experimental wavenumber for C=O is slightly deviated by the theoretical value this is due to intermolecular interaction in the solid phase. This assignment is in line with the assignment proposed by literature [44] and also supported from TED value (86%). The bond C–O (carboxylic group) stretching vibration is observed at 1341 cm^{-1} (strong: FT-IR)/ 1340 cm^{-1} (medium: FT-Raman), which is in consistent with the oretical wavenumber 1347 cm^{-1} using B3LYP/6-311++G(d,p) basis set (mode no: 71). The substituted hydroxyl oxygen and ring carbon (C₂–O₂₁) stretching mode has calculated at 1273 cm^{-1} using B3LYP/6-311++G(d,p) (mode no: 66).

The calculated as well as observed wavenumbers 1294 cm^{-1} / FT-IR for $v_{(C-O)}$ coincide well with the assignment proposed by Subramanian et al. [45]. The $v_{(C17-O19)}$ in carboxylic group is observed at higher frequency (mode no: $71/1347 \text{ cm}^{-1}$) than the $v_{(C2-O21)}$. It may be due to the resonance in phenol ring [46]. The calculated frequency of the C–O–H (carboxylic group) in-plane and out-of-plane bending vibrations in (*E*)-2-HBAPPA (mode nos: 64 and 34) are 1254 and 746 cm⁻¹, respectively. In which $\Gamma_{\rm COOH}$ values is well supported by experimental observations (745: FT-IR/747 cm⁻¹: FT-Raman). The δ_{COH} (ring) vibration has been assigned to a strong band at 1413 cm⁻¹ (both FT-IR/FT-Raman) of (E)-2-HBAPPA, and this is supported by our calculation $(1400 \text{ cm}^{-1} \text{ B3LYP}/6-311++G(d,p)/mode no: 73)$. The wave number 818/6-311++G(d,p) mode no: 38 is attributed to COH (ring) out-ofplane bending. These assignments are supported by literature [47]. According to our calculations, the δ_{CCO} (carboxylic) vibration (621 cm⁻¹ B3LYP/6-311++G(d,p) mode no: 28) assigned to a weak FT-IR/medium intensity Raman band at about 622 cm⁻¹. The mode number 4 is assigned to Γ_{CCO} mode (carboxylic). The calculated wavenumbers 452 and 205 cm^{-1} (B3LYP/6-311++G(d,p) mode nos: 20, 10) are assigned to δ_{CCO} and Γ_{CCO} vibrations respectively.

4.2.5. C=*N*, *C*−*N vibrations*

The identification of C=N and C-N vibrations are the very difficult task, since the mixing of several bands are possible in the region [35]. The C=N stretching appears in the region 1600-1670 cm⁻¹ [47]. Wang et al. [28] have assigned at 1633 cm⁻¹ (FT-IR) and 1625 cm⁻¹ (FT-Raman) to aforementioned band. The C=N (aromatic) stretching mode appeared in the region 1490-1570 cm⁻¹ [27]. In the present study, C=N bond stretching vibration is observed at 1619 cm⁻¹ (as very strong) in FT-IR spectrum, while there is no Raman counterpart. The calculated C=N group frequency 1619 cm⁻¹ (mode no: 83) using B3LYP/6-311++G(d,p) basis set coincide well with the experimental data and also supported by TED (62%) value. In the present work, the bands

Fig. 3. The experimental and theoretical FT-IR spectra of (E)-2HBAPPA.

identified at 357 and 165 cm⁻¹ (B3LYP/6-311++G(d,p) mode nos: 16, 9) have been designated to $\delta_{C=N-C}$ and $\Gamma_{C=N-C}$ modes, respectively by consideration of their corresponding experimental (367 and 143 cm⁻¹ Raman, respectively) assignments. The calculated wave numbers 1369 and 979 cm⁻¹ (B3LYP/6-311++G(d,p) mode nos: 72, 48) are attributed $\delta_{N=C-H}$ and $\Gamma_{N=C-H}$ vibrations respectively.

In this work, the band occurs at 1036 in FT-IR and at 1035 cm⁻¹ in FT-Raman are assigned to the $v_{C13-N23}$ stretching. The wavenumber 1039 cm⁻¹ (mode no: 53) is calculated through B3LYP/6-311++G(d,p) is assigned to the v_{C-N} mode with TED value (33%). Selverstein et al. [35] assigned C—N stretching absorption in the region 1382–1266 cm⁻¹ for aromatic amines. For (*E*)-2-HBAPPA, the v_{C-N} vibration is observed at lower frequency than the literature value, which may be due to the formation of intra-molecular hydrogen bond between N₂₃···H₂₂. Similar observation has been observed for *ortho*-hydroxy acylaromatic Schiff base by Pajak et al. [48].

4.2.6. *C*=*C*, *C*-*C* vibrations

In our present study, the C=C stretching vibrations observed at 1606 (strong), 1588 (medium) and 1553 cm⁻¹ (weak) in FT-Raman and 1587 cm⁻¹ (strong) in FT-IR spectra. As it evident from the Table 2, the modes no: 82, 81, 79 (B3LYP/6-311++G(d,p)) are in agreement with experimental observation and also find support from literature [49].

Fig. 4. The experimental and theoretical FT-Raman spectra of (E)-2HBAPPA.

Table 3 The electric dipole moment (μ), polarizability (α) and hyperpolarizability components (β_0 in × 10⁻³⁰ esu) of (*E*)-2HBAPPA.

Parameters	B3LYP/6-311++G(d,p)
μ (Debye)	1.358
α	5.456
β_{xxx}	-443.64
$\beta_{\rm xxy}$	-40.70
β_{xyy}	42.14
β _{yyy}	-117.17
β_{xxz}	255.32
β_{xyz}	-31.38
β_{yyz}	68.84
β_{xzz}	-2.90
β_{yzz}	-26.66
β _{zzz}	104.35
β_0	5.334

In-plane carbon bending vibrations are obtained from the nondegenerate band at 1010 cm^{-1} (b_{1u}) and degenerate modes 606 cm^{-1} (e_{2g}) of benzene. Likewise, the C–C–C out-of-plane bending modes are defined with reference to 703 cm⁻¹ (b_{2g}) and degenerate 404 cm⁻¹ (e_{2u}) modes of benzene, Belemy [50]. A major coincidence of theoretical values with that of experimental evaluation is found in the δ_{C-C-C} and $\Gamma_{C-C-C-C}$ vibrations. The C–C inplane bending and C–C–C out-of-plane bending vibrations are ob-

Table 4

Second order perturbation theory analysis of Fock matrix in NBO basis (E)-2HBAPPA.

Туре	Donor (i)	ED/e	Acceptor (j)	ED/e	^a E ⁽²⁾ (kJ/mol)	${}^{\mathrm{b}}E(j) - E(i)$ (a.u)	<i>^cF</i> (<i>i</i> , <i>j</i>) (a.u)
σ - σ^*	$C_1 - C_{2(1)}$	1.978	$C_1 - C_6$	0.013	9.96	1.29	0.049
			O ₂₁ —H ₂₂	0.073	8.12	1.14	0.042
σ - σ^*	$C_1 - C_{6(1)}$	1.979	$C_1 - C_2$	0.024	9.54	1.26	0.048
			$C_2 - O_{21}$	0.019	14.52	1.1	0.055
			$C_5 - C_6$	0.016	10.33	1.27	0.05
$\pi - \pi^*$	$C_1 - C_{6(2)}$	1.700	$C_4 - C_{5(2)}$	0.313	67.24	0.28	0.061
	C ₁ —H ₇	1.979	$C_2 - C_3$	0.037	18.24	1.05	0.061
			$C_5 - C_6$	0.016	15.65	1.08	0.057
σ - σ^*	$C_2 - C_{3(1)}$	1.975	$C_1 - C_2$	0.024	11.88	1.25	0.053
			$C_3 - C_4$	0.020	14.14	1.26	0.058
			C ₃ -C ₁₁	0.026	9.58	1.19	0.047
σ - σ^*	$C_2 - O_{21}$	1.995	$C_1 - C_6$	0.309	5.56	1.51	0.04
			$C_3 - C_4$	0.020	5.94	1.48	0.041
σ - σ^*	$C_3 - C_4$	1.973	$C_2 - O_{21}$	0.019	14.43	1.09	0.055
			C ₁₁ -N ₂₃	0.009	7.74	1.3	0.044
σ - σ^*	$C_3 - C_{11}$	1.974	C ₁₁ -N ₂₃	0.009	7.95	1.29	0.044
			C ₁₃ —N ₂₃	0.027	18.12	1.04	0.06
σ - σ^*	$C_4 - C_5$	1.980	$C_3 - C_{11}$	0.026	13.10	1.19	0.055
$\pi - \pi^*$	$C_4 - C_{5(2)}$	1.708	$C_1 - C_6$	0.013	91.67	0.29	0.071
σ - σ^*	$C_4 - H_8$	1.981	$C_2 - C_3$	0.037	18.49	1.06	0.061
			$C_5 - C_6$	0.016	14.73	1.09	0.055
σ - σ^*	$C_{11} - N_{23(1)}$	1.988	C ₁₃ —C ₁₇	0.080	16.61	0.68	0.047
$\pi - \pi^*$	$C_{11} - N_{23(2)}$	1.942	$C_{17} - O_{18}$	0.023	6.32	0.34	0.021
σ - σ^*	$C_{13} - C_{17(1)}$	1.966	C ₁₁ —N ₂₃	0.009	4.44	1.25	0.033
			C ₁₁ —N ₂₃	0.179	9.79	0.65	0.036
			O ₁₉ —H ₂₀	0.015	12.43	1.06	0.05
σ - σ^*	$C_{13} - N_{23(1)}$	1.988	$C_3 - C_{11}$	0.026	16.57	1.23	0.062
			$C_{11} - N_{23(1)}$	0.009	4.52	1.34	0.034
$\pi - \pi^*$	$C_{13} - N_{23(2)}$	1.942	$C_{17} - O_{18}$	0.023	11.05	0.73	0.041
σ - σ^*	$C_{14} - C_{25}$	1.975	$C_{13} - N_{23}$	0.027	8.91	0.97	0.041
			$C_{25} - C_{26}$	0.023	8.62	1.2	0.044
			$C_{25} - C_{27}$	0.023	8.28	1.19	0.043
			C ₂₆ -C ₂₈	0.015	9.25	1.2	0.046
	C O	1 007	$C_{27} - C_{30}$	0.015	9.41	1.2	0.047
$\alpha - \alpha_*$	$C_{17} - O_{18}$	1.997	$C_{13} - C_{17}$	0.080	4.60	1.45	0.036
*	C O	1.000	C ₁₃ —N ₂₃	0.027	8.12	0.75	0.034
σ-σ*	$C_{17} - O_{19}$	1.996	$C_{13} - C_{14}$	0.027	4.39	1.31	0.033
σ-σ	0 ₁₉ —H ₂₀	1.986	$C_{13} - C_{17}$	0.080	19.58	1.1	0.065
0-0	0 ₂₁ —H ₂₂	1.985	$c_1 - c_2$	0.024	22.89	0.28	0.075
$\pi - \pi$	$C_{25}-C_{26(2)}$	1.051	$C_{27} - C_{30}$	0.333	84.85	0.28	0.067
с с*	C —C	1 090	$C_{28} - C_{32}$	0.332	80.80 12.02	0.28	0.068
0-0 π_π*	$C_{27} - C_{30(1)}$	1.500	$C_{14} - C_{25}$	0.020	85.06	0.29	0.054
11-11	C_{27} $C_{30(2)}$	1.074		0.345	82.51	0.25	0.003
∽ − ∽ *	Co-Har	1 982	C ₂₈ C ₃₂	0.023	16 57	1 1	0.007
0 0	C27 1131	1.502	C25 C26	0.025	14 64	1.1	0.055
∽ − ∽ *	Caa-Caa	1 981	C ₃₀ C ₃₂	0.015	10.63	1.1	0.055
$\pi_{-}\pi^{*}$	C28 C32	1,501	C26 C28	0.343	84 10	0.28	0.051
<i><i>ic ic</i></i>	C28 C32(2)	1.005	C25 C26	0.333	87.07	0.28	0.068
	ID Co	0 917	$C_{1} - C_{c}$	0.013	219 37	0.15	0 101
$n-\pi^*$	LP*=2	1.109	$C_4 - C_{5(2)}$	0.313	282.46	0.15	0.106
	LF = 3(2)		$C_{11} - N_{22(2)}$	0.179	291.16	0.12	0.102
$n-\pi^*$	10018(2)	1.974	$C_{12} - C_{17}$	0.080	85.52	0.62	0.102
	Lr = 10(2)		C ₁₇ —O ₁₉	0.206	140.79	0.62	0.13
n-σ*	IPO19(1)	1.976	C17-018	0.023	31.25	1.21	0.085
$n-\pi^*$	$IPO_{19(2)}$	1.812	$C_{17} - O_{18}$	0.206	202.92	0.34	0.116
	IPO21	1.972	$C_2 - C_3$	0.037	33.26	1.08	0.083
	LPN23	1.866	$\tilde{C_{3}-C_{11}}$	0.026	9.46	0.87	0.041
			C ₁₁ —H ₁₂	0.036	45.15	0.8	0.085
			C ₁₃ —H ₁₅	0.028	21.55	0.8	0.059
			O ₂₁ —H ₂₂	0.073	120.00	0.81	0.139

^a *E*(2) means energy of hyperconjucative interactions (stabilization energy).

^b Energy difference between donor and acceptor *i* and *j* NBO orbitals.

^c F(i, j) is the Fock matrix element between *i* and *j* NBO orbitals.

served in FT-IR at 986, 606 (605 cm^{-1} : FT-Raman) and 523, 410 cm⁻¹, respectively. The corresponding calculated frequencies are identified at 984, 615 and 527, 402 cm⁻¹, respectively, (B3LYP/6-311++G(d,p) mode nos: 49, 27 and 22, 17). These assignments are supported by above literature and their corresponding TED values are 42%, 13% and 14%, 19%, respectively. The bands observed in FT-IR: 1036 cm⁻¹ (medium)/FT-Raman: 1035 cm⁻¹

(strong) and the calculated frequency: 1039 cm^{-1} (B3LYP/6-311++G(d,p) mode no: 53) are assigned to $v_{C14-C13}$. The mode no: 50 B3LYP/6-311++G(d,p): 1013 cm⁻¹ is attributed to ring breathing vibration, which is supported by FT-Raman band (1005 cm⁻¹) and TED value (42%). In these assignments, the B3LYP/6-311++G(d,p) values are in agreement with experimental values.

H. Saleem et al./Journal of Molecular Structure 1030 (2012) 157-167

Table 5		
The electronic transi	tion of (E)-2-HBAPP	ΡA

Calculated at B3LYP/6-31G(d,p)	Oscillator strength	Experimental band gap (nm)	Calculated band gap (eV/nm)
Excited state 1	Singlet-A/f = 0.1449	314.65	3.8877 eV/318.91 nm
$68 \rightarrow 76$ (HOMO ₋₃ -LUMO ₋₄)	-0.10905		-6.6965
$71 \rightarrow 72$ (HOMO-LUMO)	0.64785		-4.4094
Excited state 2	Singlet-A/f = 0.0747	276.32	4.4806 eV/276.72 nm
$67 \rightarrow 72$ (HOMO ₋₄ -LUMO)	0.13860		-5.9512
$70 \rightarrow 72$ (HOMO ₋₁ -LUMO)	0.67754		-4.9867
Excited state 3	Singlet-A/f = 0.0004	254.11	4.6877 eV/264.49 nm
$67 \rightarrow 72 (HOMO_{-4}-LUMO)$	-0.35405		-5.9511
$69 \rightarrow 72 (HOMO_{-2}-LUMO)$	0.59207		-5.1656

4.3. Hyperpolarizability calculation

The electric dipole moment (μ), polarizability (α) and first hyperpolarizability (β_0) of (*E*)-2-HBAPPA is calculated using B3LYP/6-311++G(d,p) basis set, based on the finite-field approach. In the presence of an applied electric field, the energy of a system is a function of the electric field. First hyperpolarizability is a third rank tensor that can be described by a 3 × 3 × 3 matrix. The 27 components of the 3D matrix can be reduced to 10 components due to Kleinman symmetry [51]. It can be given in the lower tetrahedral format. It is obvious that the lower part of the 3 × 3 × 3 matrix is a tetrahedral. The components of β are defined as the coefficients in the Taylor series expansion of the energy in the external electric field. When the external electric field is weak and homogeneous, this expansion becomes:

$$E = E^{0} - \mu_{\alpha}F_{\alpha} - 1/2\alpha_{\alpha\beta}F_{\alpha}F_{\beta} - 1/6\beta_{\alpha\beta\gamma}F_{\alpha}F_{\beta}F_{\gamma}$$
(3)

where E^0 is the energy of the unperturbed molecules, F_{α} the field at the origin, and μ_{α} , $\alpha_{\alpha\beta}$, $\beta_{\alpha\beta\gamma}$ are the components of the dipole moment, polarizability and the first hyperpolarizabilities, respectively. The total static dipole moment μ , the mean polarizability α_0 , the anisotropy of polarizability $\Delta \alpha$ and the mean first hyperpolarizability β_0 , using the *x*, *y*, *z* components are defined as

$$\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2\right)^{1/2} \tag{4}$$

$$\alpha_0 = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3} \tag{5}$$

$$\begin{aligned} \Delta \alpha &= 2^{-1/2} \left[\left(\alpha_{xx} - \alpha_{yy} \right)^2 + \left(\alpha_{yy} - \alpha_{zz} \right)^2 + \left(\alpha_{zz} - \alpha_{xx} \right)^2 \right. \\ &+ \left. 6 \left(\alpha_{xy}^2 + \alpha_{yz}^2 + \alpha_{xz}^2 \right) \right]^{1/2} \end{aligned} \tag{6}$$

$$\beta_0 = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2} \tag{7}$$

The total dipole moment (μ), polarizability (α) and first hyperpolarizability (β_0), of (*E*)-2HBAPPA is calculated using B3LYP/6-311++G(d,p) basis set. The electric dipole moment, polarizability and hyperpolarizability of (*E*)-2HBAPPA are shown in Table 3. The total dipole moment (μ = 1.3575 Debye) and the first hyperpolarizability (β_0 = 5.3341 × 10⁻³⁰ esu) of the title molecule is 14 times greater than that of urea, hence this molecule has considerable NLO activity (μ and β of urea are 1.3732 Debye and 0.3728 × 10⁻³⁰ esu, respectively).

4.4. NBO analysis

The hyperconjugation may be given as stabilizing effect that arises from an overlap between an occupied orbital with another neighboring electron deficient orbital, when these orbitals are properly orientated. This non-covalent bonding-antibonding interaction can be quantitatively described in terms of the NBO analysis,

Fig. 5. The UV–Visible spectrum of (*E*)-2HBAPPA.

which is expressed by means of the second-order perturbation interaction energy ($E^{(2)}$) [52–55]. This energy represents the estimate of the off-diagonal NBO Fock matrix elements. It can be deduced from the second-order perturbation approach [56].

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\varepsilon_j - \varepsilon_i}$$
⁽²⁾

where q_i is the donor orbital occupancy, ε_i and ε_j are diagonal elements (orbital energies) and F(i, j) is the off diagonal NBO Fock matrix elements.

The NBO analysis has been carried out on the molecule using B3LYP/6-311++G(d,p) basis set. The electron densities, $E^{(2)}$ values and types of interaction are listed in Table 4. In this study, the σ bonds have higher electron density than the π bonds. Due to this reason, the σ - σ ^{*} transitions have minimum delocalization energy than the π - π ^{*} transitions. It is evident from the Table 4 that the C_1 — C_2 bond transfer energy 9.96 and 8.12 kJ/mol to the acceptor orbital of C1-C6 and O21-H22 respectively. The electron density of C₁-C₂ (i) and C₁-C₆, O₂₁-H₂₂ (j) are 1.978 and 0.013, 0.073e respectively. There occurs a strong intra-molecular hyperconjugative interaction of π electrons from C₁–C₆, C₄–C₅, C₂₅–C₂₆, C₂₇–C₃₀ and C_{28} - C_{32} bonds to the π^* C_4 - C_5 , C_1 - C_6 , $(C_{27}$ - C_{30} , C_{28} - C_{32}), $(C_{25}-C_{26}, C_{28}-C_{32})$ and $(C_{25}-C_{26}, C_{27}-C_{30})$ bonds, which increase the electron densities 0.313, 0.013, (0.333, 0.332), (0.343, 0.332) and (0.343, 0.333) leading to stabilization of 67.24, 91.67, (84.85, 86.86), (85.06, 82.51) and (84. 10, 87.07) kJ/mol, respectively. The lone pair electrons are readily available for the interaction with excited electrons of acceptor antibonding orbital. During the $n \rightarrow \pi^*$ transition, more energy delocalization takes place. The LPC₃ (1.109e) transfer the energy 282.46 and 291.16 kJ/mol to antibond

Fig. 6. The frontier molecular orbitals of (E)-2HBAPPA.

of C₄–C₅ (0.313e) and C₁₁–N₂₃ (0.179e) respectively. Similarly the LPO₁₉ (1.812e) to its antibonding C₁₇–O₁₈ (0.206) is about 202.92 kJ/mol. In this study, the intra-molecular O₂₁–H₂₂···N₂₃ hydrogen bond is exposed in the NBO analysis, results shown in Table 4 by the interaction between the nitrogen lone pair and O₂₁–H₂₂ antibonding orbital LPN₃ $\rightarrow \pi^*$ (O₂₁–H₂₂) with stabilization energy 120 kJ/mol.

4.5. HOMO-LUMO analysis

The electronic absorption and HOMO and LUMO energies were calculated respectively using TD-DFT and DFT methods with 6-311++G(d,p) basis set and are listed in the Table 5. The calculated HOMO-LUMO energy gap is -4.4094 eV and the calculated band gaps are comparable with recorded UV-Vis results. The first excited state (E₁) lies at $68 \rightarrow 76$ (HOMO₋₃-LUMO₋₄) and $71 \rightarrow 72$ (HOMO-LUMO). The band gap of the first state (E₁) is observed at 314.65 nm, whereas the calculated value is 318.91 nm. The HOMO₋₃ is located over the each atom of phenol ring. It is evi-

dent from Table 5, the second excited state observed at 276.32 nm. The calculated value for the same is observed at 276.72 nm, which consist two sub-energy levels namely HOMO₋₄-LUMO ($67 \rightarrow 72$) and HOMO₋₁-LUMO ($70 \rightarrow 72$). Similarly third excited state lies at $67 \rightarrow 72$ (HOMO₋₄-LUMO) and $69 \rightarrow 72$ (HOMO₋₂-LUMO) and is located over each atom of the molecule. The observed and calculated band gap for the corresponding excited state is 254.11 nm and 264.49 nm. The recorded UV–Vis, spectrum and HOMO–LUMO plots are shown in Figs. 5 and 6, respectively.

5. Conclusion

The molecule (E)-2-HBAPPA was synthesized and a complete vibrational analysis has been carried out for the first time. The various possible conformers are evaluated using B3LYP/6-311++G(d,p) basis set and most stable conformer is conformer one. The *ab initio* DFT calculations have been carried out on the structure and vibrational spectrum of (E)-2-HBAPPA. Comparison between the calculated and experimental structural parameters indicates that the

results of B3LYP/6-311++G(d,p) are in agreement with literature. Vibrational frequencies calculated by B3LYP/6-311++G(d,p) method agree very well with experimental results. The close agreement established between the experimental and scaled frequencies obtained using the large basis set (6-311++G(d,p)) calculation has proved the accuracy of the DFT method of calculations. Optimized geometry indicates intra-molecular (O₂₁-H₂₂···N₂₃) hydrogen bonding in the molecule. Vibrational spectra and NBO analysis confirm the occurrence of blue shifting hydrogen bond in the molecule. The calculated first hyperpolarizability is found to be 5.3341×10^{-30} esu, which is 14 times greater than that of urea which imply that the title compound might become a kind of good NLO material. NBO result reflects the charge transfer mainly due to π - π * transitions in the phenyl and phenol rings. The lowering of HOMO and LUMO energy gap clearly explains the charge transfer interaction taking place within the molecule. A good correlation between the UV-Vis. absorption maxima and calculated electronic absorption maxima are found.

Acknowledgements

One of the authors (Y. Erdogdu) would like to thank Ahi Evran University Research Fund for its financial support, Project Numbers: FBA-11-09. Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UYBHM). The corresponding author (H. Saleem) would like to thank Annamalai University (India, Tamilnadu) to provided the "100th Ph.D. (in Physics) awardees endowment" for one of his Ph.D. scholar (S. Subashchandrabose).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.molstruc.2012. 04.011.

References

- [1] D.A. Atwood, M.J. Harvey, Chem. Rev. 101 (2001) 37-52.
- [2] N. Hoshino, Coord. Chem. Rev. 174 (1998) 77-108.
- [3] Y. Wang, J.L. DuBois, B. Hedman, K.O. Hodgson, Stack TDP Sci. 279 (1998) 537-540.
- [4] P.A. Vigato, S. Tamnurini, Coord. Chem. Rev. 248 (2004) 1717-2128.
- [5] H. Karabiyik, H. Petek, N.O. Iskeleli, C. Albayrak, Struct. Chem. 20 (2009) 1055-1065.
- [6] H. Petek, C. Albayrak, M. Odabosoglu, I. Senel, O. Buyukgungor, Struct. Chem. 21 (2010) 681-690.
- [7] T. Sekikawa, T. Kobayashi, T. Inabe, J. Phys. Chem. A101 (1997) 644-649.
- [8] J. Rhodes, H. Chen, S.R. Hall, J.E. Beesley, D.C. Jenkins, P. Collins, B. Zheng, Nature 377 (1995) 71.
- [9] B. Zheng, S. Brett, J.P. Tite, T.A. Brodie, J. Rhodes, Science 256 (1992) 1560.
- [10] P.C.J. Doubell, D.W. Oliver, Arzeim-Forsch./Drug Res. 42 (1992) 65.
- [11] E.J. Lien, in: E. Jucker (Ed.), Progress in Drug Research, 40 Birkhauser, Basel, 1993, pp. 163-189.
- [12] T. Maekawa, S. Vamamoto, Y. Igata, S. Ikeda, T. Watanabe, M. Shiraishi, Chem. Pharm. Bull. 45 (1997) 1994-2004.
- Y.Z. Xiong, F.E. Chen, J. Balzarini, E.D. Clercq, C. Pannecouque, Eur. J. Med. Chem. 43 (2008) 1230-1236.
- [14] D. Sriram, P. Yogeeswari, N. Sirisha, V. Saraswat, Bioorg. Med. Chem. Lett. 16 (2006) 2127-2129.
- [15] H. Zhao, N. Neamati, S. Sunder, H. Hong, S. Wang, G.W.A. Milne, Y. Pommier, T.R. Burke, J. Med. Chem. 40 (1997) 937-941.
- [16] G. Liu, J. Peiliao, S. Huang, G. Lishen, R. Qinyu, Anal. Sci. 17 (2001) 1031-1035.

- [17] P.H. Wang, J.G. Keck, E.J. Lien, M.M.C. Lai, J. Med. Chem. 33 (1990) 608-614.
- [18] V.I. Prisakar, V.I. Tsapkov, S.A. Buracheéva, M.S. Byrké, A.P. Gulya, J. Pharm. Chem. 39 (2005) 313-315.
- L. Lazzarato, M. Donnola, B. Rolando, E. Marini, C. Cena, G. Coruzzi, E. Guaita, G. Morini, R. Fruttero, A. Gasco, S. Biondi, E. Ongini, J. Med. Chem. 51 (2008) 1894-1903
- [20] E.S. Howard, E.P. Burrows, M.J. Marks, R.D. Lynch, Fu-Mingchen, J. Am. Chem. Soc. 99 (1977) 707-713.
- [21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
- [22] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214-218.
- [23] Spartan 08, Wavefunction Inc., Irvine, CA 92612, USA, 2008.
- [24] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
- [25] D. Michalska, Raint Program, Wroclaw University of Technology, 2003.
- [26] D. Michalska, R. Wysokinski, Chem. Phys. Lett. 403 (2005) 211-217.
- [27] A.D. Khalaji, A.N. Chermahini, K. Fejfarova, M. Dusek, Struct. Chem. 21 (2010) 153-157.
- [28] Y. Wang, Z. Yu, Y. Sun, Y. Wang, L. Lu, Spectrochim. Acta A 79 (2011) 1475-1482.
- [29] A.R. Choudhury, T.N. Guru Row, Acta Crystallogr. E60 (2004) o1595-o1597. [30] D. Sajan, Y. Erdogdu, T. Kuruvilla, I. Hubert Joe, J. Mol. Struct. 983 (2010) 12-
- 21.
- [31] M. Jadrijevic, M. Takać, D.V. Topić, Acta Pharm. 54 (2004) 177.
- C. Meganathan, S. Sabastian, M. Kurt, K. Woolee, N. Sundaraganesan, J. Raman [32] Spectrosc. 42 (2010) 1369-1378.
- [33] V. Krishnakumar, R. Mathammal, J. Raman Spectrosc. 40 (2009) 264.
- [34] N. Sundaraganesan, B.D. Joshua, K. Settu, Spectrochim. Acta A 66 (2007) 381.
- [35] M. Selverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
- [36] Y. Akkaya, S. Akyűz, Vib. Spectrsoc. 42 (2006) 292.
- [37] S. Subashchandrabose, H. Saleem, Y. Erdogdu, O. Dereli, V. Thanikachalam, J. Jayabharathi, Spectrochim. Acta A 86 (2012) 231-241.
- [38] W. Kemp, Organic Spectroscopy, third ed., W.H. Freeman & Co, 1991.
- [39] G. Litiuinov, in: Proceedings of the 13th International Conference on Raman Spectroscopy, Wurznyrg, Germany, 1992.
- [40] K. Furic, V. Mohacck, M. Bonifacic, I. Stefanic, I. Mol. Struct, 267 (1992) 39.
- [41] G. Lsu, H. Wang, Spectrochim. Acta 46A (1990) 1211.
- [42] J.G. Mesu, T. Visser, F. Soulimani, B.M. Weckhuysen, Vib. Spectrosc. 39 (2005)
- 114. [43] Y. Hung, D.F.R. Gilso, I.S. Butlei, J. Chem. Phys. 97 (1993) 1998.
- [44] D.N. Sathyanarayanan, Vibrational Spectroscopy Theory and Applications,
- second ed., New Age international (P) Limited Publisher, New Delhi, 2004. [45] M.K. Subramanian, P.M. Anbarasan, S. Manimegali, J. Raman Spectrosc. 40
- (2009) 1657-1663. [46] H.T. Varghesa, C.Y. Paniker, V.S. Madhavan, S. Mathew, J. Vinsova, C.V. Alsenoy,
- J. Raman Spectrosc. 40 (2009) 1211-1223.
- [47] A. Filarowski, A. Koll, A. Karpfen, P. Wolschann, Chem. Phys. 297 (2004) 323-332.
- [48] J. Pajak, G. Maes, W.M. De Borggraeve, N. Boens, A. Filarowski, J. Mol. Struct. 844-845 (2007) 83-93.
- [49] V. Krishnakumar, K. Murugeswari, N. Prabavathi, R. Mathammal, Spectrochim. Acta A 91 (2012) 1-10.
- [50] L.J. Belemy, The Infrared Spectra of Complex Molecule, third ed., Wiley, New York. 1975.
- [51] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990. [52] A.E. Reed, F. Weinhold, J. Chem. Phys. 83 (1985) 1736.
- [53] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.
- [54] A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066.
- [55] J.P. Foster, F. Wienhold, J. Am. Chem. Soc. 102 (1980) 7211-7218.
- [56] J. Chocholousova, V. Vladimir Spirko, P. Hobza, Phys. Chem. Chem. Phys. 6 (2004) 37-41.