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mpirical physical formula

a  b  s  t  r  a  c  t

Being  directly  related  to the  electric  charge  distributions  in a molecule,  the  vibrational  spectra  intensi-
ties  are  both  experimentally  and  theoretically  important  physical  quantities.  However,  these  intensities
are  inherently  highly  nonlinear  and  of complex  pattern.  Therefore,  in  particular  for  unknown  detailed
spatial  molecular  structures,  it is difficult  to make  ab  initio  intensity  calculations  to  compare  with  new
experimental  data.  In this  respect,  we  very  recently  initiated  entirely  novel  layered  feedforward  neural
network  (LFNN)  approach  to construct  empirical  physical  formulas  (EPFs)  for  density  functional  theory
(DFT)  vibrational  spectra  of  some  molecules.  In this  paper,  as  a new  and  far improved  contribution  to our
novel molecular  vibrational  spectra  LFNN-EPF  approach,  we  constructed  LFFN-EPFs  for  absorbances  and
intensities  of  6-choloronicotinic  acid  (6-CNA)  molecule.  The  6-CNA  data,  borrowed  from  our  previous
study,  was  entirely  different  and  much  larger  than  the  vibrational  intensity  data  of  our  formerly  used
LFNN-EPF  molecules.  In line  with  our  another  previous  work  which  theoretically  proved  the  LFNN  rele-
vance  to EPFs,  although  the  6-CNA  DFT  absorbance  and  intensity  were  inherently  highly nonlinear  and
sharply  fluctuating  in  character,  still  the  optimally  constructed  train  set  LFFN-EPFs  very successfully  fitted
the  absorbances  and  intensities.  Moreover,  test  set  (i.e.  yet-to-be  measured  experimental  data)  LFNN-

EPFs consistently  and  successfully  predicted  the  absorbance  and  intensity  data.  This  simply  means  that
the  physical  law  embedded  in  the 6-CNA  vibrational  data  was  successfully  extracted  by  the  LFNN-EPFs.  In
conclusion,  these  vibrational  LFNN-EPFs  are  of  explicit  form.  Therefore,  by  various  suitable  operations  of
mathematical  analysis,  they  can  be used  to estimate  the  electronic  charge  distributions  of  the  unknown
molecule  of the  significant  complexity.  Additionally,  these  estimations  can  be  combined  with  those  of
theoretical  DFT  atomic  polar  tensor  calculations  to contribute  to the  identification  of  the  molecule.
. Introduction

Being directly related to the electric charge distributions in a
olecule, the vibrational spectra intensities are both experimen-

ally and theoretically important physical quantities [1].  Following
he pioneering initial works [2,3] to interpret a large amount of
xperimental intensity data, studies were devoted into mainly the
ormal matters of the interpretation of IR (infrared) intensities [4,5].
fter reasonable resolution of the formal aspects, efforts to explain

he physical meaning of intensity curves enabled the researchers to

orrelate some intensity patterns with charge distributions of the
olecule [6,7]. Briefly, for the ith normal mode the measured vibra-

ional intensities Ii and atomic charges are related by the molecular
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dipole moment (−→M) derivatives with respect to associated nor-
mal  coordinate Qi. Because intensity–atomic charge relationship is
detailed in Section 2.1, here we  simply mention that decades of
efforts into this relationship resulted in recent accurate prediction
of molecular charge distribution experimental data by ab initio IR
intensity calculations [8–11].

On the other hand, for very complex structure molecules, both IR
and Raman spectral intensities exhibit inherent high nonlinearity
and complex pattern. In this case, it is difficult to make ab ini-
tio intensity calculations to compare with new experimental data.
Additionally, the identity and three dimensional (3D) structure of
the chemical compound may  be totally unknown prior to the suit-
able spectral measurements. Indeed, data for 3D structure and IR

spectra are available only for 0.5% of all known chemical molecules
[12]. Clearly, satisfactory ab initio vibrational intensity calculations
cannot be made for the most molecules since their detailed spa-
tial structure are unknown. Therefore, based on the experimental
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http://www.sciencedirect.com/science/journal/13861425
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ata for the molecule of unknown detailed 3D structure, an explicit
orm of empirical physical formula (EPF) for this highly nonlinear
ibrational intensity pattern is of great interest. Indeed, in line with
ur previous theoretical treatment [13], an appropriate vibrational
ntensity EPF, as we demonstrated in [14], can be consistently con-
tructed by using a layered feedforward neural network (LFNN)
15]. As we give more details in Section 2.2,  the LFNN is a universal
onlinear function approximator [16].

In this paper, as a continuation of our very recently initiated
ntirely novel LFNN-EPFs approach to vibrational intensities [14],
uitable LFNN-EPFs were constructed for density functional theory
DFT) vibrational spectra absorbance and intensities of a differ-
nt molecule, namely 6-choloronicotinic acid (6-CNA). The 6-CNA
bsorbance/intensity data was entirely different and much larger
han the vibrational intensity data of our formerly used [14] LFNN-
PF molecules. The 6-CNA absorbance and intensity data was
orrowed from our previous study [17]. Although our novel LFNN-
PFs approach vibrational intensities was clearly stated in our
revious initial work [14], here for completeness we again re-state

t after some brief remarks. A number of previous works [18–23]
pplying neural networks to molecular vibrational intensities exist.
n particular, the studies of Gasteiger and coworkers [18–20] for 3D

olecule structure derivation from IR spectra are very important.
hey successfully use radial distribution function for the simulation
f IR spectra by suitable neural networks. But, they do not aim to
onstruct an explicit mathematical function for the experimental IR
pectra. On the other hand, just as we did for methanesulfonamides
n our previous paper [14], in this paper we constructed consistent
xplicit form of LFNN-EPFs for vibrational absorbance and inten-
ity of 6-CNA. Although the 6-CNA DFT vibrational absorbance and
ntensity were inherently highly nonlinear and sharply fluctuat-
ng in character, still train set LFFN-EPFs very successfully fitted
hese absorbances and intensities. Moreover, test set (i.e. yet-to-
e measured experimental data) LFNN-EPFs consistently predicted
he absorbance and intensity data. That is, the physical law embed-
ed in the absorbance and intensity data was successfully extracted
y the LFNN-EPFs. In conclusion, by various suitable operations
f mathematical analysis, this explicit form of vibrational LFNN-
PFs can be used to estimate the electronic charge distributions of
he unknown molecule of the significant complexity. Additionally,
hese estimations can be combined with those of theoretical DFT
tomic polar tensor calculations to contribute to the identification
f the molecule.

. Theories

.1. Atomic polar tensors and vibrational intensities

Atomic polar tensors (APTs) [10] are the fundamental param-
ters of any IR intensity predictions. As defined in Eq. (1),  the
lements of APTs are the molecular dipole moment derivatives
ith respect to Cartesian displacements of atoms �k. In calculating
aman intensities molecular polarizability tensor � is used instead
f dipole moments.

i = C

[(
∂
−→
M

∂Qi

)0
]2

= C

[∑
k

(
∂
−→
M

∂�k

)0

Lki

]2

(1)

here superscript ‘0’ indicates that the derivatives are evaluated at
he minimum (equilibrium) geometry. Ii is the absolute IR intensity

f ith normal mode, Qi is the normal coordinate, Li is the Cartesian
igenvector relative to Qi, C is a constant whose value depends on

he units used. The vector components of (∂−→
M/∂�k)

0
in Eq. (1) can

e gathered into 3 × 3 matrices called APTs. For the atom ˇ, the
cta Part A 90 (2012) 55– 62

general uv component of AFT can be expressed as in Eq. (2),  where
u and v are for x, y, or z components, respectively.

Puv =
(

∂Mu

∂vˇ

)0

(2)

Here the starting point is the basic hypothesis of the equilibrium
charges and charge fluxes (ECCF) theory [24], namely the identifi-
cation of the molecular dipole moment −→

M as the sum over point
atomic charges q˛ of Eq. (3).

−→
M =

∑
˛

q˛�r˛ (3)

where �r˛ is the position vector of ˛th atom. Using Eqs. (2) and (3),
we obtain Eq. (4).

Pˇ
uv = q0

ˇıuv +
∑

˛

(
∂q˛

∂vˇ

)0

u0
˛ (4)

Eq. (4) is the general equation to calculate the uv component of
APT. If the Cartesian coordinate system is suitably rotated, simpler
equations for APT components are obtained. As a result, relevant
equilibrium charges and charge fluxes can be easily calculated. For
instance, let us consider the planar molecules on a CH bond. Using
a suitable local Cartesian coordinate system, we obtain Eq. (5) to
relate yy APT component to hydrogen equilibrium charge q0

H .

PH
yy = q0

H (5)

Eq. (5) is the fundamental equation which relates the measured
IR absolute intensity and molecular atomic charges (see for more
[10]).

2.2. Brief LFNN fundamentals and its relevance to vibrational
intensity EPF construction

LFNN relevance to general EPFs is analyzed in depth in [13].
Specific LFNN relevance to vibrational intensity EPF construction
is mentioned in [14]. Still, here we  again give the minimum LFNN
fundamentals. We  also mention briefly LFNN-EPFs in general and
vibrational intensity LFNN-EPFs in particular.

2.2.1. The LFNN fundamentals
An artificial neural network (ANN) [15] resembles the brain and

consists of interconnecting artificial neurons which have adaptive
synaptic weights. The ANN acquires new knowledge by modifying
weights. Being a particular kind of ANN, LFNN is a one input–many
intermediate (hidden)–one output layer device, all layers of which
are interconnected by adaptable weights (Fig. 1).

It has been rigorously proved that a single hidden layer LFNN
is sufficient for excellent nonlinear function approximation [16].
However, contrary to what we  did in most of our previous LFNN-
EPFs papers, in this paper, due to extremely fluctuating nature of
training IR and Raman data, we  generally had to use multi-hidden
layer LFNN. Still, here for simplicity and without loss of generality;
we only explain the single hidden layer LFNN functionality. Borrow-
ing from Ref. [16], for a LFNN with single hidden layer, in Fig. 1, the
desired output vector �y is approximated by a network multi-output
vector �f  which is defined by Eq. (6)

�f : Rp → Rr : �fk(�x) =
h1∑
j=1

ˇjG(Aj(�x)), �x ∈ Rp, ˇj ∈ R, Aj ∈ Ap,
and k = 1, . . . , r, (6)

where Ap is the set of all functions of Rp → R defined by A(�x) =
�w · �x + b. ‘·’ is the dot product, �w is input to hidden layer weight
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Fig. 1. Fully connected one input–many hidden–one output layer LFNN. Only two
hidden layers are shown. xi (i = 1, . . . , p) and yi (i = 1, . . . , r) are, respectively,
input and output vector components. Circles: artificial neurons, arrows: adaptable
synaptic weights. wi

jk
: weight vector component, where i is a layer index, jk weight
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Fig. 2. 6-CNA IR absorbance versus frequency. DFT based absorbance (DFT) and their
single hidden layer LFNN-EPF train set fittings (nno). h: hidden layer neuron number.
omponent from the jth neuron of ith layer and to kth neuron of (i + 1)th layer.
idden layer neurons are, respectively, h1 and h2.

ector, �x is the LFNN input vector in Fig. 1, and b is the bias weight.
n Fig. 1, the columns of the weight matrices w1 and w2 corre-
pond to weight vectors defined in A(�x) and �̌ in Eq. (6).  However,
ote that, as is obvious from Fig. 1 and Eq. (6),  the correspondences
1 → A(�x) and w2 → �̌

 are valid only for single hidden layer LFNN.
or the LFNN with more than single hidden layer, both Eq. (6) and
he correspondences must be modified accordingly. Additionally, in
q. (6),  the hidden neuron activation function G : R → R is theoretically
ny well-behaved nonlinear function; proving that a LFNN is a univer-
al nonlinear function approximator.  In applications, G is frequently
hosen as a kind of nonlinear sigmoid function defined by Eq.
7),

 : R → [0,  1] or [−1, 1],  non-decreasing, lim�→∞G(�) = 1,

and lim�→−∞G(�) = 0 or − 1. (7)

sing the LFNN constructed in line with Eqs. (6) and (7),  sample
rain data is simultaneously introduced to both input and output
ayers. The LFNN suitably modifies its weights until an acceptable
rror level between predicted and desired outputs is attained. Then,
y using LFNN of the final weights, the test set performance of the
etwork is tested over a previously unseen data set. If test data
redictions are good enough, the LFNN is considered to have consis-
ently learned or generalized the inherent functional relationship
xisting between input and output data.

.2.2. LFNN relevance to vibrational intensity EPF construction

Because a deterministic or random EPF is usually a mathematical
ector function �y  : Rp → Rr between the physical variables under
nterest, particularly LFNN (not any other ANN) is relevant to EPF
onstruction. Hence, being a general input–output function esti-
ator, the LFNN defined by Eq. (6) is particularly suitable in this

ontext. But, in physics, although there can be several independent
ariables [p � 1 in Eq. (6)], the number of the dependent variable is
sually one [r = 1 in Eq. (6)]. Train sample data for independent and
ependent physical variables are presented to the input and output

ayers, respectively. Then, through weight adaptation process,

he LFNN finally estimates the unknown generally nonlinear EPF.
ote that EPF is a general abstract term, and in this paper it is

pecifically used for IR absorbance or Raman vibrational inten-
ity (see Section 3.4). It must also firmly stated that depending
(a)  h = 5, (b) h = 20, (c) h = 50.

on the number of hidden layer, hidden units, the kind of activa-
tion functions etc., we can construct infinitely many LFNN-EPFs.
But, as shown in [13], in practice any of the final approxima-

tion function in Eq. (6) can be safely chosen as the desired
EPF.
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ig. 3. 6-CNA IR absorbance versus frequency. DFT based absorbance (DFT) and
heir single hidden layer LFNN-EPF train set fittings (nno) with h = 50. h: hidden
ayer neuron number. (a) DFT, (b) nno.

. LFNN application details

.1. The vibrational spectral data for LFNN-EPF

The DFT-based vibrational data for LFNN-EPF construction were
R absorbance and Raman intensities of 6-CNA versus scaled fre-
uencies. The data was borrowed from our previous work [17].

.2. The LFNN structure used and the pre-train data
ransformation

The neural network software used was NeuroSolutions V5.06.
or LFNN fitting of DFT calculated IR absorbance (input) versus
requency (output) data, we used one input layer neuron (p = 1)
nd one output layer neuron (r = 1) with one-hidden layer LFNN of
1 = 5, 20 and 50 hidden neurons (see Fig. 1). In this case, From
ig. 1, the total number of adjustable weights (p × h1 + h1 × r =
1 × (p + r) = h1(1 + 1) = 2h1) was min  = 2 × 5 = 10,  max  = 2 ×
0 = 100, respectively. For LFNN fitting of DFT calculated Raman

ntensity (input) versus frequency (output) data, we again used one
nput layer neuron (p = 1) and one output layer neuron (r = 1) but

ith varying hidden layers. We  first tried one-hidden layer LFNN.
owever, the fittings were not good enough as we mention more in
ections 4.1 and 4.2.  Therefore, after many trials with varying hid-
en layer number, finally we had to use as large as ten (10) hidden
ayer LFNN with 5 hidden neurons at each hidden layer. In this case,
he number of hidden layer weights can be calculated in the follow-
ng way. There are 5 × 5 = 25 weights for any consecutive hidden
ayers. As there are 9 consecutive hidden layers, we  have total
cta Part A 90 (2012) 55– 62

of 25 × 9 = 225 hidden weights. Additionally, there are 5 weights
from input to first hidden layer and 5 weights from last hidden
layer to output layer. Therefore, we  totally have 225 + 5 + 5 = 235
weights (see Fig. 1). The number 235 for total weights may  at
first seem much larger, for instance when compared with 54 total
weights in our previous LFNN-EPFs paper [14] for vibrational inten-
sities. But, there are two  important justifications for using much
larger number of weights here. First, in comparison with our ini-
tial paper [14] consisting of totally only 63 DFT data points, in
this paper we used 3999 total of absorbance/intensity versus fre-
quency DFT data points. We  see that LFNN data here is about 63
times larger in size. This naturally involves much larger number
of weights. Second, as we mention more in Sections 4.1 and 4.2,
both fitting and predictions of LFNN in this paper were much better
than previous paper [14] results. Indeed, measured by correlation
coefficients r, in this paper r = 0.9 for train set, while it was  0.5
for IR and 0.8 for Raman at most in Ref. [14]. No bias weight was
used. Both train and test set input–output spectral data in this
paper were normalized into multi-dimensional unit intervals before
any LFNN processing. The type of activation functions G in Eq. (6)
were, respectively, hyperbolic tangent tanh = (ex − e−x)/(ex + e−x)
for hidden and linear for output layer. The LFNN weight adapt-
ing algorithm was  back-propagation with Levenberg–Marquardt.
For all LFNN processing cases, the whole DFT-vibrational data
were uniformly partitioned into two  separate sets (80% and 20%)
to use as LFNN training set for fitting and test set for prediction,
respectively.

3.3. The error function and its minimization

The error function to measure the difference between desired
and actual neural network outputs was  the mean square error
(MSE). More clearly, in terms of the components of the user
specified desired output vector �y  of Fig. 1 and of the LFNN predicted
output vector �f of Eq. (6),  MSE  is defined by Eq. (8),

MSE  =

[∑r
k=1

∑N
i=1(yki − fki)

2
]

N
, (8)

where N is the number of training or test samples. Epoch (one
complete presentation of the all input-desired output data to the
network being trained) number was  usually 1000. The best final
LFNN approximation errors were nearly 0.0007 (for both train and
test data) IR and 0.001 (for both train and test data) Raman.

3.4. The concrete algorithm for 6-CNA vibrational spectra
LFNN-EPF construction

In order to construct suitable EPFs for highly nonlinear DFT cal-
culated 6-CNA vibrational absorbance and intensity, we used one
neuron-output LFNN vector function �f  in Eq. (6).  However, Eq. (6) is
itself not enough for the complete construction of the desired non-
linear EPF, because it gives only the crude structure of the LFNN
without producing the final EPF parameters/final LFNN optimal
weights. Therefore, in order to obtain both the final weight vec-
tor �wf (consisting of the final components of w1 and w2 of Fig. 1)

and the corresponding LFNN output vector function �fmin = �f ( �wf ) of
Eq. (6), we simultaneously used Eqs. (6) and (8).  More concretely,
given the desired input–output experimental data, �fmin is the net-
work output vector function of Eq. (6) giving the minimum MSE  of
Eq. (8) by a suitable LFNN weight adaptation. Also note that, �fmin is

the best nonlinear estimation vector of the theoretically unknown
desired output function �y : Rp → Rr . In other words, the theoreti-
cally unknown vector function �y is estimated by �fmin. Briefly, �fmin
is actually the desired nonlinear EPF, which we aim to ultimately
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much higher best fitting correlation coefficient r = 0.9004. This
is pleasingly in very good agreement with our general postulations
in Ref. [14] in the following way. In Ref. [14], we  had to use much less
denser DFT data, so the LFNN vibrational spectra fittings were not
N. Yildiz et al. / Spectrochi

btain. Because �fmin is the extremely important ultimate quantity,
o we re-state it as a separate expression in Eq. (9),

�fmin of this paper : Given input–output data (�x and �y sample
LFNN �fmin = �f  ( �wf ) of Eq. (6) and of Eq. (8) is our desired vibr
intensity EPF. In this paper, LFNN input vector �x (one dimension
frequency, one dimensional desired vector �y was either IR absor
or Raman intensity of the 6-choloronicotinic acid (6-CNA). Final d
of this paper are given in Section 3.5.

.5. Final �fmin details

As stated in Eq. (9),  we now give the final �fmin details. In Eq. (9),
min totally depends on the structure of the network output vector
unction �f and the final weight vector �wf . In Eq. (6),  the weight com-

onents are embedded in A(�x) and �̌ (w1 and w2 in this paper in
ig. 1). In Eq. (6), �f depends on the explicit forms of G and A func-
ions. In this paper, setting �̌

 = w2 of Fig. 1, G is nonlinear tangent
yperbolic and of A is the scalar product of w1 and �x of Fig. 1. Thus, we
an construct the explicit form of �f . Then, by the minimization of Eq.
8), we finally obtain �fmin = �f ( �wf ). The concrete LFNN-EPF construc-
ion algorithm for nonlinear DFT-based vibrational absorbance and
ntensity of 6-CNA is now complete. The actual LFNN-EPFs results
btained by this algorithm are given in Section 4.

. Results and discussion: LFNN-EPFs construction

In this paper, one input–one output layer LFNN was  used. The
idden layer number, after many suitable pre-train trials, was
ither one or ten. In figures where it applies, the abbreviation DFT is
sed for the DFT calculated data based on vibrational IR absorbance
r Raman intensity. The DFT data was borrowed from our previ-
us work [17] and used in this paper as both LFNN train and test
ata. Hence, neural network output (nno) was either vibrational IR
bsorbance or Raman intensity. The abbreviation nno is for both
rain or test set results.

.1. LFNN-EPFs for train set fittings

As mentioned in Section 3.2,  for all train and test set LFNN pro-
essing in this paper, the original DFT data were first normalized
nto multi-dimensional unit ([0,  1]) intervals. Let h be the hidden
euron number in a particular hidden layer (see Fig. 1). For a single
idden layer LFNN, the train set h = 5, 20 and 50 nno fittings of
-CNA DFT IR absorbance versus frequency are given in Fig. 2a–c.
s can be seen, with increasing number of h, the fittings greatly

mproves as measured by MSE  and r correlation coefficient values.
ere the correlation coefficient is an indicator of the goodness of

he fit. For instance the h = 50 MSE  (0.00071) is significantly lower
han h = 5 MSE  (0.00513). Additionally and more importantly, cor-
elation coefficient of the fit r = 0.9004 in h = 50 and r = 0.1449
n h = 5, showing that with greater h value, the LFNN fittings are

uch better. Indeed, in Fig. 2c, the very complex DFT IR absorbance
attern was excellently fitted by the LFNN with h = 50. Note that
he every single absorbance peak was excellently fitted. Moreover,
he background absorbance values not corresponding to any peak
alues were also excellently fitted. However, in order to assess
he fitting capabilities of the LFNN, particularly note that even the
ttings with h = 5 LFNN is still acceptably well although the corre-

ation coefficient is low. As can be seen by comparing Fig. 2a and c,
he much lower correlation coefficient with h = 5 cannot generally

e attributed to peak fittings. They seem to be reasonably fitted.
he only deviations are with back ground fittings, producing nat-
rally lower correlation coefficient. When compared with the best
orrelation coefficient (r = 0.503) of the fit in our previous initial
cta Part A 90 (2012) 55– 62 59

nd final weight vector �wf ,

al absorbance or
as the scaled

e
s for �fmin

(9)

work of LFNN-EPFs for vibrational intensities [14], in this paper we
obtained
Fig. 4. 6-CNA Raman intensity versus frequency. DFT based absorbance (DFT) and
their varying (single or ten) hidden layer LFNN-EPF train set fittings (nno). h: hidden
layer neuron number. (a) h = 5 (single), (b) h = 20 (single), (c) h = 225 (ten).
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Fig. 5. 6-CNA Raman intensity versus frequency. DFT based absorbance (DFT) and
ten  hidden layer LFNN-EPF train set fittings (nno). h: hidden layer neuron number.
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Fig. 6. 6-CNA IR absorbance versus frequency. DFT based absorbance (DFT) and
a)  DFT, (b) nno. h = 225 (ten).

o good as desired, although the general tendency of the spectrum
as still acceptable. The details of the peaks were really missing

n LFNN fittings in Ref. [14]. But, as we firmly pointed out in Ref.
14], the previous study was intended only for a crude start into
FNN-EPFs of vibrational spectra. We  also very clearly postulated
n Ref. [14] that provided that spectral data were measured over

uch denser frequency interval, much more suitable LFNN-EPFs
ould be ultimately constructed. Compared with Ref. [14] data, the
pectral data was much denser in this paper (63 times denser). So,
e were anticipated to obtain much better LFNN-EPFs in this paper.

ndeed, in this paper the LFNN-EPFs in Fig. 2a–c, most noticeably
n Fig. 2c, are excellently better in details when compared with
he LFNN-EPFs of Ref. [14] which only pay attention to crude func-
ional tendency fitting. Briefly, Fig. 2c alone is an early proof of
he postulate of Ref. [14] that much denser DFT spectral data can
e fitted in much better manner by a suitable LFNN-EPFs. To be
uch more confident and conclusive in this assertion, we  clearly

ave to provide more supporting LFNN-EPFs results. We  will now
o this. First, we must very explicitly further clarify an interesting
nd even potentially doubtful point with Fig. 2c. In Fig. 2c, because
he number of data points was exceedingly high (about 3200 mea-
urements) and also the nno values were excellent agreement with
heoretically calculated DFT values, two distinctive patterns (DFT
nd nno) may  be difficult to discriminate. Perhaps, one might even
e doubtful as to whether there is really only one pattern (DFT) or

wo different patterns (DFT and nno) in Fig. 2c. In Fig. 3a and b, the
wo making up patterns of Fig. 2c (DFT and nno) were separately
eproduced for a comparison so that no doubt should arise.
their single hidden layer LFNN-EPF test set predictions (nno). h: hidden layer neuron
number. (a) h = 5, (b) h = 20, (c) h = 50.

The train set nno fittings of 6-CNA DFT Raman intensity versus
frequency are given in Fig. 4a–c. We  first tried single-hidden layer
LFNN with h = 5 and 20 (see Fig. 4a and b), but by measuring
from correlation coefficients (r = 0.5245 and 0.5323, respec-
tively) the fittings were not as good as desired although the peak
and back ground fitting were still acceptable. After many trials,
we found that 10 hidden layer with h = 5 (total of 225 hidden
weights) LFNN produced the best result (r = 0.8413 and MSE  =
0.00170) in Fig. 4c. As can be clearly seen from Fig. 4c, the
nno fitting of Raman DFT data is exceptionally well. Particu-
larly note that every single Raman peak was  fitted with a great

success. The same applies to the background fitting. Compared
with r = 0.9004 in Fig. 2c of IR, r = 0.8413 in Fig. 4c of Raman
is slightly lower because Raman intensity data seem to be more
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Fig. 7. 6-CNA IR absorbance versus frequency. DFT based absorbance (DFT) and their
single hidden layer LFNN-EPF test set predictions (nno) with h = 50. h: hidden layer
n

c
r
t
s
w
t
p
w
f
w
c
a
i
o
a
i
D

4
p

“
u
i
d
t

Fig. 8. 6-CNA Raman intensity versus frequency. DFT based absorbance (DFT) and
their varying (single or ten) hidden layer LFNN-EPF test set predictions (nno). h:
euron number. (a) DFT, (b) nno.

omplex in terms of the magnitude and location of peaks. This
elative complexity of Raman spectra may  also explain the fact
hat why we  had to use much larger hidden weights for Raman
pectra (h = 225) while using much lower IR spectra hidden
eights (h = 50). Also note that both in Figs. 2c and 4c,  the very fact

hat vibrational DFT data inherently consist of sharply fluctuating
eaks, they are naturally cannot be fitted at the greatest accuracy
ith r very close to unity. This is only possible for usual smooth

unctions, for instance for polynomials, exponentials, etc. In other
ords, as far as the utmost complexity of the vibrational data is con-

erned, the correlation coefficients both in Figs. 2c and 4c (r = 0.9004
nd r = 0.8413, respectively) can be safely regarded high enough,
ndicating excellent fittings. Again, due to the utmost complexity
f the patterns in Fig. 4c, the two making up patterns of Fig. 4c (DFT
nd nno) are separately reproduced in Fig. 5a and b for a compar-
son so that no doubt should arise as to ultimate discrimination of
FT data and nno fittings.

.2. Consistency of the constructed LFNN-EPFs: test set
redictions

If the 6-CNA train set LFNN-EPFs do not be further tested over
yet-to-be measured” 6-CNA DFT data, these fitted EPFs cannot be
sed consistently over a desired range of DFT values. In other words,
f the 6-CNA train vibrational absorbance/intensity LFNNs well pre-
ict previously unseen test set data, then the LFNN have regarded
o have successfully generalized the data, proving consistent
hidden layer neuron number. (a) h = 5 (single), (b) h = 20 (single), (c) h = 225 (ten).

estimations. If the estimations are consistent with the test data
values, then the LFNNs can be taken as suitable LFNN-EPFs.

For 6-CNA DFT IR absorbance versus frequency, the correspond-
ing test set predictions of Fig. 2a–c are given in Fig. 6a–c. Again, the
single hidden layer train set LFNNs with h = 5, 20 and 50, which
led to Fig. 2a–c were also used for nno test set predictions. As can be
seen, with increasing number of h, the predictions greatly improves
as measured by MSE  and r correlation coefficient values, h = 50
producing in Fig. 6c the best prediction with lowest MSE  (0.00077)
and highest r (0.8958). As the number of test data (about 800)
was much lower than its corresponding test set data, nno predic-

tions and DFT values can be discriminated in Fig. 6c without much
difficulty. But, the nno predictions in Fig. 6c have still pleasingly
and expectedly significant overlap with the DFT data. Therefore,
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Fig. 9. 6-CNA Raman intensity versus frequency. DFT based absorbance (DFT) and
ten  hidden layer LFNN-EPF test set predictions (nno). h: hidden layer neuron number.
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a)  DFT, (b) nno. h = 225 (ten).

t is separately reproduced in Fig. 7a and b for a comparison. As
an be seen for instance in Fig. 6c, the test set nno predictions are
ery good agreement with DFT data. This clearly shows that the
est set LFNNs of IR absorbance have consistently generalized the
rain LFNN fittings. Therefore, LFNNs obtained can be safely used as
FNN-EPFs because the physical law embedded in DFT IR data has
een successfully extracted by the LFNN constructed.

For 6-CNA DFT Raman intensity versus frequency, the corre-
ponding test set predictions of Fig. 4a–c are given in Fig. 8a–c.
gain, the corresponding train set LFNNs of final weights which led

o Fig. 4a–c were also used for nno test set predictions. As can be
een, with increasing number of h, the predictions greatly improves
s measured by MSE  and r correlation coefficient values, 10 hid-
en layer with h = 5 (total of 225 hidden weights) LFNN producing
he best predictions (r = 0.8535 and MSE  = 0.00162) in Fig. 8c.
s the number of test data (about 800) was much lower than its
orresponding test set data, nno predictions and DFT values can be
iscriminated in Fig. 8c without much difficulty. But, the nno pre-
ictions in Fig. 8c have still pleasingly and expectedly significant
verlap with the DFT data. Therefore, it is separately reproduced in
ig. 9a and b for a comparison. As can be seen for instance in Fig. 6c,
he test set nno predictions are very good agreement with DFT data.
his clearly shows that the test set LFNNs of Raman intensity have
onsistently generalized the train LFNN fittings. Therefore, LFNNs

btained can be safely used as LFNN-EPFs because the physical law
mbedded in DFT Raman intensity has been successfully extracted
y the LFNN constructed.
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5. Conclusions and potential applications

In this paper, as a continuation of our very recently initiated
entirely novel approach, LFNN-EPFs were constructed for density
functional theory (DFT) vibrational spectra absorbances and inten-
sities of a different molecule, 6-choloronicotinic acid (6-CNA). The
major conclusion is stated in Section 5.1.  Also, because, the vibra-
tional spectral absorbances or intensities are important physical
quantities directly related to distributions of the electric charges
in a molecule, promising potential applications can be mentioned
(Section 5.2).

5.1. Conclusion

Test set (i.e. yet-to-be measured experimental data) LFNN-EPFs
consistently and successfully predicted the absorbance and inten-
sity data. This simply means that the physical law embedded in
6-CNA absorbance and intensity data was successfully extracted
by the LFNN-EPFs.

5.2. Potential applications

1. The vibrational LFNN-EPFs constructed in this paper are of
explicit functional form. Therefore, by various suitable opera-
tions of mathematical analysis, they can be used to estimate
the electronic charge distributions of the unknown molecule of
the significant complexity. Additionally, these estimations can
be combined with those of theoretical DFT atomic polar tensor
calculations to contribute to the identification of the molecule.

2. The vibrational spectra LFNN-EPFs can be combined together
with the findings of other existing vibrational spectra esti-
mations by neural networks, for instance radial distribution
function (RDF) coded IR spectra estimation mentioned in the
introduction of this paper.
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