

Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method

S. Subashchandrabose^a, H. Saleem^{a,*}, Y. Erdogdu^b, G. Rajarajan^c, V. Thanikachalam^c

^a Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India

^b Department of Physics, Ahi Evran University, Kirsehir, Turkey

^c Department of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India

ARTICLE INFO

Article history: Received 28 April 2011 Received in revised form 1 July 2011 Accepted 13 July 2011

Keywords: FT-Raman FT-IR TED NBO Band gap PDPO

ABSTRACT

FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π - π * transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Piperidones exhibit a wide spectrum of biological activities and form an essential part of the molecular structures of important drugs. Molecular geometry critically influences biological activity. Attention has been focused on structure-activity relationships. Piperidines with crowded groups at C₃ and C₅ have enhanced biological activity compared to other piperidines [1]. 2,6-Disubstituted piperidin-4-ones are regarded as an important framework and served as precursors for chiral biologically active natural alkaloids [2]. The biological activities of piperidones were found to be excellent if 2- and/or 6-positions are occupied by aryl groups [3]. Accordingly, anti-bacterial and anti-fungal activities of 2,6-diarylpiperidin-4-ones and their derivatives have been explored well [4,5]. Stereochemistry of N-benzoyl-2r,6c-diphenylpiperidin-4-one oxime, N-benzoyl-3t-methyl-2r,6c-diphenylpiperidin-4-one oxime, N-benzoyl-3tethyl-2r,6c-diphenylpiperidin-4-one oxime (3), N-acetyl-2r,6cdiphenylpiperidin-4-one oxime and N-acetyl-3t-methyl-2r,6cdiphenylpiperidin-4-one oxime have been studied using ¹H, ¹³C and two-dimensional NMR spectra [6]. The main goal of this work is to record, simulate and interpret the vibrational spectra for the title compound, which has not been presented before. We also wanted to shed a light on the crystal and vibrational spectral data (FT-Raman and FT-IR) with the results of theoretical calculations.

2. Experimental details

2.1. Synthesis of 3-pentyl-2,6-diphenylpiperidin 4-one (PDPO) [7]

A mixture of ammonium acetate (3.85 g, 0.05 mol), benzaldehyde (10.6 ml, 0.1 mol) and 2-octanone (6.4 ml, 0.05 mol) in distilled ethanol was heated to boiling. After cooling the viscous liquid obtained was dissolved in diethyl ether (200 ml) and was shaken with 2 ml concentrated hydrochloric acid. The precipitated hydrochloride of the title compound was removed by filtration and washed with 40 ml mixture of ethanol and diethyl ether (1:1) and then with diethyl ether to remove most of the coloured impurities [7]. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluted with water. It was purified by column chromatography, using a n-hexane-ethyl acetate mixture as the solvent. The yield of the compound was 80%.

2.2. FT-Raman and FT-IR measurement

The FT-Raman spectrum of PDPO was recorded using the 1064 nm line of Nd:YAG laser as excitation wavelength in the region $10-3500 \, \mathrm{cm}^{-1}$ on a Bruker model RFS100/S spectrophotometer

^{*} Corresponding author. Tel.: +91 9443879295. *E-mail address:* saleem_h2001@yahoo.com (H. Saleem).

^{1386-1425/\$ –} see front matter $\ensuremath{\mathbb{C}}$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2011.07.046

Fig. 1. (a) Relative energy–dihedral angle curve in $C_{36}-C_{39}$ bond. (b) Relative energy–dihedral angle curve in C_5-C_{35} bond. (c) Relative energy–dihedral angle curve in C_4-C_{13} bond. (d) Relative energy–dihedral angle curve in C_3-C_{24} bond. (e) Relative energy–dihedral angle curve in $C_{39}-C_{42}$ bond. (f) Relative energy–dihedral angle curve in $C_{42}-C_{47}$ bond.

equipped with FRA 106 FT-Raman module accessory. The spectral measurements were carried out at Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala, India. The FT-IR spectrum of this compound was recorded in the region 400–4000 cm⁻¹ on an IFS 66 V spectrophotometer using the KBr pellet technique. The spectrum was recorded at room temperature, with a scanning speed of 10 cm⁻¹ per minute and at the spectral resolution of 2.0 cm⁻¹ in CISL Laboratory, Annamalai University, Tamil Nadu, India.

3. Computational details

The entire calculations were performed at DFT levels on a Pentium 1 V/3.02 GHz personal computer using Gaussian 03W [8]

program package, invoking gradient geometry optimization [8,9]. Initial geometry generated from standard geometrical parameters was minimized without any constraint in the potential energy surface at DFT level, adopting the standard 6-31G(d,p) basis set. The optimized structural parameters were used in the vibrational frequency calculations at the DFT level to characterize all stationary points as minima. Then, vibrationaly averaged nuclear positions of PDPO were used for harmonic vibrational frequency calculations resulting in IR and Raman frequencies together with intensities and Raman depolarization ratios. In this study, the DFT method (B3LYP) was used for the computation of molecular structure, vibrational frequencies and energies of optimized structures. The vibrational modes were assigned on the basis of TED analysis using som program [10].

Fig. 2. Optimized molecular structure of 3-pentyl-2, 6-diphenylpiperidin-4-one.

It should be noted that Gaussian 03W package able to calculate the Raman activity. The Raman activities were transformed into Raman intensities using Raint program [11] by the expression:

$$I_i = 10^{-12} \frac{(\nu_0 - \nu_i)^4}{\nu_i \cdot S} \tag{1}$$

where I_i is the Raman intensity, *S* is the Raman scattering activities, v_i is the wavenumber of the normal modes and v_0 denotes the wavenumber of the excitation laser [12].

4. Results and discussion

4.1. Conformational analysis

The chair conformer of piperidine molecule is the most stable conformer. Therefore, we neglected other conformations that differ from the chair (boat, envelope or twist boat) because of their high energy. Moreover, it has two possible chair conformations, which differ in the axial (A) or equatorial (E) positions of the N-H group [13–15]. Piperidine molecules show the equatorial form of NH of chair conformer as the most stable. Piperidine molecule adopts the NH equatorial position of the chair conformer. Then, in order to reveal all possible conformations of studied molecule, a detailed potential energy surface (PES) scan in six dihedral angles was performed. This scan was carried out by relaxed PES scanning calculations in all geometrical parameters by changing the torsion angle for every 10° rotation around the bond. The shape of the potential energy as a function of the dihedral angle is illustrated in Fig. 1a–f. The curves between relative energy and dihedral angles $(a \rightarrow H_{11}-C_3-C_{24}-C_{25} \text{ and } c \rightarrow H_9-C_4-C_{13}-C_{14})$ are shown in Fig. 1a and c. As seen in Fig. 1a and c, H_{11} - C_3 - C_{24} - C_{25} dihedral angle of phenyl ring is attached with C_3 is determined at 160° for B3LYP level of theory. H₉-C₄-C₁₃-C₁₄ dihedral angle is predicted at 10°. In the optimized structure, H₁₁-C₃-C₂₄-C₂₅ and H₉-C₄-C₁₃-C₁₄ dihedral angles are predicted at 162.24° and 9.50°, respectively.

4.2. Molecular geometry

The optimized geometrical parameters and structure of PDPO was calculated at 6-31G(d,p) level, are given in Table 1 and Fig. 2, respectively. Geometrical parameters such as bond lengths, bond angles and dihedral angles are also given along with its single crystal X-ray diffraction data. The bond length of C_1 – O_{50} is about 1.218 in B3LYP method. And its corresponding experimental value

Fig. 3. Theoretical (a) and experimental (b) FT-IR spectrum of PDPO.

is 1.214Å [7]. Similarly the C₃-N₁₂ and C₄-N₁₂ bond distances are calculated at 1.465 and 1.470 Å (DFT), which are in agreement with X-ray data. The bond distance of C-C is usually observed as ~1.400 Å. In the present investigation, bond lengths of C_1 – C_2 , C_1-C_5 , C_2-C_3 , C_3-C_{24} , C_4-C_5 , C_4-C_{13} and C_5-C_{35} are in line with literature values. On the other hand, the bond distances (C_{13} – C_{14} , $C_{13}-C_{15}, C_{14}-C_{16}, C_{15}-C_{18}, C_{16}-C_{20}, C_{18}-C_{20}, C_{25}-C_{27}, C_{26}-C_{29}, C_{18}-C_{18} C_{27}-C_{31}$ and $C_{29}-C_{31}$) of the sixmembered rings are approximately 1.39 Å/B3LYP with few exceptions. These values are in agreement with literature values [7]. Crystal data [7] reveal that the C-H bond distances are \sim 1.00 Å, which is supported by the calculated values. The calculated angles 121.85° and 122.91° (DFT), are belongs to $C_2-C_1-O_{50}$ and $C_5-C_1-O_{50}$, respectively. And their corresponding literature values are 121.93° and 122.01°. These larger bond angles are may be due to electron density in oxygen atom. The bond angle C_{14} - C_{13} - C_{15} : 118.705/B3LYP is less when comparing with other bond angles $C_{13}-C_{14}-C_{16}$, $C_{13}-C_{15}-C_{18}$, $C_{14}-C_{16}-C_{20}$, $C_{15}-C_{18}-C_{20}$ and $C_{16}-C_{20}-C_{18}$ (~120°). It may be due to the phenyl ring is attached with C₄. Similar trend has been observed in the second phenyl ring. The bond angles of C–C–H are ${\sim}109^{\circ}$ except in both phenyl rings ($\sim 120^{\circ}$) which are in agreement with literature values [7]. The dihedral angles of title molecule were calculated, and some of them were compared with available X-ray diffraction data as shown in Table 1.

4.3. Vibrational assignments

Synthesized PDPO, consists 51 atoms and hence 147 normal modes of vibrations and the molecule belongs to C_1 symmetry. The fundamental vibrational wavenumbers of PDPO was calculated by DFT (B3LYP/6-31G(d,p)) is given in Table 2. The resulting vibrational wavenumbers for the optimized geometries, IR intensities as well as Raman scattering activities and experimental FT-IR, FT-Raman frequencies are also listed. Experimental and theoretical spectra of title compound have been shown in Fig. 3 (FT-IR) and Fig. 4 (FT-Raman). The normal modes of vibration were assigned on the basis of TED. To bring the theoretical values closer to experimental values, we used the scale factor: 0.9608.

4.3.1. N–H vibrations

The N–H stretching vibration [13,14] appears strongly and broadly in the region 3500–3300 cm⁻¹.Y. Erdogdu et al., assigned $\nu_{\rm N–H}$ mode in the region 3500–3300 cm⁻¹ [15]. In this study, the frequency was observed as weak and narrow band in both FT-IR and FT-Raman, where the frequencies are attributed to 3316 cm⁻¹ and

Table 1

Bond lengths, bond angles and dihedral angles of PDPO.

$ \begin{array}{ccccccc} c_1 c_2 & - L24 & - L218 & - C_1 C_2 & - L22 & -$	Parameters Bond length (Å)	Exp.ª	B3LYP/6-31G(d,p)	Parameters Angles Contd.	Exp. ^a	B3LYP/6-31G(d,p)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_1 = O_{E0}$	1 214	1 218	$C_{E} - C_{1} - O_{E0}$	122.0	122.9
$\begin{array}{c} c_{-}c_{1}\\ c_{-}c_{2}\\ c_{-}c_{3}\\ c_{-}c_{4}\\ c_{-}c_{5}\\ c_{-}c_{-}c_{5}\\ c_{-}c_{-}c_{-}c_{-}c_{-}c_{-}c_{-}c_{-}$	$C_{2} = N_{12}$	1.211	1 465	$C_1 = C_2 = H_2$	109.0	109.3
$\begin{array}{cccccc} c_1 c_2 c_2 c_3 c_4 c_4 c_4 c_4 c_4 c_4 c_4 c_4 c_4 c_4$	C4-N12	1.105	1 470	$C_1 - C_2 - H_7$	109.0	109.1
$\begin{array}{ccccccc} C_1 C_2 C_2 C_1 C_2 C_2 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	$C_4 = C_1$	1.506	1,470	$C_1 - C_2 - H_c$	109.0	108.1
$\begin{array}{cccccc} c_1 & 1.572 & 1.548 & r_1, c_2, r_1, & 100.0 & 1000 \\ C_{-C_0} & 1.570 & 1.577 & C_1-C_{+}r_1 & 100.0 & 1073 \\ C_{-C_0} & 1.510 & 1.578 & C_1-C_{+}r_1 & 100.0 & 1073 \\ C_{-C_0} & 1.530 & 1.547 & R_1-C_1-R_1 & 100.0 & 1073 \\ C_{-C_0} & 1.330 & 1.400 & R_1-C_1-R_1 & 100.0 & 1073 \\ C_{-C_0} & 1.330 & 1.400 & R_1-C_1-R_1 & 100.0 & 1073 \\ C_{-C_0} & 1.331 & 1.402 & C_1-C_1+r_1 & 100.0 & 1068 \\ C_{-C_0} & 1.337 & 1.366 & C_1-C_1+r_0 & 100.0 & 1073 \\ C_{-C_0} & 1.331 & 1.347 & R_1-C_1-R_1 & 100.0 & 10683 \\ C_{-C_0} & 1.337 & 1.366 & C_{-C_1}-R_1 & 100.0 & 1088 \\ C_{-C_0} & 1.331 & 1.385 & R_1-C_1-R_1 & 100.0 & 1085 \\ C_{-C_0} & 1.331 & 1.385 & C_1-C_1+r_1 & 100.0 & 1085 \\ C_{-C_0} & 1.332 & 1.385 & C_1-C_1+r_1 & 100.0 & 1085 \\ C_{-C_0} & 1.522 & 1.335 & C_1-R_1-r_1 & 100.0 & 1085 \\ C_{-C_0} & 1.522 & 1.533 & C_1-R_1-r_1 & 100.0 & 1085 \\ C_{-C_0} & 1.522 & 1.533 & C_1-R_1-r_1 & 100.0 & 1083 \\ C_{-C_0} & 1.522 & 1.533 & C_1-R_1-r_1 & 100.0 & 100.0 \\ C_{-C_0} & 1.522 & 1.533 & C_1-R_1-r_1 & 100.0 & 100.0 \\ C_{-C_0} & 1.522 & 1.533 & C_1-R_1-r_1 & 120.0 & 110.0 \\ C_{-C_0} & 1.521 & 1.514 & C_{1-C_0}-r_1, & 120.0 & 110.0 \\ C_{-C_0} & 1.521 & 1.514 & C_{1-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.520 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.520 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.50 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.50 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{0-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.007 & C_{-C_0}-r_1, & 120.0 & 100.0 \\ C_{-C_0} & 1.00 & 1.00$	$C_1 - C_2$	1 526	1 531	$C_{2} - C_{2} - H_{7}$	109.0	111.1
$\begin{array}{ccccccc} C_1 C_2 C_1 C_1 C_1 C_1 C_2 C_1 C_1 C_1 C_2 C_2 C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	$C_1 = C_2$	1.520	1 549	$H_{c} - C_{2} - H_{7}$	109.0	109.0
$\begin{array}{ccccccc} c_1 & 1550 & 1567 & C_1 C_2 C_2 N_0 & 1074 & 1073 \\ C_1 C_1 & 1511 & 1519 & H_1 C_1 C_3 & 1080 & 1135 \\ C_1 C_4 & 1390 & 1400 & N_2 C_1 C_4 & 1080 & 1135 \\ C_1 C_4 & 1390 & 1400 & N_2 C_4 C_4 & 1080 & 1088 \\ C_1 C_4 & 1392 & 1393 & 1486 & C_1 C_4 N_1 & 1080 & 1088 \\ C_2 C_4 & 1392 & 1394 & H_2 C_4 C_4 & 1080 & 1077 \\ C_2 C_6 & 1392 & 1394 & H_2 C_4 C_4 & 1080 & 1077 \\ C_2 C_6 & 1392 & 1394 & H_2 C_4 C_4 & 1080 & 1077 \\ C_2 C_6 & 1392 & 1394 & H_2 C_4 C_5 & 1080 & 1077 \\ C_2 C_6 & 1392 & 1394 & H_2 C_4 C_5 & 1080 & 1077 \\ C_2 C_6 & 1392 & 1394 & H_2 C_4 C_5 & 1080 & 1077 \\ C_2 C_6 & 1393 & 1385 & C_1 C_4 C_7 & 1080 & 1063 \\ C_2 C_6 & 1392 & 1395 & C_1 C_4 C_7 & 1010 & 1066 \\ C_2 C_6 & 1522 & 1533 & C_1 N_4 C_4 & 1110 & 1095 \\ C_6 C_6 & 1522 & 1533 & C_1 N_4 C_4 & 1110 & 1095 \\ C_6 C_6 & 1522 & 1533 & C_1 N_4 C_4 & 1110 & 1095 \\ C_6 C_6 & 1526 & 1533 & C_1 C_4 C_6 H_1 & 1020 & 1139 \\ C_6 C_6 & 1526 & 1533 & C_1 C_4 C_6 H_1 & 1200 & 1139 \\ C_6 C_6 & 1526 & 1533 & C_1 C_4 C_6 H_1 & 1200 & 1139 \\ C_6 C_6 & 1526 & 1077 & C_6 C_6 H_2 & 1200 & 1139 \\ C_6 C_6 & 1528 & 1007 & C_6 C_6 H_2 & 1200 & 1139 \\ C_6 C_6 & 1538 & 1088 & C_6 C_6 H_2 & 1200 & 1139 \\ C_6 C_1 & 1000 & 1107 & C_6 C_6 H_2 & 1200 & 1137 \\ C_6 H_1 & 1000 & 1107 & C_6 C_6 H_2 & 1200 & 1137 \\ C_6 H_1 & 1000 & 1007 & C_6 C_6 H_2 & 1200 & 1137 \\ C_6 H_1 & 1000 & 1088 & C_6 C_6 H_2 & 1200 & 1137 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_2 & 1200 & 1137 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_2 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_2 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_2 & 1200 & 1137 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1200 & 1139 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1000 & 1083 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & 1000 & 1083 \\ C_6 H_1 & 0390 & 1088 & C_6 C_6 H_1 & $	$C_2 = C_3$	1.552	1 518	$C_2 = C_2 = H_{11}$	109.0	106.9
$\begin{array}{c} c_{-}c_{0} & 1.513 & 1.519 & H_{1}-c_{-}N_{0} & 1080 & 111.5 \\ c_{-}c_{1} & 1.513 & 1.519 & H_{1}-c_{-}N_{0} & 1080 & 111.5 \\ c_{-}c_{1} & 1.390 & 1.400 & N_{1}-c_{-}c_{2} & 111.2 & 110.9 \\ c_{-}c_{0} & 1.390 & 1.400 & N_{1}-c_{-}c_{2} & 111.2 & 110.9 \\ c_{-}c_{0} & 1.390 & 1.400 & N_{1}-c_{-}c_{1} & 110.0 & 106.6 \\ c_{-}c_{0} & 1.392 & 1.390 & c_{-}c_{-}A_{-}N_{0} & 100.1 & 108.1 \\ c_{-}c_{0} & 1.392 & 1.391 & N_{1}-c_{-}c_{-}C_{1} & 100.1 & 108.1 \\ c_{-}c_{-}c_{0} & 1.391 & 1.396 & c_{-}c_{-}A_{-}N_{0} & 100.2 & 109.1 \\ c_{-}c_{-}c_{-} & 1.393 & 1.395 & N_{1}-c_{-}C_{+} & 107.0 & 106.5 \\ c_{-}c_{-}c_{-} & 1.393 & 1.395 & c_{-}c_{-}A_{-}H_{0} & 107.0 & 105.5 \\ c_{-}c_{-}c_{-} & 1.393 & 1.395 & c_{-}A_{-}A_{-}H_{0} & 107.0 & 105.5 \\ c_{-}c_{-}c_{-} & 1.392 & 1.395 & c_{-}A_{-}H_{0} & 107.0 & 105.5 \\ c_{-}c_{-}c_{-} & 1.392 & 1.395 & c_{-}A_{-}H_{0} & 108.0 & 109.3 \\ c_{-}c_{-}c_{-} & 1.522 & 1.533 & c_{-}A_{-}H_{0} & 108.0 & 109.3 \\ c_{-}c_{-}c_{-} & 1.521 & 1.534 & c_{1}-c_{-}H_{0} & 108.0 & 109.1 \\ c_{-}c_{-}c_{-} & 1.522 & 1.552 & c_{-}c_{-}c_{-}H_{0} & 120.0 & 119.1 \\ c_{-}c_{-}c_{-} & 1.521 & 1.544 & c_{1}-c_{-}H_{0} & 120.0 & 119.1 \\ c_{-}c_{-}c_{-} & 1.522 & 1.552 & c_{-}c_{-}c_{-}H_{0} & 120.0 & 119.1 \\ c_{-}c_{-}h_{1} & 0.900 & 1.077 & c_{1}-c_{-}H_{0} & 120.0 & 109.1 \\ c_{-}c_{+}h_{1} & 0.900 & 1.077 & c_{1}-c_{-}H_{0} & 120.0 & 109.1 \\ c_{-}H_{0} & 0.901 & 1.077 & c_{1}-c_{-}H_{0} & 120.0 & 109.1 \\ c_{-}H_{0} & 0.901 & 1.086 & c_{1}-c_{-}H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.901 & 1.086 & c_{-}c_{-}-H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.901 & 1.087 & c_{1}-c_{-}H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.901 & 1.087 & c_{1}-c_{-}H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.950 & 1.088 & c_{-}-c_{-}H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.950 & 1.088 & c_{-}-c_{-}H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.950 & 1.088 & c_{-}-c_{-}H_{0} & 120.0 & 120.1 \\ c_{-}H_{0} & 0.950 & 1.088 & c_{-}-c_{-}H_{0} & 100.0 & 103.1 \\ c_{-}H_{0} & 0.950 & 1.088 & c_{-}-c_{-}H_{0} & 100.0 & 103.1 \\ c_{-}H_{0} & 0.990 & 1.097 & c$	$C_{3} = C_{24}$	1.514	1.510	$C_2 = C_3 = N_{12}$	107.4	107.8
$\begin{array}{c} c_{n}c_{n}\\ c_{n}c_{n}\\$	$C_4 - C_5$	1.513	1.507	$C_2 = C_3 = N_{12}$	107.4	111.5
$ \begin{array}{c} c_1 - c_1 \\ c_1 - c_1 $	$C_4 - C_{13}$	1.515	1.515	$H_{11} = C_3 = R_{12}$	109.0	107.8
$\begin{array}{cccccc} 1 & 1387 & 1402 & C_1 C_4 + h_1 & 108 & 1066 \\ C_1 - C_6 & 1387 & 1366 & C_1 - C_4 h_2 & 100. & 111.5 \\ C_5 - C_6 & 1392 & 1394 & H_9 - C_4 + h_1 & 109. & 107.7 \\ C_6 - C_6 & 1392 & 1395 & H_9 - C_4 - C_1 & 108.7 & 108.1 \\ C_6 - C_6 & 1392 & 1395 & H_9 - C_4 - C_1 & 108.7 & 108.1 \\ C_6 - C_6 & 1391 & 1385 & C_1 - C_4 + h_6 & 107.7 & 108.4 \\ C_6 - C_7 & 1391 & 1385 & C_1 - C_4 + h_6 & 107.7 & 108.4 \\ C_6 - C_6 & 1292 & 1395 & H_9 - C_4 - C_1 & 10.7 & 108.4 \\ C_6 - C_6 & 1292 & 1395 & C_1 - H_6 & 107.7 & 108.4 \\ C_6 - C_6 & 1522 & 1515 & C_1 + h_9 - C_4 - C_1 & 10.7 & 1143 \\ C_8 - C_6 & 1522 & 1515 & C_1 + h_9 - 100 & 1199 \\ C_8 - C_6 & 1522 & 1515 & C_1 + h_9 - 100 & 1199 \\ C_8 - C_6 & 1522 & 1515 & C_1 + h_9 - 1200 & 1191 \\ C_8 - C_6 & 1522 & 1517 & C_1 - C_1 + h_9 & 1200 & 1191 \\ C_8 - C_6 & 1522 & 1517 & C_1 - C_1 + h_9 & 1200 & 1191 \\ C_8 - C_6 & 1590 & 1087 & C_1 - C_1 + h_9 & 1200 & 1191 \\ C_8 - H_9 & 009 & 1087 & C_1 - C_1 + h_9 & 1200 & 1191 \\ C_8 - H_9 & 1000 & 1.107 & C_1 - C_1 + H_9 & 1200 & 1193 \\ C_8 - H_9 & 1000 & 1.107 & C_1 - C_1 + H_9 & 1200 & 1193 \\ C_8 - H_9 & 1000 & 1.107 & C_1 - C_1 + H_9 & 1200 & 1193 \\ C_8 - H_9 & 009 & 1085 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 009 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1200 & 1193 \\ C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1000 & 1083 \\ C_8 - C_8 - H_9 & 0050 & 1085 & C_1 - C_8 - H_9 & 1000 & 1083 \\ C_8 - C_8 - H_9 & 0050 & 1086 & C_1 - C_8 - H_9 & 1000 & 1083 \\ C_8 - C_8 - $	C	1 300	1,00	$N_{11} = C_2 = C_{24}$	111.2	110.0
$\begin{array}{c} c_1 c_2 \\ c_1 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_2 c_2 \\ c_1 c_2 \\ c_1 c_1 \\$	$C_{13} = C_{14}$	1 303	1.400	$C_{12} = C_{12} = H_{12}$	109.0	106.6
$\begin{array}{ccccccc} 1 & 1302 & 1.384 & 1.4 $	C C	1.333	1,402	$c_5 - c_4 - H_9$	109.0	108.8
$\begin{array}{c} c_1 = C_0 & 1.392 & 1.385 & H_1 = C_1 C_1 & 100 & 107 \\ C_1 = C_0 & 1.378 & 1.397 & N_1 < C_1 & 108.7 & 106.1 \\ C_2 = C_0 & 1.391 & 1.395 & C_1 < C_2 + H_0 & 107.0 & 106.5 \\ C_3 = C_0 & 1.395 & 1.395 & C_1 < C_2 + H_0 & 107.0 & 106.5 \\ C_3 = C_0 & 1.372 & 1.385 & C_1 < C_2 + H_0 & 107.0 & 106.5 \\ C_3 = C_0 & 1.372 & 1.385 & C_1 + H_1 & 108 & 109.2 \\ C_3 = C_0 & 1.372 & 1.385 & C_1 + H_1 & 108 & 109.2 \\ C_3 = C_0 & 1.321 & 1.334 & C_1 - C_1 + H_1 & 108 & 109.2 \\ C_3 = C_0 & 1.321 & 1.334 & C_1 - C_1 + H_1 & 100 & 119.4 \\ C_3 = C_0 & 1.321 & 1.334 & C_1 - C_1 + H_1 & 1200 & 119.4 \\ C_3 = C_0 & 1.322 & 1.312 & C_1 - C_1 + H_2 & 1200 & 119.4 \\ C_4 = C_7 & 1.522 & 1.512 & C_1 - C_4 + H_1 & 1200 & 119.7 \\ C_4 = C_7 & 1.522 & 1.512 & C_1 - C_4 + H_1 & 1200 & 120.3 \\ C_4 = H_1 & 1.000 & 1.107 & C_4 - C_6 + H_2 & 120.0 & 120.3 \\ C_4 = H_1 & 1.000 & 1.107 & C_6 - C_6 + H_2 & 120.0 & 120.1 \\ H_2 + H_2 & 0.050 & 1.087 & C_4 - C_9 + H_2 & 120.0 & 120.1 \\ C_4 = H_1 & 0.000 & 1.086 & C_4 - C_9 + H_2 & 120.0 & 120.1 \\ C_4 = H_4 & 0.050 & 1.086 & C_4 - C_9 + H_2 & 120.0 & 120.1 \\ C_6 = H_1 & 0.050 & 1.086 & C_4 - C_9 + H_2 & 120.0 & 120.1 \\ C_6 = H_2 & 0.550 & 1.086 & C_4 - C_9 + H_2 & 120.0 & 119.7 \\ C_6 = H_6 & 0.550 & 1.086 & C_4 - C_9 + H_2 & 120.0 & 119.7 \\ C_6 = H_6 & 0.550 & 1.086 & C_4 - C_9 + H_2 & 120.0 & 119.7 \\ C_6 = H_6 & 0.550 & 1.085 & C_6 - C_9 + H_2 & 120.0 & 119.7 \\ C_6 = H_6 & 0.550 & 1.085 & C_6 - C_9 + H_9 & 120.0 & 119.7 \\ C_6 = H_6 & 0.550 & 1.085 & C_6 - C_9 + H_9 & 120.0 & 119.7 \\ C_6 = H_6 & 0.550 & 1.085 & C_6 - C_9 + H_9 & 120.0 & 119.7 \\ C_6 = H_6 & 0.590 & 1.085 & C_6 - C_6 + H_9 & 120.0 & 119.7 \\ C_6 = H_6 & 0.590 & 1.085 & C_6 - C_6 + H_9 & 100.0 & 108.4 \\ C_6 = H_6 & 0.590 & 1.085 & C_6 - C_6 + H_9 & 100.0 & 108.4 \\ C_6 = H_6 & 0.590 & 1.086 & C_7 - C_9 + H_9 & 109.0 & 108.4 \\ C_6 = H_6 & 0.590 & 1.086 & C_7 - C_9 + H_9 & 109.0 & 108.4 \\ C_6 = H_6 & 0.590 & 1.086 & C_7 - C_9 + H_9 & 109.0 & 108.4 \\ C_6 = H_6 & 0.590 & 1.086 & C_7 - C_9 + H_9 & 109.0 & 108.4 \\ C_7 = C_6 - C_6 & 113.4 & 110$	$C_{14} - C_{16}$	1.307	1,390	$C_5 - C_4 - N_{12}$	109.5	108.8
$ \begin{array}{cccccc} 1 & 1378 & 1377 & 147 & 147 & 167 & 1067 & 1061 \\ C_{3}-C_{3} & C_{3}-C_{3} & 1336 & C_{1}-C_{1}-H_{10} & 1070 & 1053 \\ C_{3}-C_{3} & 1335 & 1335 & C_{1}-C_{1}-H_{10} & 1070 & 1053 \\ C_{3}-C_{3} & 1335 & 1335 & C_{1}-K_{1}-H_{1} & 1100 & 1093 \\ C_{3}-C_{1} & 1378 & 1336 & C_{1}-K_{1}-H_{1} & 1100 & 1093 \\ C_{3}-C_{4} & 1522 & 1333 & C_{1}-K_{1}-H_{1} & 1100 & 1093 \\ C_{3}-C_{4} & 1522 & 1333 & C_{1}-K_{1}-H_{1} & 1100 & 1093 \\ C_{3}-C_{4} & 1522 & 1333 & C_{1}-K_{1}-H_{1} & 1000 & 1107 \\ C_{3}-C_{4} & 0.990 & 1.097 & C_{1}-C_{1}-H_{1} & 1200 & 1180 \\ C_{3}-H_{4} & 0.990 & 1.097 & C_{1}-C_{1}-H_{2} & 1200 & 1203 \\ C_{3}-H_{4} & 0.990 & 1.097 & C_{1}-C_{4}-H_{1} & 1200 & 1203 \\ C_{3}-H_{4} & 0.990 & 1.097 & C_{4}-C_{4}-H_{2} & 1200 & 1203 \\ C_{3}-H_{4} & 0.990 & 1.007 & C_{3}-C_{1}-H_{2} & 1200 & 1203 \\ C_{3}-H_{4} & 0.990 & 1.007 & C_{3}-C_{1}-H_{2} & 1200 & 1203 \\ C_{3}-H_{4} & 0.990 & 1.007 & C_{3}-C_{1}-H_{2} & 1200 & 1201 \\ C_{4}-H_{5} & 0.910 & 1.107 & C_{5}-C_{1}-H_{2} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1187 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1187 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1187 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1200 & 1201 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1000 & 1032 \\ C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1000 & 1031 \\ C_{4}-C_{4}-H_{5} & 0.950 & 1.086 & C_{4}-C_{5}-H_{5} & 1000 & 1001 \\ C_{5}-H_{5} & 0.00 & 1003 & 00.0101 \\ C_{5}-H_{5} & 0.00 & 00.0103 \\$		1,352	1,354	$H_2 = C_4 - N_{12}$	109.0	107.7
$ \begin{array}{c} c_1 - c_2 - c_1 & 1.39 & 1.396 & c_1 - c_2 - h_1 & 1070 & 1063 \\ c_2 - c_2 & 1.395 & 1.395 & c_1 - c_2 - h_1 & 1070 & 1055 \\ c_2 - c_1 & 1.385 & 1.395 & c_1 - c_2 - h_1 & 1070 & 1085 \\ c_3 - c_1 & 1.379 & 1.386 & c_1 - h_2 - c_2 & 1117 & 1143 \\ c_5 - c_6 & 1.526 & 1.533 & c_1 - h_2 - h_4 & 1088 & 1092 \\ c_4 - c_6 & 1.526 & 1.533 & c_1 - h_2 - h_4 & 1088 & 1092 \\ c_4 - c_6 & 1.520 & 1.333 & c_1 - c_1 - h_1 & 1200 & 1157 \\ c_4 - h_1 & 0.00 & 1.007 & c_4 - c_4 - h_1 & 1200 & 1137 \\ c_4 - h_1 & 0.00 & 1.007 & c_4 - c_4 - h_1 & 1200 & 1137 \\ c_4 - h_1 & 0.00 & 1.107 & c_4 - c_4 - h_1 & 1200 & 1137 \\ c_4 - h_4 & 1.000 & 1.107 & c_4 - c_4 - h_1 & 1200 & 1203 \\ c_4 - h_4 & 1.000 & 1.107 & c_4 - c_4 - h_2 & 1200 & 1201 \\ c_4 - h_4 & 0.000 & 1.007 & c_4 - c_4 - h_2 & 1200 & 1201 \\ c_4 - h_4 & 0.000 & 1.007 & c_4 - c_4 - h_2 & 1200 & 1202 \\ c_5 - h_1 & 0.050 & 1.088 & c_1 - c_5 - h_2 & 1200 & 1202 \\ c_5 - h_1 & 0.050 & 1.088 & c_1 - c_5 - h_2 & 1200 & 1204 \\ c_4 - h_4 & 0.050 & 1.086 & c_1 - c_5 - h_2 & 1200 & 1204 \\ c_4 - h_4 & 0.500 & 1.086 & c_1 - c_5 - h_2 & 1200 & 1204 \\ c_5 - h_6 & 0.500 & 1.088 & c_7 - c_5 - h_2 & 1200 & 1204 \\ c_6 - h_2 & 0.500 & 1.086 & c_1 - c_5 - h_2 & 1200 & 1184 \\ c_6 - h_2 & 0.500 & 1.086 & c_1 - c_5 - h_2 & 1200 & 1184 \\ c_6 - h_2 & 0.500 & 1.086 & c_1 - c_5 - h_2 & 1200 & 1204 \\ c_6 - c_5 - h_8 & 0.500 & 1.086 & c_7 - c_5 - h_3 & 1200 & 1185 \\ c_6 - h_8 & 0.500 & 1.086 & c_7 - c_5 - h_3 & 1200 & 1204 \\ c_6 - h_8 & 0.500 & 1.086 & c_7 - c_5 - h_3 & 1200 & 1201 \\ c_6 - h_8 & 0.500 & 1.086 & c_7 - c_5 - h_3 & 1200 & 1201 \\ c_6 - h_8 & 0.500 & 1.086 & c_7 - c_5 - h_3 & 1200 & 1201 \\ c_6 - h_8 & 0.500 & 1.086 & c_7 - c_5 - h_3 & 1000 & 1083 \\ c_6 - h_8 & 0.500 & 1.086 & c_6 - c_5 - h_4 & 1000 & 1083 \\ c_6 - h_8 & 0.500 & 1.086 & c_6 - c_5 - h_4 & 1000 & 1083 \\ c_6 - h_8 & 0.500 & 1.086 & c_6 - c_5 - h_4 & 1000 & 1083 \\ c_6 - h_8 & 0.500 & 1.086 & c_6 - c_5 - h_4 & 1000 & 1083 \\ c_6 - h_8 & 0.500 & 1.086 & c_6 - c_5 - h_4 & 1000 & 1083 \\ c_6 - h_8 & 0.500 & 1.086 & c_6 - c_5 - h_4 & 1000$	$C_{16} - C_{20}$	1.332	1,395	$N_{12} = C_1 = C_{13}$	109.0	107.7
$ \begin{array}{c} c_{\alpha} - C_{\alpha} & 1.36 & 1.365 & c_{\alpha} - C_{\alpha} + B_{\alpha} & 1070 & 1053 \\ c_{\alpha} - C_{\alpha} & 1.379 & 1.386 & 1.385 & H_{\alpha} - C_{5} & 1080 & 1089 \\ c_{\alpha} - C_{\alpha} & 1.522 & 1.335 & C_{\alpha} - N_{\alpha} - H_{\alpha} & 1100 & 1005 \\ c_{\alpha} - C_{\alpha} & 1.521 & 1.334 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1100 & 1187 \\ c_{\alpha} - C_{\alpha} & 1.521 & 1.334 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1184 \\ c_{\alpha} - C_{\alpha} & 1.521 & 1.334 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - C_{\alpha} & 1.521 & 1.334 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - C_{\alpha} & 1.521 & 1.334 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - C_{\alpha} & 1.522 & 1.332 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - C_{\alpha} & 1.000 & 1.007 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.002 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.007 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.008 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.991 & 1.017 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1202 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1202 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - C_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1187 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1200 & 1202 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1000 & 1087 \\ c_{\alpha} - H_{\alpha} & 0.950 & 1.086 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1080 & 108.5 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.097 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1080 & 108.5 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.096 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1080 & 108.5 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.096 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1080 & 108.5 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.096 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1080 & 108.5 \\ c_{\alpha} - H_{\alpha} & 0.990 & 1.096 & C_{\alpha} - C_{\alpha} - H_{\alpha} & 1080 & 108$	$C_{18} = C_{20}$	1.378	1,397	$N_{12} - C_4 - C_{13}$	108.7	105.1
$ \begin{array}{c} c_{\alpha} - C_{\alpha} & c_{\alpha} + c_{\alpha} + c_{\alpha} + c_{\alpha} & c_{\alpha} & c_{\alpha} + c_{\alpha} $	$C_{25} - C_{27}$	1,391	1,390	$C_1 - C_5 - \Pi_{10}$	107.0	105.5
$\begin{array}{ccccccc} C_{2} C_{2} C_{2} C_{3} C_{4} C_{5} C_{5}$	$C_{26} - C_{29}$	1.595	1,595	$C_4 - C_5 - \Pi_{10}$	107.0	105.5
$ \begin{array}{c} C_{\alpha} - C_{\alpha} & (1,3) + (1,3) $	$C_{27} - C_{31}$	1.365	1,393	$\Pi_{10} - C_5 - C_{35}$	109.0	114.2
$\begin{array}{c} Lis-Lis & 1.322 & 1.333 & Lis-N_2-His & 10.0 & 10.95 \\ Car \cdot Car & 1.525 & 1.533 & Car \cdot Car +His & 10.88 & 10.24 \\ Car \cdot Car & 1.522 & 1.533 & Car \cdot Car +His & 10.0 & 11.97 \\ Car \cdot Car & 1.999 & 10.997 & Car \cdot Car +His & 120.0 & 120.3 \\ Car \cdot Car & 1.999 & 10.997 & Car \cdot Car +His & 120.0 & 120.3 \\ Car \cdot Lar & 0.999 & 10.997 & Car \cdot Car +His & 120.0 & 120.3 \\ Car \cdot Lar & 0.000 & 1.107 & Car \cdot Car +His & 120.0 & 120.3 \\ Car \cdot His & 1.000 & 1.107 & Car \cdot Car +His & 120.0 & 120.3 \\ Car \cdot His & 0.000 & 1.107 & Car \cdot Car +His & 120.0 & 120.2 \\ Car \cdot His & 0.000 & 1.007 & Car \cdot Car +His & 120.0 & 120.2 \\ Car \cdot His & 0.950 & 1.0867 & Car \cdot Car +His & 120.0 & 120.2 \\ Car \cdot Lar & 0.950 & 1.0868 & Car \cdot Car +His & 120.0 & 120.1 \\ Car \cdot Lar & 0.950 & 1.0868 & Car \cdot Car +His & 120.0 & 119.7 \\ Car \cdot Car & Lar &$	$C_{29} - C_{31}$	1.379	1.396	$C_3 = N_{12} - C_4$	111.7	114.3
$\begin{array}{ccccccc} {Lab} & 1.326 & 1.323 & {L}^{-n} {L}^{-n} & 1.083 & 1.09.2 \\ {Lab} {Lab} & {L}^{-n} {L}^{-n} & 1.081 & 1.032 & {L}^{-n} {L}^{-n} & 1.00 & 1.194 \\ {Lab} {Lab} & {L}^{-n} {L}^{-n} & 1.00 & 1.194 \\ {Lab} & {L}^{-n} {L}^{-n} & 1.00 & 1.195 & {L}^{-n} {L}^{-n} {L}^{-n} & 1.00 & 1.194 \\ {Lab} & {L}^{-n} {L}^{-n} & 1.00 & 1.107 & {L}^{-n} {L}^{-n} {L}^{-n} & 1.00 & 1.107 \\ {L}^{-n} {L}^{-n} & {L}^{-n} & {L}^{-n} & 1.00 & 1.107 \\ {L}^{-n} {L}^{-n} & {L}^{-n} & {L}^{-n} & 1.00 & 1.107 \\ {L}^{-n} {L}^{-n} & {L}^{-n} & {L}^{-n} & {L}^{-n} & 1.200 & 1.127 \\ {L}^{-n} {L}^{-n} & {L}^{-n} \\ {L}^{-n} {L}^{-n} & {L}^{-n} \\ {L}^{-n} {L}^{-n} & {L}^{-n} \\ {L}^{-n} {L}^{-n} & {L}^$	$C_{35} - C_{36}$	1.522	1.535	$C_3 - N_{12} - H_8$	110.0	109.5
$\begin{array}{c} C_{a} C_{a} C_{a} \\ C_{a} C_{a} C_{a} \\ C_{a} C_{a} \\ C_{b} \\ C$	C ₃₆ -C ₃₉	1.526	1.533	$C_4 - N_{12} - H_8$	108.8	109.2
$\begin{array}{c} C_{g} - L_{g} & 0.990 & 1.027 & C_{g} - C_{g} - H_{g} & 1.200 & 119.0 \\ C_{g} - H_{g} & 0.990 & 1.027 & C_{g} - C_{g} - H_{g} & 120.0 & 120.3 \\ C_{g} - H_{g} & 1.000 & 1.107 & C_{g} - C_{g} - H_{g} & 120.0 & 119.1 \\ C_{g} - H_{g} & 1.000 & 1.100 & C_{g} - C_{g} - H_{g} & 120.0 & 120.0 \\ C_{g} - H_{g} & 1.000 & 1.100 & C_{g} - C_{g} - H_{g} & 120.0 & 120.0 \\ C_{g} - H_{g} & 0.990 & 1.087 & C_{g} - C_{g} - H_{g} & 120.0 & 120.0 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 119.7 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 119.7 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 119.7 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 118.9 \\ C_{g} - C_{g} & 1.385 & 1.400 & C_{g} - C_{g} - H_{g} & 120.0 & 120.4 \\ C_{g} - C_{g} & 1.385 & 1.400 & C_{g} - C_{g} - H_{g} & 120.0 & 120.4 \\ C_{g} - C_{g} & 1.385 & 1.402 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 120.0 & 120.1 \\ C_{g} - H_{g} & 0.950 & 1.086 & C_{g} - C_{g} - H_{g} & 100.0 & 108.8 \\ C_{g} - H_{g} & 0.990 & 1.095 & C_{g} - C_{g} - H_{g} & 100.0 & 108.8 \\ C_{g} - H_{g} & 0.990 & 1.095 & C_{g} - C_{g} - H_{g} & 100.0 & 108.8 \\ C_{g} - H_{g} & 0.990 & 1.095 & C_{g} - C_{g} - H_{g} & 100.0 & 108.9 \\ C_{g} - H_{g} & 0.990 & 1.095 & C_{g} - C_{g} - H_{g} & 100.0 & 109.1 \\ C_{g} - H_{g} & 0.990 & 1.095 & C_{g} - C_{g} - H_{g} & 100.0 & 109.1 \\ C_{g} - H_{g} & 0.980 & 1.095 & C_{g} - C_{g} - H_{g} & 100.0 & 109.1 \\ C_{g} - C_{g} - C_{g} & 110.8 & 115.7 & C_{g} - C_{g} - H_{g} & 100.0 & 109.1 \\ C_{g} - C_{g} -$	C ₃₉ -C ₄₂	1.521	1.534	$C_{13} - C_{14} - H_{17}$	120.0	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{42} - C_{47}$	1.522	1.532	$C_{16} - C_{14} - H_{17}$	120.0	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 - H_6$	0.990	1.097	$C_{13} - C_{15} - H_{19}$	120.0	119.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2-H_7	0.990	1.092	$C_{18} - C_{15} - H_{19}$	120.0	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃ -H ₁₁	1.000	1.107	$C_{14} - C_{16} - H_{21}$	120.0	119.7
$\begin{array}{ccccc} -H_{0} & 1.00 & 1.100 & C_{13} - C_{10} - H_{2} & 12.00 & 119.7 \\ C_{14} - H_{17} & 0.951 & 1.007 & C_{10} - H_{22} & 12.00 & 12.00 \\ C_{14} - H_{17} & 0.955 & 1.087 & C_{10} - C_{20} - H_{23} & 12.00 & 12.01 \\ C_{10} - H_{11} & 0.955 & 1.086 & C_{14} - C_{20} - H_{23} & 12.00 & 119.7 \\ C_{10} - H_{21} & 0.955 & 1.086 & C_{24} - C_{24} - H_{24} & 12.00 & 119.7 \\ C_{10} - H_{23} & 0.955 & 1.086 & C_{24} - C_{24} - H_{24} & 12.00 & 119.7 \\ C_{10} - H_{23} & 0.955 & 1.086 & C_{24} - C_{24} - H_{23} & 12.00 & 120.4 \\ C_{24} - C_{26} & 1.385 & 1.400 & C_{29} - C_{24} - H_{23} & 12.00 & 120.4 \\ C_{24} - C_{26} & 1.388 & 1.402 & C_{23} - C_{27} - H_{22} & 12.00 & 120.1 \\ C_{26} - H_{30} & 0.955 & 1.085 & C_{20} - C_{29} - H_{23} & 12.00 & 120.1 \\ C_{26} - H_{31} & 0.955 & 1.085 & C_{29} - C_{29} - H_{33} & 12.00 & 120.0 \\ C_{29} - H_{31} & 0.955 & 1.086 & C_{77} - C_{17} - H_{24} & 12.00 & 120.1 \\ C_{26} - H_{31} & 0.955 & 1.086 & C_{77} - C_{17} - H_{24} & 12.00 & 120.1 \\ C_{26} - H_{31} & 0.955 & 1.086 & C_{77} - C_{17} - H_{24} & 12.00 & 120.1 \\ C_{29} - H_{31} & 0.955 & 1.086 & C_{77} - C_{17} - H_{24} & 12.00 & 120.1 \\ C_{29} - H_{31} & 0.950 & 1.086 & C_{57} - C_{17} - H_{24} & 12.00 & 120.1 \\ C_{26} - H_{31} & 0.950 & 1.086 & C_{57} - C_{51} - H_{34} & 12.00 & 120.2 \\ C_{26} - H_{46} & 0.990 & 1.097 & C_{29} - C_{13} - H_{24} & 120.0 & 120.1 \\ C_{29} - H_{46} & 0.990 & 1.096 & C_{29} - C_{23} - H_{23} & 199.0 & 108.8 \\ C_{20} - H_{40} & 0.990 & 1.099 & C_{20} - C_{20} - H_{23} & 199.0 & 108.1 \\ C_{29} - H_{46} & 0.990 & 1.099 & C_{20} - C_{20} - H_{23} & 199.0 & 109.1 \\ C_{27} - H_{48} & 0.980 & 1.096 & C_{29} - C_{29} - H_{23} & 199.0 & 109.1 \\ C_{27} - H_{26} & 0.980 & 1.096 & C_{29} - C_{29} - H_{23} & 199.0 & 109.1 \\ C_{27} - C_{27} & 110.4 & 11.0 & C_{29} - C_{29} - H_{23} & 199.0 & 109.1 \\ C_{27} - C_{27} & 110.4 & 11.0 & C_{29} - C_{29} - H_{23} & 199.0 & 109.1 \\ C_{27} - C_{27} & 110.4 & 110.0 & C_{29} - C_{29} - H_{23} & 199.0 & 109.1 \\ C_{27} - C_{27} & 110.8 & 111.7 & C_{29} - C_{29} - H_{$	C_4-H_9	1.000	1.107	$C_{20} - C_{16} - H_{21}$	120.0	120.1
	$C_5 - H_{10}$	1.000	1.100	$C_{15} - C_{18} - H_{22}$	120.0	119.7
$\begin{array}{c} c_1 + H_{17} & 0.550 & 1.087 & C_1 - C_{27} + H_{23} & 120.0 & 120.2 \\ c_1 + H_{21} & 0.550 & 1.086 & C_{21} - C_{23} + H_{23} & 120.0 & 119.4 \\ c_1 + H_{21} & 0.550 & 1.086 & C_{21} - C_{23} + H_{23} & 120.0 & 119.7 \\ c_2 - H_{23} & 0.550 & 1.086 & C_{21} - C_{23} + H_{23} & 120.0 & 118.9 \\ c_{21} - C_{25} & 1.385 & 1.400 & C_{27} - C_{28} - H_{29} & 120.0 & 119.7 \\ c_{24} - C_{25} & 1.389 & 1.402 & C_{21} - H_{22} & 120.0 & 119.7 \\ c_{23} - H_{23} & 0.550 & 1.086 & C_{21} - C_{29} - H_{22} & 120.0 & 119.7 \\ c_{23} - H_{23} & 0.550 & 1.087 & C_{21} - C_{27} - H_{22} & 120.0 & 119.7 \\ c_{23} - H_{29} & 0.550 & 1.085 & C_{21} - C_{29} + H_{31} & 120.0 & 119.7 \\ c_{27} - H_{22} & 0.550 & 1.086 & C_{21} - C_{29} - H_{31} & 120.0 & 119.7 \\ c_{29} - H_{21} & 0.550 & 1.086 & C_{21} - C_{21} - C_{29} & 119.7 & 119.6 \\ c_{31} - H_{34} & 0.550 & 1.086 & C_{27} - C_{31} - C_{39} & 119.7 & 119.6 \\ c_{31} - H_{34} & 0.590 & 1.096 & C_{5} - C_{51} - H_{54} & 120.0 & 120.1 \\ c_{35} - H_{37} & 0.990 & 1.097 & C_{29} - H_{31} & 120.0 & 120.1 \\ c_{35} - H_{37} & 0.990 & 1.096 & C_{5} - C_{53} - H_{37} & 109.0 & 108.8 \\ c_{37} - H_{41} & 0.090 & 1.096 & C_{5} - C_{53} - H_{37} & 109.0 & 108.9 \\ c_{37} - H_{43} & 0.990 & 1.096 & C_{37} - C_{37} - H_{34} & 109.0 & 108.9 \\ c_{37} - H_{43} & 0.990 & 1.096 & C_{37} - C_{37} - H_{34} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.490 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.490 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.490 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.490 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.490 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - C_{47} & 0.990 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - C_{47} & 0.990 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - C_{47} & 0.990 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.1 \\ c_{47} - C_{47} & 0.990 & 1.096 & C_{37} - C_{37} - H_{31} & 109.0 & 109.$	$H_8 - N_{12}$	0.911	1.017	$C_{20} - C_{18} - H_{22}$	120.0	120.0
$\begin{array}{c} c_3-H_{19} & 0.950 & 1.086 & C_3-C_{32}-H_{38} & 120.0 & 120.1 \\ C_{10}-H_{21} & 0.950 & 1.086 & C_3-C_{32}-H_{38} & 120.0 & 119.7 \\ C_{10}-H_{22} & 0.950 & 1.086 & C_3-C_{32}-H_{38} & 120.0 & 119.7 \\ C_{10}-H_{21} & 0.950 & 1.086 & C_3-C_{32}-H_{30} & 120.0 & 120.4 \\ C_{32}-C_{35} & 1.385 & 1.400 & C_{32}-C_{32}-H_{30} & 120.0 & 119.7 \\ C_{32}-H_{32} & 0.950 & 1.087 & C_{31}-C_{32}-H_{31} & 120.0 & 119.7 \\ C_{33}-H_{32} & 0.950 & 1.087 & C_{31}-C_{32}-H_{33} & 120.0 & 119.7 \\ C_{33}-H_{32} & 0.950 & 1.085 & C_{31}-C_{32}-H_{33} & 120.0 & 120.1 \\ C_{32}-H_{32} & 0.950 & 1.086 & C_{31}-C_{32}-H_{33} & 120.0 & 120.1 \\ C_{32}-H_{31} & 0.950 & 1.086 & C_{31}-C_{32}-H_{33} & 120.0 & 120.1 \\ C_{32}-H_{31} & 0.950 & 1.086 & C_{31}-C_{32}-H_{33} & 120.0 & 120.1 \\ C_{33}-H_{34} & 0.950 & 1.086 & C_{31}-C_{31}-H_{34} & 120.0 & 120.1 \\ C_{33}-H_{34} & 0.950 & 1.086 & C_{31}-C_{31}-H_{34} & 120.0 & 120.1 \\ C_{33}-H_{34} & 0.950 & 1.086 & C_{31}-C_{31}-H_{34} & 120.0 & 120.1 \\ C_{33}-H_{34} & 0.990 & 1.097 & C_{32}-C_{31}-H_{34} & 120.0 & 108.8 \\ C_{33}-H_{34} & 0.990 & 1.096 & C_{31}-C_{32}-H_{33} & 109.0 & 108.8 \\ C_{33}-H_{34} & 0.990 & 1.100 & C_{32}-C_{32}-H_{38} & 109.0 & 108.9 \\ C_{33}-H_{34} & 0.990 & 1.098 & C_{31}-C_{32}-H_{38} & 109.0 & 109.1 \\ C_{33}-H_{34} & 0.990 & 1.098 & C_{31}-C_{32}-H_{38} & 109.0 & 109.1 \\ C_{33}-H_{34} & 0.990 & 1.099 & C_{31}-C_{32}-H_{38} & 109.0 & 109.1 \\ C_{33}-H_{34} & 0.980 & 1.096 & C_{31}-C_{32}-H_{38} & 109.0 & 109.1 \\ C_{33}-H_{34} & 0.980 & 1.096 & C_{33}-C_{33}-H_{38} & 109.0 & 109.1 \\ C_{37}-H_{30} & 0.980 & 1.096 & C_{32}-C_{32}-H_{34} & 109.0 & 109.1 \\ C_{37}-H_{30} & 0.980 & 1.096 & C_{32}-C_{32}-H_{44} & 109.0 & 109.1 \\ C_{37}-H_{30} & 0.980 & 1.096 & C_{32}-C_{32}-H_{44} & 109.0 & 109.1 \\ C_{37}-H_{30} & 0.980 & 1.096 & C_{33}-C_{33}-H_{33} & 109.0 & 109.1 \\ C_{37}-H_{30} & 0.980 & 1.096 & C_{32}-C_{33}-H_{44} & 109.0 & 109.1 \\ C_{37}-C_{35} & 116.0 & 115.1 & H_{32}-C_{33}-H_{44} & 109.0 & 109.1 \\ C_{37}-C_{35} & 112.3 & 112.8 & C_{33}-C_{33}-H_{44} & 109.0 & 109$	C ₁₄ -H ₁₇	0.950	1.087	$C_{16} - C_{20} - H_{23}$	120.0	120.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{15}-H_{19}$	0.950	1.086	$C_{18} - C_{20} - H_{23}$	120.0	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₆ -H ₂₁	0.950	1.086	$C_{24} - C_{25} - H_{28}$	120.0	119.4
$\begin{array}{c} C_{2n}-R_{2n} & 0.950 & 1.086 & C_{2n}-C_{3n} & 12.00 & 118.9 \\ C_{3n}-C_{5n} & 1.385 & 1.400 & C_{2n}-C_{5n}-H_{3n} & 12.00 & 113.7 \\ C_{5n}-H_{5n} & 0.950 & 1.087 & C_{2n}-C_{2n}-H_{3n} & 12.00 & 113.7 \\ C_{5n}-H_{5n} & 0.950 & 1.087 & C_{2n}-C_{2n}-H_{3n} & 12.00 & 113.7 \\ C_{5n}-H_{5n} & 0.950 & 1.086 & C_{2n}-C_{2n}-H_{3n} & 12.00 & 120.1 \\ C_{5n}-H_{5n} & 0.950 & 1.086 & C_{2n}-C_{2n}-H_{3n} & 12.00 & 120.1 \\ C_{5n}-H_{5n} & 0.950 & 1.086 & C_{2n}-C_{2n}-H_{3n} & 12.00 & 120.1 \\ C_{5n}-H_{5n} & 0.950 & 1.086 & C_{2n}-C_{2n}-H_{3n} & 120.0 & 120.1 \\ C_{5n}-H_{5n} & 0.950 & 1.086 & C_{2n}-C_{2n}-H_{3n} & 120.0 & 120.1 \\ C_{5n}-H_{5n} & 0.990 & 1.097 & C_{2n}-C_{1n}+H_{4n} & 120.0 & 120.1 \\ C_{5n}-H_{5n} & 0.990 & 1.096 & C_{5n}-C_{3n}-H_{3n} & 109.0 & 108.8 \\ C_{5n}-H_{4n} & 0.990 & 1.095 & C_{n}-C_{2n}-H_{3n} & 109.0 & 108.9 \\ C_{5n}-H_{4n} & 0.990 & 1.096 & C_{5n}-C_{5n}-H_{3n} & 109.0 & 108.9 \\ C_{5n}-H_{4n} & 0.990 & 1.099 & H_{7n}-C_{5n}-H_{3n} & 109.0 & 108.9 \\ C_{5n}-H_{4n} & 0.990 & 1.099 & H_{7n}-C_{5n}-H_{3n} & 109.0 & 108.9 \\ C_{2n}-H_{4n} & 0.990 & 1.099 & C_{5n}-C_{5n}-H_{4n} & 109.0 & 109.1 \\ C_{2n}-H_{4n} & 0.990 & 1.099 & C_{5n}-C_{5n}-H_{4n} & 109.0 & 109.1 \\ C_{2n}-H_{4n} & 0.990 & 1.099 & C_{5n}-C_{5n}-H_{4n} & 109.0 & 109.1 \\ C_{2n}-H_{4n} & 0.980 & 1.099 & C_{5n}-C_{5n}-H_{4n} & 109.0 & 109.1 \\ C_{2n}-H_{4n} & 0.980 & 1.099 & C_{5n}-C_{5n}-H_{4n} & 109.0 & 109.1 \\ C_{2n}-C_{2n} & 116.0 & 115.1 & C_{2n}-C_{5n}-H_{4n} & 109.0 & 109.1 \\ C_{2n}-C_{2n} & 116.0 & 115.1 & C_{2n}-C_{5n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 116.0 & 115.1 & C_{2n}-C_{5n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 110.8 & 111.7 & C_{2n}-C_{5n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 110.8 & 111.7 & C_{2n}-C_{5n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 110.8 & 111.7 & C_{2n}-C_{5n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 100.6 & 115.1 & H_{2n}-C_{2n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 100.6 & 116.7 & H_{2n}-C_{2n}-H_{4n} & 109.0 & 109.2 \\ C_{2n}-C_{2n} & 100.6 & 116.7 & H_{2n}-C_{2n}-H_{4n} & 109.$	C ₁₈ -H ₂₂	0.950	1.086	$C_{27} - C_{25} - H_{28}$	120.0	119.7
$\begin{array}{cccc} C_{2a} - C_{2b} & 1.385 & 1.400 & C_{2a} - C_{2b} & 12.00 & 120.1 \\ C_{2a} - C_{2b} & 13.89 & 1.402 & C_{2b} - C_{2b} & 120.0 & 120.1 \\ C_{2a} - H_{2b} & 0.950 & 1.087 & C_{1a} - C_{2b} + H_{2b} & 120.0 & 120.1 \\ C_{2a} - H_{2b} & 0.950 & 1.085 & C_{2a} - C_{2b} + H_{2b} & 120.0 & 120.1 \\ C_{2a} - H_{2b} & 0.950 & 1.086 & C_{2a} - C_{2b} + H_{2b} & 120.0 & 120.1 \\ C_{2a} - H_{2b} & 0.950 & 1.086 & C_{2b} - C_{2b} & 119.7 & 119.6 \\ C_{2a} - H_{2b} & 0.950 & 1.086 & C_{2b} - C_{2b} & 119.7 & 119.6 \\ C_{3a} - H_{3b} & 0.950 & 1.086 & C_{2b} - C_{1b} + H_{2b} & 120.0 & 120.1 \\ C_{3a} - H_{3b} & 0.990 & 1.097 & C_{2b} - C_{1b} + H_{2b} & 120.0 & 120.1 \\ C_{3a} - H_{3b} & 0.990 & 1.095 & C_{2b} - C_{1b} + H_{2b} & 120.0 & 120.2 \\ C_{3a} - H_{4b} & 0.990 & 1.095 & C_{2b} - C_{3a} + H_{3b} & 109.0 & 108.8 \\ C_{3a} - H_{4b} & 0.990 & 1.000 & C_{2b} - C_{2b} + H_{3b} & 109.0 & 108.1 \\ C_{2a} - H_{4b} & 0.990 & 1.009 & H_{2b} - C_{2b} - H_{3b} & 109.0 & 100.1 \\ C_{2a} - H_{4b} & 0.990 & 1.099 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - H_{4b} & 0.990 & 1.099 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - H_{4b} & 0.980 & 1.096 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - H_{4b} & 0.980 & 1.095 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - H_{4b} & 0.980 & 1.095 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - H_{4b} & 0.980 & 1.095 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - H_{2b} & 0.980 & 1.095 & C_{2b} - C_{2b} - H_{2b} & 109.0 & 100.1 \\ C_{2a} - C_{2c} - C_{2c} & 111.4 & 110.0 & C_{2a} - C_{2b} - H_{2b} & 109.0 & 109.1 \\ C_{2c} - C_{2c} & 111.4 & 110.0 & C_{2a} - C_{2b} - H_{4b} & 109.0 & 109.1 \\ C_{2c} - C_{2c} & 110.8 & 111.7 & C_{2b} - C_{2b} - H_{4b} & 109.0 & 109.1 \\ C_{2c} - C_{2c} & 110.8 & 111.7 & C_{2b} - C_{2b} - H_{4b} & 109.0 & 109.1 \\ C_{2c} - C_{2c} & 110.8 & 111.7 & C_{2b} - C_{2b} - H_{4b} & 109.0 & 109.1 \\ C_{2c} - C_{2c} & 110.8 & 111.7 & C_{2b} - C_{2b} - H_{4b} & 109.0 & 109.1 \\ C_{2c} - C_{2c} & 111.4 & 110.0 & C_{2b} - C_{2b} - H_{4b} & $	C ₂₀ -H ₂₃	0.950	1.086	$C_{24} - C_{26} - H_{30}$	120.0	118.9
$\begin{array}{cccc} C_{2a}-C_{2a} & -H_{2a} & 0.050 & 1.087 & C_{2a}-C_{2a}-H_{2a} & 12.0. & 119.7 \\ C_{2a}+H_{3b} & 0.050 & 1.085 & C_{3a}-C_{2a}-H_{3b} & 12.0. & 120.1 \\ C_{2a}+H_{31} & 0.050 & 1.086 & C_{31}-C_{2a}-H_{3b} & 120.0 & 120.0 \\ C_{2a}+H_{31} & 0.050 & 1.086 & C_{31}-C_{31}-H_{3b} & 120.0 & 120.1 \\ C_{3a}+H_{31} & 0.050 & 1.086 & C_{2a}-C_{31}-H_{3b} & 120.0 & 120.1 \\ C_{3a}+H_{31} & 0.050 & 1.086 & C_{2a}-C_{31}-H_{3b} & 120.0 & 120.1 \\ C_{3a}+H_{31} & 0.050 & 1.086 & C_{2a}-C_{31}-H_{3b} & 120.0 & 120.2 \\ C_{3a}-H_{30} & 0.099 & 1.097 & C_{2a}-C_{31}-H_{3b} & 120.0 & 120.2 \\ C_{3a}-H_{30} & 0.0990 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 108.8 \\ C_{3a}-H_{41} & 0.0990 & 1.100 & C_{3a}-C_{3a}-H_{3a} & 109.0 & 108.9 \\ C_{3a}-H_{41} & 0.0990 & 1.099 & C_{3a}-C_{3a}-H_{3a} & 109.0 & 108.9 \\ C_{3a}-H_{41} & 0.990 & 1.099 & C_{3a}-C_{3a}-H_{3a} & 109.0 & 108.1 \\ C_{3a}-H_{4a} & 0.990 & 1.099 & C_{3a}-C_{3a}-H_{3a} & 108.0 & 107.0 \\ C_{aa}-H_{4a} & 0.990 & 1.099 & C_{3a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4a} & 0.980 & 1.096 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4a} & 0.980 & 1.096 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4b} & 0.980 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4b} & 0.980 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4b} & 0.980 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4b} & 0.980 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{4b} & 0.980 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-H_{ab} & 0.980 & 1.095 & C_{2a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-C_{ab} & 111.4 & 110.0 & C_{3a}-C_{3a}-H_{3a} & 109.0 & 109.1 \\ C_{aa}-C_{ab} & 111.4 & 110.0 & C_{ab}-C_{aa}-H_{ab} & 109.0 & 109.4 \\ C_{aa}-C_{ab} & 111.2 & C_{ab}-C_{aa}-H_{ab} & 109.0 & 109.2 \\ C_{aa}-C_{aa}-C_{ab} & 110.3 & 111.7 & C_{ab}-C_{aa}-H_{ab} & 109.0 & 109.1 \\ C_{aa}-C_{aa}-C_{ab} & 110.3 & 111.7 & C_{ab}-C_{aa}-H_{ab} & 109.0 & 109.1 \\ C_{aa}-C_{aa}-C_{ab} & 110.3 & 112.8 & C_{aa}-C_{aa}-H_{ab} & 109.0 & 109.1 \\ C_{aa}-C_{aa}-C_{ab} &$	C ₂₄ -C ₂₅	1.385	1.400	$C_{29} - C_{26} - H_{30}$	120.0	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24} - C_{26}$	1.389	1.402	$C_{25} - C_{27} - H_{32}$	120.0	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂₅ -H ₂₈	0.950	1.087	$C_{31} - C_{27} - H_{32}$	120.0	120.1
$\begin{array}{ccccc} c_2 - H_{32} & 0.950 & 1.086 & C_1 - C_9 + H_{33} & 120.0 & 120.0 \\ c_{30} + H_{31} & 0.950 & 1.086 & C_1 - C_1 - H_{34} & 120.0 & 120.1 \\ c_{31} + H_{34} & 0.950 & 1.086 & C_2 - C_{31} - H_{34} & 120.0 & 120.1 \\ c_{35} + H_{36} & 0.990 & 1.097 & C_9 - C_{11} - H_{34} & 120.0 & 120.2 \\ c_{35} + H_{36} & 0.990 & 1.095 & C_7 - C_{33} + H_{37} & 109.0 & 108.8 \\ c_{36} - H_{41} & 0.990 & 1.095 & C_7 - C_{33} - H_{37} & 109.0 & 108.9 \\ c_{39} - H_{41} & 0.990 & 1.100 & C_{36} - C_{35} - H_{38} & 109.0 & 108.9 \\ c_{39} - H_{41} & 0.990 & 1.009 & H_{17} - C_{55} - H_{38} & 109.0 & 108.9 \\ c_{39} - H_{41} & 0.990 & 1.009 & C_{36} - C_{35} - H_{36} & 109.0 & 100.2 \\ c_{2} - H_{45} & 0.990 & 1.009 & C_{36} - C_{35} - H_{40} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.980 & 1.096 & C_{36} - C_{35} - H_{40} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.980 & 1.096 & C_{36} - C_{53} - H_{37} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.980 & 1.096 & C_{36} - C_{35} - H_{38} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.980 & 1.096 & C_{36} - C_{53} - H_{38} & 109.0 & 109.1 \\ c_{47} - H_{49} & 0.980 & 1.095 & C_{36} - C_{53} - H_{38} & 109.0 & 109.1 \\ c_{47} - H_{49} & 0.980 & 1.095 & C_{36} - C_{53} - H_{38} & 109.0 & 109.1 \\ c_{47} - H_{49} & 0.980 & 1.095 & C_{36} - C_{53} - H_{38} & 109.0 & 109.1 \\ c_{47} - C_{45} & 111.4 & 110.0 & C_{36} - C_{53} - H_{41} & 109.0 & 109.1 \\ c_{47} - C_{45} & 111.4 & 110.0 & C_{36} - C_{39} - H_{41} & 109.0 & 109.2 \\ c_{5} - C_{4} & 10.8 & 111.7 & C_{46} - C_{29} - H_{43} & 109.0 & 109.2 \\ c_{5} - C_{4} & 10.9 & 107.6 & C_{29} - C_{29} - H_{43} & 109.0 & 109.1 \\ c_{4} - C_{5} - C_{4} & 109.6 & 107.6 & C_{29} - C_{9} - H_{44} & 109.0 & 109.1 \\ c_{4} - C_{5} - C_{5} & 107.0 & 112.4 & H_{43} - C_{59} - H_{44} & 109.0 & 109.1 \\ c_{4} - C_{5} - C_{5} & 107.0 & 112.4 & H_{45} - C_{47} - H_{16} & 109.0 & 109.1 \\ c_{4} - C_{5} - C_{5} & 107.0 & 118.7 & H_{45} - C_{47} - H_{49} & 109.0 & 109.1 \\ c_{4} - C_{5} - C_{5} & 109.0 & 118.7 & H_{45} - C_{47} - H_{46} & 109.0 & 109.1 \\ c_{4} - C_{5} - C_{5} & 109.0 & 118.7 $	C ₂₆ -H ₃₀	0.950	1.085	C ₂₆ -C ₂₉ -H ₃₃	120.0	119.7
	C ₂₇ -H ₃₂	0.950	1.086	C ₃₁ -C ₂₉ -H ₃₃	120.0	120.0
	C ₂₉ -H ₃₃	0.950	1.086	$C_{27} - C_{31} - C_{29}$	119.7	119.6
	C ₃₁ -H ₃₄	0.950	1.086	$C_{27} - C_{31} - H_{34}$	120.0	120.1
$\begin{array}{ccccc} c_3 - H_{36} & 0.990 & 1.096 & c_5 - C_{35} - H_{37} & 109.0 & 108.8 \\ c_{36} - H_{40} & 0.990 & 1.095 & c_5 - C_{35} - H_{38} & 109.0 & 108.9 \\ c_{36} - H_{41} & 0.990 & 1.100 & c_{36} - C_{35} - H_{38} & 109.0 & 108.9 \\ c_{39} - H_{43} & 0.990 & 1.009 & H_{37} - C_{35} - H_{38} & 109.0 & 108.9 \\ c_{39} - H_{44} & 0.990 & 1.099 & H_{37} - C_{35} - H_{38} & 109.0 & 109.1 \\ c_{27} - H_{45} & 0.990 & 1.099 & c_{35} - C_{36} - H_{41} & 109.0 & 109.1 \\ c_{47} - H_{48} & 0.980 & 1.096 & c_{39} - C_{36} - H_{41} & 109.0 & 109.4 \\ c_{47} - H_{48} & 0.980 & 1.096 & c_{39} - C_{36} - H_{41} & 109.0 & 109.4 \\ c_{47} - H_{48} & 0.980 & 1.096 & c_{36} - C_{35} - H_{37} & 109.0 & 108.1 \\ c_{47} - H_{48} & 0.980 & 1.096 & c_{36} - C_{37} - H_{37} & 109.0 & 108.9 \\ Bond angle (^{\circ)} & c_{39} - C_{36} - H_{41} & 109.0 & 109.0 & 109.4 \\ c_{2} - c_{5} & 116.0 & 115.1 & H_{40} - C_{36} - H_{41} & 108.0 & 106.7 \\ c_{4} - c_{5} & 111.4 & 110.0 & c_{36} - C_{39} - H_{43} & 109.0 & 109.4 \\ c_{2} - c_{5} - c_{5} & 111.1 & 110.8 & 111.7 & c_{36} - c_{39} - H_{43} & 109.0 & 109.2 \\ c_{5} - c_{4} - c_{13} & 112.3 & 112.8 & c_{42} - c_{39} - H_{44} & 109.0 & 109.2 \\ c_{5} - c_{4} - c_{13} & 112.3 & 112.8 & c_{42} - c_{39} - H_{44} & 108.0 & 106.7 \\ c_{4} - c_{5} - c_{5} & 107.0 & 112.4 & H_{4} - C_{39} - H_{44} & 108.0 & 106.0 \\ c_{4} - c_{5} - c_{5} & 107.0 & 112.4 & H_{4} - C_{39} - H_{44} & 108.0 & 106.0 \\ c_{4} - c_{5} - c_{5} & 102.1 & 113.9 & c_{39} - c_{4} - H_{46} & 108.0 & 105.9 \\ c_{4} - c_{13} - c_{14} & 120.9 & 120.7 & c_{39} - c_{4} + H_{6} & 108.0 & 105.9 \\ c_{4} - c_{13} - c_{14} & 109.0 & 118.7 & H_{4} - c_{4} - c_{47} & 109.0 & 109.1 \\ c_{1} - c_{1} - c_{16} & 120.8 & H_{46} - c_{4} - c_{47} & 109.0 & 109.4 \\ c_{3} - c_{15} - c_{18} & 120.8 & H_{46} - c_{4} - c_{47} & 109.0 & 109.4 \\ c_{3} - c_{14} - c_{16} & 120.8 & H_{46} - c_{4} - c_{47} & 109.0 & 107.4 \\ c_{3} - c_{5} - c_{5} & 112.1 & 120.9 & C_{4} - c_{4} - H_{49} & 109.0 & 111.1 \\ c_{4} - c_{16} - c_{20} & 119.6 & 120.0 & c_{4} - c_{4} - H_{49} & 109.0 &$	C ₃₅ -H ₃₇	0.990	1.097	$C_{29} - C_{31} - H_{34}$	120.0	120.2
$ \begin{array}{ccccc} \hline C_{36} - H_{40} & 0.990 & 1.095 & C_{5} - C_{35} - H_{38} & 109.0 & 108.9 \\ C_{39} - H_{41} & 0.990 & 1.100 & C_{36} - C_{35} - H_{37} & 109.0 & 108.9 \\ C_{39} - H_{43} & 0.990 & 1.099 & H_{37} - C_{35} + H_{38} & 108.0 & 107.0 \\ C_{42} - H_{44} & 0.990 & 1.099 & H_{37} - C_{35} + H_{38} & 108.0 & 107.0 \\ C_{42} - H_{45} & 0.990 & 1.099 & C_{35} - C_{36} - H_{41} & 109.0 & 109.1 \\ C_{47} - H_{48} & 0.980 & 1.096 & C_{39} - C_{35} - H_{41} & 109.0 & 109.1 \\ C_{47} - H_{48} & 0.980 & 1.096 & C_{39} - C_{35} - H_{41} & 109.0 & 109.1 \\ C_{47} - H_{48} & 0.980 & 1.096 & C_{39} - C_{35} - H_{41} & 109.0 & 109.1 \\ C_{47} - H_{48} & 0.980 & 1.095 & C_{36} - C_{35} + H_{31} & 109.0 & 108.9 \\ C_{47} - H_{48} & 0.980 & 1.095 & C_{36} - C_{35} + H_{31} & 109.0 & 108.9 \\ C_{47} - C_{5} & 116.0 & 115.1 & H_{40} - C_{59} - H_{41} & 108.0 & 106.7 \\ C_{2} - C_{2} - C_{5} & 116.0 & 115.1 & H_{40} - C_{59} - H_{41} & 109.0 & 109.4 \\ C_{2} - C_{1} - C_{5} & 111.4 & 110.0 & C_{36} - C_{39} - H_{41} & 109.0 & 109.4 \\ C_{2} - C_{1} - C_{5} & 111.4 & 110.0 & C_{36} - C_{39} - H_{41} & 109.0 & 109.2 \\ C_{5} - C_{4} - C_{13} & 112.3 & 112.8 & C_{42} - C_{39} - H_{44} & 109.0 & 109.2 \\ C_{1} - C_{5} - C_{4} & 109.6 & 107.6 & C_{42} - C_{39} - H_{44} & 109.0 & 109.2 \\ C_{1} - C_{5} - C_{4} & 109.6 & 107.6 & C_{42} - C_{49} - H_{46} & 109.0 & 109.1 \\ C_{4} - C_{13} - C_{15} & 120.4 & 120.7 & C_{39} - C_{42} - H_{46} & 109.0 & 109.1 \\ C_{4} - C_{13} - C_{15} & 120.4 & 120.5 & H_{4} - C_{42} - C_{47} & 109.0 & 109.1 \\ C_{4} - C_{13} - C_{15} & 120.4 & 120.5 & H_{4} - C_{42} - C_{47} & 109.0 & 109.1 \\ C_{4} - C_{13} - C_{15} & 120.4 & 120.5 & H_{4} - C_{42} - C_{47} & 109.0 & 109.4 \\ C_{3} - C_{15} - C_{18} & 120.8 & 120.6 & C_{42} - C_{47} - H_{48} & 109.0 & 109.4 \\ C_{3} - C_{15} - C_{18} & 120.8 & 120.6 & C_{42} - C_{47} - H_{48} & 109.0 & 111.1 \\ C_{4} - C_{15} - C_{18} & 120.8 & 120.6 & C_{42} - C_{47} - H_{49} & 109.0 & 111.1 \\ C_{4} - C_{15} - C_{26} & 120.8 & 120.0 & C_{42} - C_{47} - H_{48} & 109.0 & 111.1 \\ C_{4} - C_{$	C35-H38	0.990	1.096	C5-C35-H37	109.0	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃₆ -H ₄₀	0.990	1.095	C5-C35-H38	109.0	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{36} - H_{41}$	0.990	1.100	C ₃₆ -C ₃₅ -H ₃₇	109.0	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃₀ -H ₄₃	0.990	1.100	C ₃₆ -C ₃₅ -H ₃₈	109.0	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₃₉ -H ₄₄	0.990	1.099	$H_{37} - C_{35} - H_{38}$	108.0	107.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42-H45	0.990	1 098	C25-C26-H40	109.0	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42-H46	0.990	1 099	$C_{25} - C_{26} - H_{41}$	109.0	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C47-H49	0.980	1 096	$C_{20} - C_{26} - H_{40}$	109.0	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C47 H48	0.980	1 096	$C_{39} = C_{36} = H_{37}$	109.0	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C47-H51	0.980	1.095	Cac-Cas-Han	109.0	108.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bond angle (°)	0.500	1.035	Coo=Coo=H44	109.0	109.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		116.0	115 1		105.0	105.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c_2 - c_1 - c_3$	111.0	110.0	$\Gamma_{140} - C_{36} - \Gamma_{141}$	100.0	100.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_1 - C_2 - C_3$	111.4	111.7		109.0	109.4
$\begin{array}{cccccccc} c_1c_5-c_4& 109.6& 107.6& c_42-c_39-143& 109.0& 109.1\\ c_1-c_5-c_35& 107.0& 112.4& H_{43}-c_{39}-H_{44}& 109.0& 109.1\\ c_4-c_5-c_{35}& 112.1& 113.9& c_{39}-c_{42}-H_{45}& 109.0& 109.1\\ c_4-c_{13}-c_{14}& 120.9& 120.7& c_{39}-c_{42}-H_{46}& 109.0& 109.2\\ c_4-c_{13}-c_{15}& 120.4& 120.5& H_{45}-c_{42}-H_{46}& 108.0& 105.9\\ c_{14}-c_{13}-c_{15}& 109.0& 118.7& H_{45}-c_{42}-c_{47}& 109.0& 109.4\\ c_{13}-c_{14}-c_{16}& 120.9& 120.8& H_{46}-c_{42}-c_{47}& 109.0& 109.4\\ c_{13}-c_{15}-c_{18}& 120.8& 120.6& c_{42}-c_{47}-H_{48}& 109.0& 111.1\\ c_{14}-c_{16}-c_{20}& 119.6& 120.0& c_{42}-c_{47}-H_{49}& 109.0& 111.2\\ c_{15}-c_{18}-c_{20}& 120.3& 120.2& c_{42}-c_{47}-H_{51}& 109.0& 111.5\\ c_{16}-c_{20}-c_{18}& 119.9& 119.6& H_{48}-c_{47}-H_{51}& 109.0& 107.4\\ c_{3}-c_{24}-c_{25}& 119.9& 120.2& H_{48}-c_{47}-H_{51}& 109.0& 107.6\\ c_{3}-c_{24}-c_{26}& 118.8& 118.8& Dihedral (^{\circ})\\ c_{25}-c_{24}-c_{26}& 118.8& 118.8& Dihedral (^{\circ})\\ c_{24}-c_{25}-c_{27}& 120.3& 120.7& c_{2}-c_{N12}-C_{4}& -66.82& -62.88\\ c_{24}-c_{26}-c_{29}& 120.8& 120.5& c_{24}-c_{3}-N_{12}-c_{4}& 172.32& 174.49\\ \end{array}$	$C_2 - C_3 - C_{24}$	110.0	111.7	$C_{36}-C_{39}-H_{44}$	109.0	109.2
$\begin{array}{ccccccc} c_1-c_5-c_4 & 109.0 & 107.0 & 12.4 & 143-c_{39}-r_{44} & 109.0 & 109.1 \\ c_1-c_5-c_{35} & 107.0 & 112.4 & H_{43}-c_{39}-H_{44} & 108.0 & 106.0 \\ c_4-c_5-c_{35} & 112.1 & 113.9 & c_{39}-c_42-H_{45} & 109.0 & 109.1 \\ c_4-c_{13}-c_{15} & 120.4 & 120.5 & H_{45}-c_{42}-H_{46} & 108.0 & 105.9 \\ c_{14}-c_{13}-c_{15} & 109.0 & 118.7 & H_{45}-c_{42}-c_{47} & 109.0 & 109.4 \\ c_{13}-c_{14}-c_{16} & 120.9 & 120.8 & H_{46}-c_{42}-c_{47} & 109.0 & 109.4 \\ c_{13}-c_{15}-c_{18} & 120.8 & 120.6 & c_{42}-c_{47}-H_{48} & 109.0 & 111.1 \\ c_{15}-c_{18}-c_{20} & 119.6 & 120.0 & c_{42}-c_{47}-H_{48} & 109.0 & 111.2 \\ c_{15}-c_{18}-c_{20} & 120.3 & 120.2 & c_{42}-c_{47}-H_{49} & 109.0 & 111.2 \\ c_{15}-c_{18}-c_{20} & 120.3 & 120.2 & c_{42}-c_{47}-H_{51} & 109.0 & 111.5 \\ c_{16}-c_{20}-c_{18} & 119.9 & 119.6 & H_{48}-c_{47}-H_{51} & 109.0 & 107.4 \\ c_{3}-c_{24}-c_{25} & 119.9 & 120.2 & H_{48}-c_{47}-H_{51} & 109.0 & 107.6 \\ c_{25}-c_{24}-c_{26} & 118.8 & 118.8 & Dihedral (^{\circ}) \\ c_{25}-c_{24}-c_{26} & 120.3 & 120.7 & c_{2}-c_{3}-N_{12}-C_{4} & -66.82 & -62.88 \\ c_{24}-c_{26}-c_{29} & 120.8 & 120.5 & c_{24}-c_{3}-N_{12}-C_{4} & 172.32 & 174.49 \\ \end{array}$	$C_5 - C_4 - C_{13}$	100.6	107.6	$C_{42} - C_{39} - \Gamma_{43}$	109.0	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c_1 - c_5 - c_4$	107.0	112.4	$C_{42} - C_{39} - \Pi_{44}$	109.0	109.1
$\begin{array}{cccccccc} L_4 - C_5 - C_{35} & 112.1 & 113.9 & C_{39} - C_{42} - H_{45} & 109.0 & 109.1 \\ C_4 - C_{13} - C_{14} & 120.9 & 120.7 & C_{39} - C_{42} - H_{46} & 109.0 & 109.2 \\ C_4 - C_{13} - C_{15} & 120.4 & 120.5 & H_{45} - C_{42} - H_{46} & 108.0 & 105.9 \\ C_{13} - C_{14} - C_{16} & 120.9 & 118.7 & H_{45} - C_{42} - C_{47} & 109.0 & 109.4 \\ C_{13} - C_{13} - C_{16} & 120.8 & 120.6 & C_{42} - C_{47} - H_{48} & 109.0 & 111.1 \\ C_{14} - C_{16} - C_{20} & 119.6 & 120.0 & C_{42} - C_{47} - H_{49} & 109.0 & 111.2 \\ C_{15} - C_{18} & 120.3 & 120.2 & C_{42} - C_{47} - H_{49} & 109.0 & 111.2 \\ C_{15} - C_{18} - C_{20} - C_{18} & 119.9 & 119.6 & H_{48} - C_{47} - H_{51} & 109.0 & 111.5 \\ C_{16} - C_{20} - C_{18} & 119.9 & 120.2 & H_{48} - C_{47} - H_{51} & 109.0 & 107.4 \\ C_{3} - C_{24} - C_{25} & 119.9 & 120.2 & H_{48} - C_{47} - H_{51} & 109.0 & 107.6 \\ C_{25} - C_{24} - C_{26} & 118.8 & 118.8 & Dihedral (°) \\ C_{25} - C_{24} - C_{26} & 120.3 & 120.7 & C_{2} - C_{17} - M_{27} & -66.82 & -62.88 \\ C_{24} - C_{26} - C_{29} & 120.8 & 120.5 & C_{24} - C_{3} - N_{12} - C_{4} & 172.32 & 174.49 \\ \end{array}$	$C_1 - C_5 - C_{35}$	107.0	112.4	$H_{43}-C_{39}-H_{44}$	108.0	106.0
$\begin{array}{ccccccc} L_4 - L_1 - L_1 & 120.9 & 120.7 & L_{39} - L_{42} - H_{46} & 109.0 & 109.2 \\ L_4 - L_{13} - L_{15} & 120.4 & 120.5 & H_{45} - L_{42} - H_{46} & 108.0 & 105.9 \\ L_1 - L_{14} - L_{15} - L_{14} - L_{16} & 120.9 & 118.7 & H_{45} - L_{42} - L_{47} & 109.0 & 109.4 \\ L_{13} - L_{14} - L_{16} & 120.9 & 120.8 & H_{46} - L_{42} - L_{47} & 109.0 & 109.4 \\ L_{13} - L_{15} - L_{18} & 120.8 & 120.6 & L_{42} - L_{47} - H_{48} & 109.0 & 111.1 \\ L_{14} - L_{16} - L_{20} & 119.6 & 120.0 & L_{42} - L_{47} - H_{49} & 109.0 & 111.2 \\ L_{15} - L_{18} - L_{20} & 120.3 & 120.2 & L_{42} - L_{47} - H_{49} & 109.0 & 111.5 \\ L_{16} - L_{20} - L_{18} & 119.9 & 119.6 & H_{48} - L_{47} - H_{49} & 109.0 & 107.4 \\ L_{3} - L_{24} - L_{25} & 119.9 & 120.2 & H_{48} - L_{47} - H_{49} & 109.0 & 107.4 \\ L_{3} - L_{24} - L_{25} & 119.9 & 120.2 & H_{48} - L_{47} - H_{51} & 109.0 & 107.6 \\ L_{25} - L_{26} - L_{26} & 118.8 & 118.8 & Dihedral (°) & L_{25} - L_{27} - L_{26} & 120.3 & 120.7 & L_{27} - L_{27} - L_{26} - L_{26} & -62.88 \\ L_{24} - L_{26} - L_{29} & 120.8 & 120.5 & L_{24} - L_{27} - L_{24} & -66.82 & -62.88 \\ L_{24} - L_{26} - L_{29} & 120.8 & 120.5 & L_{24} - L_{27} - L_{24} & 172.32 & 174.49 \\ \end{array}$	$C_4 - C_5 - C_{35}$	112.1	113.9	$C_{39} - C_{42} - H_{45}$	109.0	109.1
$\begin{array}{ccccccc} L_4 - C_{13} - C_{15} & 120.4 & 120.5 & H_{45} - C_{42} - H_{46} & 108.0 & 105.9 \\ C_{14} - C_{13} - C_{15} & 109.0 & 118.7 & H_{45} - C_{42} - C_{47} & 109.0 & 109.4 \\ C_{13} - C_{15} - C_{18} & 120.8 & 120.6 & C_{42} - C_{47} & 109.0 & 111.1 \\ C_{14} - C_{16} - C_{20} & 119.6 & 120.0 & C_{42} - C_{47} - H_{48} & 109.0 & 111.2 \\ C_{15} - C_{18} & 120.3 & 120.2 & C_{42} - C_{47} - H_{51} & 109.0 & 111.5 \\ C_{16} - C_{20} - C_{18} & 119.9 & 119.6 & H_{48} - C_{47} - H_{49} & 109.0 & 111.5 \\ C_{16} - C_{20} - C_{18} & 119.9 & 120.2 & H_{48} - C_{47} - H_{49} & 109.0 & 107.4 \\ C_{3} - C_{24} - C_{25} & 119.9 & 120.2 & H_{48} - C_{47} - H_{51} & 109.0 & 107.6 \\ C_{3} - C_{24} - C_{26} & 121.1 & 120.9 & H_{49} - C_{47} - H_{51} & 109.0 & 107.6 \\ C_{25} - C_{24} - C_{26} & 118.8 & 118.8 & Dihedral (^{\circ}) & \\ C_{24} - C_{25} - C_{27} & 120.3 & 120.7 & C_{2} - C_{3} - N_{12} - C_{4} & -66.82 & -62.88 \\ C_{24} - C_{26} - C_{29} & 120.8 & 120.5 & C_{24} - C_{3} - N_{12} - C_{4} & 172.32 & 174.49 \end{array}$	$L_4 - L_{13} - L_{14}$	120.9	120.7	$C_{39} - C_{42} - H_{46}$	109.0	109.2
$\begin{array}{ccccccc} c_{14}-c_{13}-c_{15} & 109.0 & 118.7 & H_{45}-c_{42}-c_{47} & 109.0 & 109.4 \\ c_{13}-c_{14}-C_{16} & 120.9 & 120.8 & H_{46}-C_{42}-C_{47} & 109.0 & 109.4 \\ c_{13}-c_{15}-c_{18} & 120.8 & 120.6 & C_{42}-C_{47}-H_{48} & 109.0 & 111.1 \\ c_{14}-c_{16}-c_{20} & 119.6 & 120.0 & c_{42}-c_{47}-H_{49} & 109.0 & 111.2 \\ c_{15}-c_{18}-c_{20} & 120.3 & 120.2 & C_{42}-c_{47}-H_{51} & 109.0 & 111.5 \\ c_{16}-c_{20}-c_{18} & 119.9 & 119.6 & H_{48}-c_{47}-H_{51} & 109.0 & 107.4 \\ c_{3}-c_{24}-c_{25} & 119.9 & 120.2 & H_{48}-c_{47}-H_{51} & 109.0 & 107.6 \\ c_{3}-c_{24}-c_{26} & 121.1 & 120.9 & H_{49}-c_{47}-H_{51} & 109.0 & 107.6 \\ c_{25}-c_{24}-c_{26} & 118.8 & 118.8 & Dihedral (°) \\ c_{24}-c_{25}-c_{27} & 120.3 & 120.7 & c_{2}-c_{3}-N_{12}-C_{4} & -66.82 & -62.88 \\ c_{24}-c_{26}-c_{29} & 120.8 & 120.5 & c_{24}-c_{3}-N_{12}-C_{4} & 172.32 & 174.49 \\ \end{array}$	$L_4 - L_{13} - L_{15}$	120.4	120.5	$H_{45}-C_{42}-H_{46}$	108.0	105.9
$\begin{array}{ccccccc} L_{13}-L_{14}-L_{16} & 120.9 & 120.8 & H_{46}-L_{42}-L_{47} & 109.0 & 109.4 \\ L_{13}-C_{15}-C_{18} & 120.8 & 120.6 & C_{42}-L_{47}-H_{48} & 109.0 & 111.1 \\ C_{14}-C_{16}-C_{20} & 119.6 & 120.0 & C_{42}-C_{47}-H_{49} & 109.0 & 111.2 \\ C_{15}-C_{18}-C_{20} & 120.3 & 120.2 & C_{42}-C_{47}-H_{51} & 109.0 & 111.5 \\ C_{16}-C_{20}-C_{18} & 119.9 & 119.6 & H_{48}-C_{47}-H_{51} & 109.0 & 107.4 \\ C_{3}-C_{24}-C_{25} & 119.9 & 120.2 & H_{48}-C_{47}-H_{51} & 109.0 & 107.6 \\ C_{3}-C_{24}-C_{26} & 121.1 & 120.9 & H_{49}-C_{47}-H_{51} & 109.0 & 107.6 \\ C_{25}-C_{24}-C_{26} & 118.8 & 118.8 & Dihedral(^\circ) & & \\ C_{24}-C_{25}-C_{27} & 120.3 & 120.7 & C_{2}-C_{3}-N_{12}-C_{4} & -66.82 & -62.88 \\ C_{24}-C_{26}-C_{29} & 120.8 & 120.5 & C_{24}-C_{3}-N_{12}-C_{4} & 172.32 & 174.49 \end{array}$	$L_{14} - L_{13} - L_{15}$	109.0	118./	$H_{45}-C_{42}-C_{47}$	109.0	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$c_{13} - c_{14} - c_{16}$	120.9	120.8	$H_{46} - C_{42} - C_{47}$	109.0	109.4
$\begin{array}{ccccccc} C_{14}-C_{16}-C_{20} & 119.6 & 120.0 & C_{42}-C_{47}-H_{49} & 109.0 & 111.2 \\ C_{15}-C_{18}-C_{20} & 120.3 & 120.2 & C_{42}-C_{47}-H_{51} & 109.0 & 111.5 \\ C_{16}-C_{20}-C_{18} & 119.9 & 119.6 & H_{48}-C_{47}-H_{49} & 109.0 & 107.4 \\ C_{3}-C_{24}-C_{25} & 119.9 & 120.2 & H_{48}-C_{47}-H_{51} & 109.0 & 107.6 \\ C_{3}-C_{24}-C_{26} & 121.1 & 120.9 & H_{49}-C_{47}-H_{51} & 109.0 & 107.6 \\ C_{25}-C_{24}-C_{26} & 118.8 & 118.8 & Dihedral (°) \\ C_{24}-C_{25}-C_{27} & 120.3 & 120.7 & C_{2}-C_{3}-N_{12}-C_{4} & -66.82 & -62.88 \\ C_{24}-C_{26}-C_{29} & 120.8 & 120.5 & C_{24}-C_{3}-N_{12}-C_{4} & 172.32 & 174.49 \end{array}$	$C_{13} - C_{15} - C_{18}$	120.8	120.6	$C_{42} - C_{47} - H_{48}$	109.0	111.1
$\begin{array}{ccccccc} C_{15}-C_{18}-C_{20} & 120.3 & 120.2 & C_{42}-C_{47}-H_{51} & 109.0 & 111.5 \\ C_{16}-C_{20}-C_{18} & 119.9 & 119.6 & H_{48}-C_{47}-H_{49} & 109.0 & 107.4 \\ C_{3}-C_{24}-C_{25} & 119.9 & 120.2 & H_{48}-C_{47}-H_{51} & 109.0 & 107.6 \\ C_{3}-C_{24}-C_{26} & 121.1 & 120.9 & H_{49}-C_{47}-H_{51} & 109.0 & 107.6 \\ C_{25}-C_{24}-C_{26} & 118.8 & 118.8 & Dihedral (°) & & & \\ C_{24}-C_{25}-C_{27} & 120.3 & 120.7 & C_{2}-C_{3}-N_{12}-C_{4} & -66.82 & -62.88 \\ C_{24}-C_{26}-C_{29} & 120.8 & 120.5 & C_{24}-C_{3}-N_{12}-C_{4} & 172.32 & 174.49 \end{array}$	$C_{14} - C_{16} - C_{20}$	119.6	120.0	$C_{42} - C_{47} - H_{49}$	109.0	111.2
$\begin{array}{cccccc} C_{16}-C_{20}-C_{18} & 119.9 & 119.6 & H_{48}-C_{47}-H_{49} & 109.0 & 107.4 \\ \hline C_3-C_{24}-C_{25} & 119.9 & 120.2 & H_{48}-C_{47}-H_{51} & 109.0 & 107.6 \\ \hline C_3-C_{24}-C_{26} & 121.1 & 120.9 & H_{49}-C_{47}-H_{51} & 109.0 & 107.6 \\ \hline C_{25}-C_{24}-C_{26} & 118.8 & 118.8 & Dihedral (°) & & & \\ \hline C_{24}-C_{25}-C_{27} & 120.3 & 120.7 & C_{2}-C_{3}-N_{12}-C_{4} & -66.82 & -62.88 \\ \hline C_{24}-C_{26}-C_{29} & 120.8 & 120.5 & C_{24}-C_{3}-N_{12}-C_{4} & 172.32 & 174.49 \end{array}$	$C_{15} - C_{18} - C_{20}$	120.3	120.2	$C_{42} - C_{47} - H_{51}$	109.0	111.5
	$C_{16} - C_{20} - C_{18}$	119.9	119.6	$H_{48} - C_{47} - H_{49}$	109.0	107.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3 - C_{24} - C_{25}$	119.9	120.2	$H_{48} - C_{47} - H_{51}$	109.0	107.6
$\begin{array}{cccc} C_{25}-C_{24}-C_{26} & 118.8 & 118.8 & Dihedral (^{\circ}) \\ C_{24}-C_{25}-C_{27} & 120.3 & 120.7 & C_2-C_3-N_{12}-C_4 & -66.82 & -62.88 \\ C_{24}-C_{26}-C_{29} & 120.8 & 120.5 & C_{24}-C_3-N_{12}-C_4 & 172.32 & 174.49 \end{array}$	$C_3 - C_{24} - C_{26}$	121.1	120.9	$H_{49}-C_{47}-H_{51}$	109.0	107.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{25} - C_{24} - C_{26}$	118.8	118.8	Dihedral (°)		
C ₂₄ -C ₂₆ -C ₂₉ 120.8 120.5 C ₂₄ -C ₃ -N ₁₂ -C ₄ 172.32 174.49	$C_{24} - C_{25} - C_{27}$	120.3	120.7	$C_2 - C_3 - N_{12} - C_4$	-66.82	-62.88
	$C_{24} - C_{26} - C_{29}$	120.8	120.5	$C_{24} - C_3 - N_{12} - C_4$	172.32	174.49

Table 1 (Continued)

Parameters Bond length (Å)	Exp.ª	B3LYP/6-31G(d,p)	Parameters Angles Contd.	Exp. ^a	B3LYP/6-31G(d,p)
$C_{25} - C_{27} - C_{31}$	120.8	120.0	$N_{12} - C_4 - C_5 - C_1$	-51.99	-54.54
$C_{26} - C_{29} - C_{31}$	120.7	120.2	$N_{12} - C_4 - C_5 - C_{35}$	-178.04	-179.93
$C_5 - C_{35} - C_{36}$	113.4	113.6	$C_{13} - C_4 - C_5 - C_1$	-172.73	-175.84
$C_{35} - C_{36} - C_{39}$	113.7	112.9	$C_{13} - C_4 - C_5 - C_{35}$	61.21	58.77
$C_{36} - C_{39} - C_{42}$	112.8	113.4	$C_{13} - C_4 - N_{12} - C_3$	-171.28	-172.35
$C_{39} - C_{42} - C_{47}$	113.7	113.2			
$C_2 - C_1 - O_{50}$	121.9	121.8			
$C_2 - C_1 - O_{50}$	122.0	122.9			

^a Ref. [7].

Fig. 4. Theoretical (a) and experimental (b) FT-Raman spectrum of PDPO.

3317 cm⁻¹ respectively. The corresponding theoretical frequency for ν_{N-H} mode is about 3384 cm⁻¹, which shows positive deviation of ~68 cm⁻¹ from the experimental value. The scissoring mode of N–C–H is appeared at 1407 cm⁻¹ (FT-IR-strong) and 1409 cm⁻¹ (FT-Raman-weak), while the harmonic scissoring vibration existed at 1411 cm⁻¹ (mode no. 104). These δ_{C-N-H} wavenumbers are also find support from the literature. Out-of-plane bending modes (γ_{C-N-H}) are calculated at about 765 and 771 cm⁻¹ (mode nos. 44, 45), these vibrations are in line with the observed FT-IR (765 cm⁻¹) and FT-Raman (785 cm⁻¹) bands.

4.3.2. Methyl and methylene group vibrations

Methyl groups are generally referred to as electron donating substituents in the aromatic ring system [16]. In acetates, the asymmetric vibrations of the methyl group are expected to occur in the region 2940–3040 cm⁻¹ and symmetric vibrations are in the region 2910–2930 cm⁻¹, and usually the bands are weak [17]. Aromatic acetyl substituents absorb in a narrow range 3000–3020 cm⁻¹ absorption sometimes coincides with a CH stretching mode of the ring [17]. The title molecule possesses methyl (CH₃) and methylene (CH₂) groups. Methyl group symmetric stretching vibrations are appeared at 2914 cm⁻¹ as a strong intense band in FT-IR and 2913 cm⁻¹ as a very weak band in FT-Raman spectrum. While the scaled harmonic frequency 2917 cm⁻¹ (mode no: 127) with considerable intensity is in line with experimental value. The asymmetric of CH₃ harmonic frequency 2987 cm⁻¹ (mode no: 135) is

coincide well with experimental values (FT-IR: 2989/FT-Raman: 2990 cm⁻¹).

The asymmetric and symmetric CH₂ stretching vibrations are normally appear in the region 3100–2900 cm⁻¹ [18]. According to the literature [18], the observed bands $2870 \,\mathrm{cm}^{-1}$ (weak), 2924 cm⁻¹ (strong) in FT-IR and 2890 cm⁻¹ (weak) FT-Raman are in agreement with the theoretical values in the range of 2891–2937 cm⁻¹ (mode nos: 123–126, 128–130). The FT-IR band 2956 cm⁻¹ (strong) and its corresponding theoretical value 2960 cm⁻¹ (mode no: 132) are attributed v_{asy} CH₂ vibration. The TED value shows that these vibrations are pure. In aromatic compounds the ν_{C-H} , β_{C-H} and γ_{C-H} modes are appeared in the range of 3000–3100 cm⁻¹, 1000–1300 and 750–1000 cm⁻¹, respectively [19-21]. The C-H stretching vibrations appeared at 2810, 3048-3077 cm⁻¹ (mode nos: 122, 137-144). The observed frequencies 2855, 3061 cm^{-1} (FT-IR) and 2856, 3042, 3057 cm^{-1} (FT-Raman) are belongs to C-H stretching mode. The C-H in-plane bending vibrations appeared in the range $1123-1170 \text{ cm}^{-1}$ (mode nos: 76, 79, 81) and their corresponding experimental wavenumbers 1118, 1145, 1155 (FT-IR) and 1129, 1156 cm⁻¹ (FT-Raman) are in consistent with computed values. The assignments also find support from the literature [22,23].

The scissoring mode of the CH₂ group gives rise to a characteristic band near 1415 cm^{-1} in IR and 1400 cm^{-1} in Raman spectra. The twisting, wagging and rocking vibrations appear in the region 1400–900 cm⁻¹ [24]. The broadening and intensity decreases were observed for the bands at 1470 and 1450 cm⁻¹ corresponding to CH₂ scissoring modes [22]. In the present investigation, δ_{CH2} mode appear at 1436 and 1456 cm⁻¹ as medium band at FT-IR, and their FT-Raman counter parts are 1452 and 1432 cm⁻¹ as weak bands. These experimental frequencies are in agreement with mode nos: 106 and 111 of B3LYP. A major coincidence of theoretical values with that of experimental observation is found for ω_{CH2} (1348:B3LYP-mode no: 100/1347 cm⁻¹: FT-IR). These assignments find support from the literature [22]. In the case of CH₂ twisting mode the vibrational frequencies observed at 1274, 1303 cm⁻¹ (FT-IR) and 1304 cm⁻¹ (Raman) are in agreement with the calculated frequencies in the range of 1278–1300 cm⁻¹ (mode no: 90, 92–94/DFT). The out-of-plane bending mode of C-H always lies in the lower side of spectra. In the present study, the harmonic wavenumbers (mode nos: 60-58, 56, 54-52, 48, 47, 43-40) in the range of 962–706 cm⁻¹ are assigned to γ_{C-H} mode, which find support from the observed FT-IR frequencies: 912, 889, 757 and $738 \,\mathrm{cm}^{-1}$.

4.3.3. *C*=*O*, *C*-*N*, *C*=*C* vibrations

Stretching vibration of carbonyl group C=O can be observed as a very strong band in both FT-IR and FT-Raman spectra at 1665 cm⁻¹ [22]. The carbonyl stretching C=O vibration [17,25] is expected to occur in the region 1715–1680 cm⁻¹. The deviation of the calculated wavenumbers for this mode can be attributed to the underestimation of the large degree of π -electron delocalization due to conjugation of the molecule [26]. The literature

Table 2	
Vibrational wave numbers obtained for PDPO at B3LYP/6-31G(d,p).	

Mode no.	Computed va	lues	Experimen	ıtal	Intensity		$\text{TED}^{d} (\geq 10\%)$
	Unscaled	Scaled ^a	FT-IR	FT-Raman	I _{IR} ^b	I _{Raman} ^c	
1	22	21			0.06	77.4	$\Gamma_{\text{cores}}(40)$
2	27	26			0.09	34.2	$\Gamma_{c25c5c1c2}$ (12), $\Gamma_{c25c5c1050}$ (12)
3	30	29			0.10	68.7	$\Gamma_{c25c24c3N12}$ (16), $\Gamma_{c26c24c3N12}$ (13)
4	40	38			0.04	100	$Γ_{C14C13C4N12}$ (24), $Γ_{C14C13C4C5}$ (21), $Γ_{C15C13C4N12}$ (16)
5	49	47			0.04	2.04	Γ_{CCCC} (20), Γ_{HCCC} (12)
6	49	47			0.00	59.9	$\delta_{\rm NCC}$ (12)
7	77	74			0.71	7.40	$\Gamma_{\rm cccc}$ (13), $\Gamma_{\rm ccco}$ (13)
8	80	77 86			0.01	0.80	δ_{CCC} (18), I CCCC (10) δ_{CCC} (19), Γ_{CCCC} (15)
10	113	109		109vs	0.10	4 16	$\Gamma_{ccco}(14)$
11	127	122		10010	0.19	2.84	$\Gamma_{c47c42c39c36}(12)$
12	140	135			0.11	1.35	$\Gamma_{\rm CCCC}$ (14)
13	174	167			0.32	7.57	δ _{CCC} (26), ν _{CC} (16)
14	182	175		184w	0.45	1.05	$\delta_{C26C24C3}(12)$
15	209	201			0.25	6.28	δ_{CCC} (15), ν_{CC} (14)
16	230	221		215w	0.24	7.64	$\Gamma_{CCCC}(18) \qquad (10) \ \Gamma_{CCCC}(10) \ \Gamma_{CCCC}(10)$
17	250	240		233W	0.00	0.01	$1_{H51C47C42C39}$ (21), $1_{H48C47C42C39}$ (19), $1_{H49C47C42C39}$ (19) δ_{recc} (24)
19	289	230			0.23	2.54	$\delta_{ccc}(15)$
20	297	285			2.35	2.94	$\delta_{\text{CCC}}(19)$
21	304	292		311w	0.46	2.21	$\delta_{C25C24C3}$ (12), $\delta_{C26C24C3}$ (11)
22	358	344			1.73	1.24	$\nu_{\rm CC}$ (24)
23	378	363			0.16	0.38	$\delta_{C39C36C35}$ (13), $\delta_{C47C42C39}$ (13)
24	417	401			0.09	0.07	$\Gamma_{c20c16c14c13}$ (14), $\Gamma_{c20c18c15c13}$ (13)
25	418	401	426	2.47	0.08	0.19	$1_{C31C27C25C24}$ (14), $1_{C31C29C26C24}$ (13)
20	441	424	456w	547W	1.46	0.66	$\delta_{\text{CCC}}(20)$
27	505	485	400W		6.99	0.00	$\delta_{C2C1050}(10)$
29	524	503	511w		1.61	0.63	$\Gamma_{\rm CCCC}$ (10)
30	541	520	531m	536w	6.46	0.80	$\delta_{\rm NCC}$ (10)
31	573	551	553w		3.67	0.58	δ _{CCN} (10)
32	613	589			1.01	0.52	$\delta_{\rm NCC}$ (10)
33	623	599			1.96	2.30	$\delta_{\text{CCC}}(21)$
34	634	609	C12	C10	0.02	2.28	$\delta_{C20C16C14}$ (15), $\delta_{C20C18C15}$ (15)
35	656	630	612W	018111	0.03	3.13	$0_{C31C29C26}(10), 0_{C27C25C24}(14)$
37	676	649		648w	16.1	4.40 5.74	$v_{cc}(10)$ beec (10) $\Gamma_{UNCC}(10)$
38	716	688	661s	665w	15.2	0.73	$\Gamma_{H23C20C16C14}$ (11), $\Gamma_{H23C20C18C15}$ (11)
39	717	689	698s		11.8	0.61	Г _{Н34C31C27C25} (10), Г _{Н34C31C29C26} (10)
40	734	706			6.29	0.56	Г _{НССН} (40)
41	748	719			0.91	0.46	$\nu_{\rm CC}$ (10), $\Gamma_{\rm HCCC}$ (10)
42	775	744	738s		16.6	0.51	$\Gamma_{\text{HCCC}}(26)$
43	781 706	/51 765	757s 765a		7.40	0.57	$\Gamma_{\text{HCCC}}(25)$
44	802	703	703s 784s		6.96	0.51	$\Gamma_{\text{UNCC}}(10)$
46	826	794	7010		1.86	0.33	$\nu_{c13C4}(12)$
47	863	829			0.07	1.06	$\Gamma_{\rm HCCC}$ (46)
48	867	833			0.14	2.23	Γ _{HCCC} (58)
49	870	836			0.33	0.42	$\nu_{\rm CC}$ (10)
50	900	864	857w		1.20	2.08	ν_{C42C39} (25), $\delta_{H51C47C42}$ (17), ν_{C47C42} (13)
51	917	881	880		0.75	2.04	ν_{C3C2} (24), δ_{N12C3} (10), δ_{C3C2H} (10)
52	920	896	009W		4.56	2.99	V_{CC} (20), I HCCH (10)
55	936	900	912w		1.13	0.61	$\Gamma_{H32(2)/(25H28)}(10)$
55	967	929		919m	0.84	1.30	ν_{C3C2} (14), δ_{CCCH} (10)
56	976	938			0.06	0.07	Г _{H22C18C15H19} (20), Г _{H21C16C14H17} (19)
57	980	941			0.94	0.65	ν_{C5C4} (14), ν_{C36C35} (14)
58	980	942			0.51	0.37	Г _{H32C27C25H28} (15), Г _{H33C29C26H30} (13)
59	1000	961			0.24	0.03	$\Gamma_{H23C20C18H22}$ (23), $\Gamma_{H23C20C16H21}$ (20), $\Gamma_{H22C18C15H19}$ (15)
00 61	1002	962			1.05	0.32	$I_{H34C31C29H33}$ (Z_1), $I_{H33C29C26H30}$ (I_1), $I_{H34C31C27H32}$ (16)
62	1005	977	973w		0.19	2.52	$\delta_{ccc}(28) \nu_{cc}(16)$
63	1017	977	57544		0.50	12.5	δ_{crc} (40)
64	1033	992	986w	988m	0.43	0.64	ν_{C47C42} (39), ν_{C39C36} (23)
65	1054	1013	1001w	1003vs	1.74	3.13	ν_{C36C35} (17), ν_{C20C16} (12), ν_{C20C18} (10)
66	1055	1014			4.86	2.07	ν_{C31C27} (19), ν_{C31C29} (18)
67	1059	1018	105-		1.18	4.34	$\nu_{\rm C36C35}$ (25)
68	1069	1027	1028w	1030m	0.33	2.71	ν_{C42C39} (29), ν_{C39C36} (24), ν_{C47C42} (21)
09 70	1077	1035	1046.		3.12 2.16	1.23	$\nu_{\rm C35C5}$ (29)
70	1104	1049	1040W		2.10	0.29	δ_{CCH} (18) ν_{CC} (9) ν_{NC} (10)
· •			100000		1.01	0.20	

Table 2 (Continued)

Uncelet Uncelet Field h^{a} h_{con}^{a} h_{con}^{a} 73 1130 1066 1067 42.6 2.02 h_{con}^{a} (12), h_{con}^{a} (13), h_{con}^{a} (14), h_{con}^{a} (13), h_{con}^{a} (13), h_{con}^{a} (14), h_{con}^{a} (13), h_{con}^{a} (14), h_{con}^{a} (14), $h_$	Mode no.	Computed value	ues	Experiment	al	Intensity		TED ^d (≥10%)
		Unscaled	Scaled ^a	FT-IR	FT-Raman	I _{IR} ^b	I _{Raman} c	
11 1130 1086 10860 426 2.22 $erorchologic short (12) erode $	72	1115	1071	1068w		1.77	0.67	ν _{N12C4} (11)
74 1144 1009 661 1.31 wc (16) & bcc (17) 75 1169 11189 1129w 402 1.39 Maxeera (17) hore same (17) 77 1187 1141 1149w 0.06 1.32 Maxeera (17) hore same (17) 78 1187 1141 1139w 1.28 Law (18) Maxeera (17) 79 1204 135 1139w 1.28 Law (12) Maxeera (17) 81 122 1174	73	1130	1086	1086w		4.26	2.22	ν_{C3C2} (12), ν_{N12C3} (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74	1144	1099			6.61	1.31	$\nu_{\rm CC}$ (16), $\delta_{\rm CCC}$ (11), $\nu_{\rm NC}$ (10)
197 1187 1140 118w 102 150 Number of 17.5 Augusts (17) 78 1197 1141 1146w 0.06 1.32 Descript (17) Augusts (16) 79 1264 1156 1135w 1.26 1.46 Server (17) Augusts (16) 80 127 1170 1170 2.08 1.44 Vec (13) Auge (10) 81 1272 1170 1170 2.08 1.44 Vec (13) Auge (10) 84 1242 1193 1173m 1.33 0.62 Vec (13) Auge (10) 85 1246 1197 1200m 1201m 1.35 Kec (13) Vec (10) 86 1244 1224 1224w 1.31 0.65 Kec (14) 90 1333 1261 1223w 1.34 0.66 Kec (14) 91 1335 1283 1.34 0.66 Kec (14) Kec (14) 91 133 1202 1.30 1.35 Kec (14) Kec (14) Kec (14) 91 1333 1283 1324 132 1.35 <t< td=""><td>75 76</td><td>1149</td><td>1104</td><td>1110m</td><td></td><td>5.33</td><td>1.44</td><td>$\nu_{\rm N12C3}$ (23) 8 (12) μ (11)</td></t<>	75 76	1149	1104	1110m		5.33	1.44	$\nu_{\rm N12C3}$ (23) 8 (12) μ (11)
78 192 1141 1145w 115w 132 1145 $maxsac (17)$ $maxsac (17)$ 80 1275 1158 1158 126 1158 $max (12)$ $max (12)$ 81 1277 1179 1187m 1178m 133 448 $max (12)$ $max (12)$ 83 1227 1179 1187m 1178m 133 448 $max (12)$ $max (12)$ 84 1227 1139 1208m 9.57 4.58 $max (10)$ $max (10)$ 85 1246 1137 1208m 9.57 4.58 $max (10)$ $max (10)$ 86 1238 1247 1241 1227 3.14 0.68 $max (10)$ 90 1330 1273 1274w 2.41 0.68 $max (10)$ 91 1331 128 134 0.68 $max (10)$ $max (10)$ 92 1331 1358 1358 130 130 0.69 $max (10)$ 93 137 1398 1336 130 0.69 ma	70	1187	1125	1118w	1129w	4.00	1.35	$\delta_{\text{HCC}}(15), \nu_{\text{NC}}(11)$
79 204 1156 1155w 1125w 1.26 1.45 $h_{crc}(12), h_{crc}(10)$ 81 1217 1170 208 1.46 156 hrc (12), h_{crc}(10) 81 1217 1170 1187m 1187m <td>78</td> <td>1187</td> <td>1141</td> <td>1145w</td> <td>112011</td> <td>0.06</td> <td>1.32</td> <td>$\delta_{\text{H23C20C16}}(17), \delta_{\text{H23C20C18}}(16)$</td>	78	1187	1141	1145w	112011	0.06	1.32	$\delta_{\text{H23C20C16}}(17), \delta_{\text{H23C20C18}}(16)$
	79	1204	1156	1155w	1156w	1.26	1.45	δ _{CCH} (22), ν _{CC} (10)
81 1217 170 20.8 1.46 $u_{c1}(1), 0_{c2}(10)$ 83 1227 113 1137 1137 5.33 6.26 $u_{c1}(2), 0_{c2}(1)$ 84 1242 1133 1137 5.33 6.26 $u_{c1}(2), 0_{c2}(1)$ 85 1246 1197 1200m 1203m 9.57 4.59 $\delta_{cc1}(3)$ $\delta_{cc1}(3)$ 86 1244 1247 1244 1244 0.01 1.15 $\delta_{cc1}(3)$ 87 133 136 1238 1238 1247 1244 0.01 4.66 $\delta_{cc2}(3)$ 98 133 133 1238 1238 1238 0.01 4.76 $\delta_{cc2}(3)$ 94 1333 1308 1308 1308 1308 0.01 0.19 $v_{cc2}(10)$ 95 1361 1378 1338 1328 133 0.01 0.19 $v_{cc2}(10)$ 96 1371 1379 1328 241 0.21 1.15 $\delta_{cc1}(10)$ 97 138 138 1327m	80	1205	1158			0.46	1.56	$\nu_{\rm CC}$ (12)
	81	1217	1170			20.8	1.46	$\nu_{\rm CC}$ (13), $\delta_{\rm HCC}$ (10)
b4 1242 1193 1.00m 1.50m 5.13 0.82 $\lambda_{0cc}(1)$ (Marce (1)) 85 1246 1197 120m 1.31 0.65 $\lambda_{0cc}(3)$, $\nu_{cc}(1)$ 86 1234 1224 1224 1224 0.95 0.30 $\Lambda_{0cc}(20)$ 88 1288 1247 1241 0.91 1.15 $\Lambda_{0cc}(1)$ 0.91 91 133 128 1274 1241 0.99 $\nu_{0cc}(12)$ 0.91 92 1338 1283 128 129 0.14 0.99 $\nu_{0cc}(1)$ 93 1342 128 129 0.51 0.99 $\Lambda_{0cc}(1)$ 94 1333 130m 129 1.01 $\Lambda_{0cc}(1)$ 0.11 0.11	82 83	1222	1174	1187m	1178m	13.5	5.22	ν_{C13C4} (20)
85 1246 1224 1224 1228 3.62 3.62 13.72 10.05 87 1283 1233 0.05 0.03 5ccc (13) 10.01 88 1313 1281 1233 0.05 5ccr (14) 10.01 88 1313 1281 1231 0.67 1.88 w(14) 91 1335 1283 1284 10.0 4.76 5ccr (12) 92 1338 1283 10.0 4.76 5ccr (13) 6ccr (12) 93 1342 1289 0.10 4.76 5ccr (12) 0.01 94 1353 1306 10.90 wccr (10) 0.01 9ccr (12) 0.01 0.01 9ccr (12) 0.01 0.01 9ccr (12) 0.01 0.01 9ccr (13) 0.01 0.01 0.01 9ccr (12) 0.01 0.02 9ccr (12) 0.01 0.01 9ccr (13) 0.01 0.02 9ccr (13) 0.01 0.02 9ccr (13) 0.01 0.01 0.02 9ccr (13) 0.01 0.01 0.01 9ccr (1	84	1242	1193	1107111	1170111	5.13	0.82	δ_{CCH} (10), δ_{HCC} (11)
86 12/4 12/4 1.31 0.65 δ_{tot} (20) 87 1283 123 0.21 1.15 δ_{tot} (20) 88 1313 1241 123.02 1.15 δ_{tot} (10) 91 1333 1281 123.02 1.15 δ_{tot} (11) 92 1338 1283 1281 1.24 0.05 δ_{tot} (16) 93 1342 1283 123.0 1.53 δ_{tot} (17) δ_{tot} (17) 94 1353 1300 1302 1304m 1.60 0.69 δ_{tot} (21) 95 1361 1308 1327 1.31 0.60 δ_{tot} (21) δ_{tot} (10) 97 1322 1339 1326 1327m 1.26 δ_{tot} (21) 98 1380 1328 1328m 8.22 1.63 δ_{tot} (12) 101 144 1388 1327m 1.23 δ_{tot} (21) δ_{tot} (21) 102 1447	85	1246	1197	1209m	1203m	9.57	4.59	δ_{HCC} (13), ν_{CC} (10)
87 128 123 1241 0.55 0.50 bacc (20) 88 139 1297 1241 0.51 1.63 becc (11) 89 139 1297 123 123 becc (12) 91 1335 1283 1284 16.1 1.68 rec (12) 92 138 1283 1284 1.60 0.69 becc (11) 94 1353 1300 1303 1.60 0.69 becc (12) 95 1361 1308 0.91 0.91 vccc6 (10) 96 1361 1308 0.91 0.91 vccc0 (10) 97 1370 130 0.9 becc (12) vccc0 (13) 100 1403 1348 1347w 2.41 0.21 becc (13) 101 1414 1350 2.41 becc (10) becc (10) becc (10) 102 1416 1369 427w 2.02 2.41 becc (10) becc (10) 103 1427 1371 147w 0.03 becc (10)	86	1274	1224	1222w		1.31	0.65	δ _{CCH} (13)
88 128 124 124 124 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 126 127 127 127 127 123 1	87	1283	1233	10.11		0.95	0.30	$\delta_{\rm HCC}(20)$
and bit 1336 1335 1278 241 0.68 try (12) try (12) 91 1335 1283 1278 241 0.68 try (12) 92 1338 1283 1285 213 153 620(13), 620(17) 93 1342 1289 213 153 620(13), 620(17) 94 1351 1306 1303 1304 0.61 0.69 620(13), 620(17) 95 1361 1308 0.91 0.19 Wans(10) 97 1372 1313 1338 1338 1338 8.22 163 620(10) 98 1380 1328 1335 1338 8.22 163 620(12) 60(12) 100 1404 1348 1347 225 0.68 620(13) 660(12) 600(88	1298	1247	1241W		0.21	1.15	$\delta_{\rm CCH}$ (10)
11 1235 1235 124 0.60 $P_{\rm cristman}^{-1/2}$ 93 1342 1285 10.0 4.76 $P_{\rm cristman}^{-1/2}$ 93 1353 1300 1303 1304m 1.60 0.69 $P_{\rm cristman}^{-1/2}$ 94 1353 1300 1303 1304m 0.51 0.19 $V_{\rm cristman}^{-1/2}$ 95 1361 1308 0.51 0.19 $V_{\rm cristman}^{-1/2}$ $V_{\rm cristman}^{-1/2}$ 97 1372 1319 7.13 1.06 $\Phi_{\rm tristman}^{-1/2}$ $V_{\rm tristman}^{-1/2}$ 98 1380 1326 1324m 1.29 3.70 $\Phi_{\rm tristman}^{-1/2}$ $\Phi_{\rm tristman}^{-1/2}$ 100 1403 1348 1347m 2.41 0.21 $\Phi_{\rm tristman}^{-1/2}$	90	1330	1278	1253w 1274w		2.41	0.68	$\nu_{\rm CC}$ (14) $\nu_{\rm CC}$ (14) $\delta_{\rm HCH}$ (11)
93 1342 1285 10.0 4.76 $A_{Car(18)} A_{Car(18)}$ 94 1353 1300 1303 1304 1.60 0.69 $A_{Car(18)} A_{Car(18)}$ 94 1351 1308 0.91 0.19 $A_{Car(18)} A_{Car(18)}$ 96 1361 1308 0.91 0.19 $A_{Car(18)} A_{Car(18)}$ 97 1372 1319 123 129 3.70 $A_{Mac(21)} A_{Car(18)}$ 98 1380 1326 1332m 1238 129 3.70 $A_{Mac(21)} A_{Car(18)}$ 100 1414 1338 1340m 1338m 8.35 1.60 $A_{Car(18)} A_{Car(18)}$ 101 1416 1358 1347 0.57 0.54 $A_{Mac(12)} A_{Car(15)}$ 102 1417 2.20 2.41 $A_{Mac(18)} A_{Car(18)} A_{Car(18)}$ 1.11 105 1475 1417 2.20 2.41 $A_{Mac(18)} A_{Mac(18)} A_{Ma$	91	1335	1283			13.4	0.69	$\nu_{\rm CC}$ (12)
93 1342 129	92	1338	1285			10.0	4.76	$\delta_{C42C39H44}$ (11)
94 133 1300 1304 1.60 0.689 0.6200 95 1361 1308 0.51 0.19 Present (10) 96 1372 1319 0.19 Present (10) 98 1380 1326 1322m 1.29 3.70 5 intract (10) 98 1380 1336 1336m 1322 1.63 Apr:(10) 5 mice (15) 100 1404 1348 1347w 2.85 0.08 Apr:(10) 5 mice (15) 101 1416 130 0.09 0.22 Space (15) 5 mice (15) 103 1467 1407m 1409w 3.50 0.44 Space (15) Space (15) 105 1475 1411 1407m 1409w 3.50 0.22 Space (12) Space (13) 106 1493 1434 143em 143em 2.00 2.20 2.41 Space (12) Space (11) Space (12) Space (13) Space (13)	93	1342	1289			21.3	1.53	δ_{CCH} (18), δ_{HCC} (17)
33 1361 1368 0.31 0.19 Prains 100 96 1361 1368 1328 1329 7.0 Builder (10) 98 1380 1328 1326m 129 3.70 Builder (10) 99 1380 1338 1347w 2.85 0.08 Scrit (13) 100 1444 1388 2.41 0.21 Builder (12) Scret (15) 101 1444 1389 2.41 0.20 Builder (12) Scret (15) 103 1447 177 1972w 0.97 0.44 Sename (12) Sename (15) 103 1447 177 1972w 0.97 0.44 Sename (12) Sename (15) 104 1439 1436m 1432w 2.95 0.62 Builder (12) Sename (11) 105 1449 1436m 1432w 2.95 0.52 Builder (12) Builder (12) <td< td=""><td>94</td><td>1353</td><td>1300</td><td>1303s</td><td>1304m</td><td>1.60</td><td>0.69</td><td>$\delta_{C36C35H38}(10)$</td></td<>	94	1353	1300	1303s	1304m	1.60	0.69	$\delta_{C36C35H38}(10)$
39 132 139 7.13 1.06 Numeric (1) 99 1380 1326 1332m 123 7.13 3.70 $\delta_{erg}(13)$ 99 187 133 1336m 1338m 8.22 163 $\delta_{erg}(13)$ 100 1441 138 2.41 0.21 $\delta_{erg}(10)$ $\delta_{erg}(15)$ 101 1444 1380 2.41 0.21 $\delta_{erg}(10)$ $\delta_{erg}(15)$ 102 1446 1360 0.49 0.42 wc (10) $\delta_{erg}(15)$ 103 1427 1371 132w 0.57 0.54 $\delta_{erg}(16)$ $\delta_{erg}(12)$ $\delta_{erg}(12)$ 106 1475 1417 2.00 2.41 $\delta_{erg}(12)$ $\delta_{erg}(12)$ $\delta_{erg}(12)$ 106 1443 1439 1432w 2.95 0.68 $\delta_{erg}(13)$ $\delta_{erg}(13)$ 110 1544 1455 1456s 1452w 0.70 1.21 $\delta_{erg}(13)$ $\delta_{erg}(12)$ 111 1514 1455 1456s 1452w 0.70	95	1361	1308			0.51	0.19	ν_{C29C26} (10)
98 1380 1326 1337 1338 12.9 3.70 5mm cp (10) 100 1403 1348 1337m 2.85 0.68 5mm cp (13) 101 1414 1358 2.41 0.21 5mm cp (12) 102 1416 1360	97	1372	1319			7.13	1.06	$\delta_{\text{HCC}}(21)$
99 1387 1333 1336m 1338m 8.32 1.63 $\delta_{Crt}(13)$ 100 1403 1348 1347w 2.85 0.08 $\delta_{Crt}(13)$ $\delta_{Crt}(15)$ 101 1414 1358 2.41 0.21 $\delta_{Crt}(13)$ $\delta_{Crt}(15)$ 102 1416 1360 0.49 0.42 $v_{Crt}(15)$ $\delta_{maccrnet}(12)$ $\delta_{maccrnet}(12$	98	1380	1326	1332m		12.9	3.70	$\delta_{\text{H11C3C2}}(10)$
100 143 134 137w 2.85 0.08 $\delta_{Crt}(10), \delta_{IRC}(15)$ 101 1414 1358 2.41 0.21 $\delta_{IRC}(12), \delta_{IRC}(15)$ 102 1416 1360 0.49 0.42 Vc. (10), $\delta_{IRC}(12), \delta_{CRC}(15), \delta_{IRSCPARD}(15)$ 104 1468 1411 1407m 1409w 30.5 0.94 $\delta_{CRLTBR}(21), \delta_{CRLTBR}(21), \delta_{IRSCPARD}(15)$ 106 1433 1434 1436m 1432w 2.95 0.68 $\delta_{RTCSBRR}(23)$ 107 1489 1439 - 4.66 0.33 $\delta_{IRCCBRR}(23)$ 108 1500 1442 0.27 1.02 $\delta_{IRCCBRR}(13)$ 111 1514 1458 1452w 2.70 2.91 $\delta_{IRCCBRR}(13)$ 112 1517 1488 1447w .58 0.30 Vrc (23) 113 1527 1467 .58 0.30 Vrc (23) 114 1538 1477 .58 0.30 Vrc (23)	99	1387	1333	1336m	1338m	8.32	1.63	δ _{CCH} (13)
101 1414 138 2.41 0.21 bresk (12) bresk (12) 102 1416 1360 0.49 0.42 Preck (10), bick (12), bick (15), bisker/met (15) 103 1427 1371 1372w 0.57 0.54 bisker/met (12), bisker/met (15) 105 1475 1417 2.20 2.41 bisker/met (12), bisker/met (15) 106 1493 1434 135m 1432 2.95 0.68 bisker/met (28) 107 1497 1439 7.59 0.22 bisker/met (12), bisker/met (11) 108 1442 0.08 5.92 bisker/met (13) bisker/met (13) 110 1504 1445 1.456s 1.452w 2.70 2.91 bisker/met (13) 111 1514 1455 1.456s 1.452w 2.70 2.91 bisker/met (13) 1114 1538 1477 7.05 0.03 Verc (23) 1.01 113 1527 1467 1.58 0.19 bisker/met (2) 1.01 114 1538 1478 1493m <	100	1403	1348	1347w		2.85	0.08	$δ_{\rm CCH}$ (10), $δ_{\rm HCC}$ (15)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	101	1414	1358			2.41	0.21	$\delta_{\text{HCN}}(12)$
	102	1416	1360	1372w/		0.49	0.42	V_{CC} (10), O_{HCC} (12), O_{CCC} (15)
106 1475 1417 2.20 2.41 Spacera (28) 106 1493 1436m 1432w 2.95 0.68 Spacera (28) 107 1497 1439 7.59 0.22 Spacera (23) 108 1498 1439 4.66 0.33 Spacera (28) 109 1500 1442 0.27 1.02 Spacera (19) 110 1504 1445 0.27 1.02 Spacera (28) Spacera (28) 111 1514 1455 1456s 1452w 2.70 2.91 Spacera (28) Spacera (28) 112 1517 1487 1493m 0.10 1.13 Spacera (28) Spacera (28) 113 1527 1467 7.55 0.03 WC (23) 114 1538 1478 1493m 4.46 7.59 WC (20) 114 1538 1478 1493m 4.89 5.28 WC (23) 116 1661 1596 1601w<	105	1468	1411	1407m	1409w	30.5	0.94	$\delta_{C3N12H8}$ (21), $\delta_{C4N12H8}$ (21)
106 1493 1434 1436m 1432w 2.95 0.68 5paccores (12) matrix 107 1497 1439	105	1475	1417			2.20	2.41	$\delta_{\rm H6C2H7}$ (28)
107 1497 1439 7.59 0.22 $\mathfrak{b}_{1343(127)}(21), \mathfrak{b}_{1343(125)}(11), \mathfrak{b}_{1343(125)}(12), $	106	1493	1434	1436m	1432w	2.95	0.68	δ _{H37C35H38} (23)
108 1498 1439 4.6b 0.33 0122CRC16 (11), 0122CRC16 (11), 0122CRC16 (10) 109 1500 1442 0.27 1.02 $b_{145CCR16}$ (13) 111 1514 1455 1456s 1452w 2.70 2.91 $b_{145CCR16}$ (13), $b_{145CCR16}$ (12) 112 1517 1458 0.10 1.13 $b_{145CCR16}$ (13), $b_{145CCR16}$ (11) 113 1527 1467 7.05 0.03 $vcc (23)$ 114 1538 1477 7.05 0.03 $vcc (23)$ 116 1641 1576 1559w 0.15 0.75 $vcacts (10), vcacts (11)$ 117 1642 1577 1585w 1586m 1.09 1.24 $vcacts (20), vcacts (20)$ 119 1662 1597 1654w 1604s 2.46 7.59 $vcacts (20), vcacts (20) 120 1803 1732 1715xbs 1714m 100 1.41 vgass (20), vcacts (20) 121 2923 2809 2808m 6.00 0.17 vcatts (30), vcatts (30) 122 3025 $	107	1497	1439			7.59	0.22	$\delta_{\text{H34C31C27}}$ (12), $\delta_{\text{H34C31C29}}$ (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108	1498	1439			4.66	0.33	$\delta_{H23C20C16}$ (11), $\delta_{H23C20C18}$ (10)
111 1514 1455 1456s 1452w 2.70 2.91 Shaaccrist (28), Shaccrist (23) 112 1517 1488 0.10 1.13 Shaaccrist (15), Shaccrist (11) 114 1538 1477 7.05 0.03 Vcc (23) 115 1538 1478 1493m 4.49 0.03 Vcc (23) 116 1641 1576 1559w 0.15 0.75 Vc2016 (13), Vc20218 (11) 117 1642 1577 1586m 1.09 1.24 Vc3017 (20), Vc30218 (10) 118 1661 1596 1601w 1.89 5.28 Vc3014 (20), Vc30216 (20) 120 1803 1732 1715w 1714m 100 1.41 Vc3044 (38), Vc3044 (10) 121 2923 2809 280m 6.00 0.17 Vc409 (71), Vc3011 (29) 122 2925 2810 285s 2856m 40.8 3.01 Vc3044 (40), Vc2048 (40), Vc3048 (4	110	1504	1442			0.08	1.02	$\delta_{\mu_{45}}$
112 1517 1458	111	1514	1455	1456s	1452w	2.70	2.91	$\delta_{\rm H48C47H51}$ (28), $\delta_{\rm H49C47H51}$ (23)
113 1527 1467 1.58 0.19 $\delta_{\text{HacCrins}}(11)$ 114 1538 1477 7.05 0.03 $\nu_{CC}(23)$ 115 1538 1478 1493m 4.49 0.30 $\nu_{CC}(23)$ 116 1641 1576 1559w 0.15 0.75 $\nu_{Cacts}(13), \nu_{Cacts}(10), \dots_{C31C2}(11)$ 117 1642 1577 1585w 1586m 1.09 1.24 $\nu_{C372}(23), \nu_{C32C3}(20), \nu_{C32C6}(20)$ 119 1662 1597 1654w 1604s 2.46 7.59 $\nu_{C37C3}(20), \nu_{C32C6}(20)$ 121 2923 2809 2808m 6.00 0.17 $\nu_{CHH}(71), \nu_{CHH}(29)$ 122 2925 2810 2855x 2856m 40.8 3.01 $\nu_{CHH}(71), \nu_{CHH}(29)$ 124 3014 2890 3.21 2.85 $\nu_{CHH}(71), \nu_{CHH}(29)$ 121 125 3024 2905 13.3 0.88 $\nu_{CHH}(71), \nu_{CHH}(24), \nu_{CHH}(10)$ 126 3025 2907 15.2 2.36 $\nu_{CHH}(71), \nu_{CHH}(24), \nu_{CHH}(10)$ 127	112	1517	1458			0.10	1.13	$δ_{H48C47H49}$ (15), $δ_{H40C36H41}$ (11)
114 1538 1477 7.05 0.03 $\nu_{CC}(23)$ 115 1538 1478 1493m 4.49 0.30 $\nu_{CC}(23)$ 116 1641 1576 1559w 0.15 0.75 $\nu_{C20C16}(13), \nu_{C20C18}(11)$ 117 1642 1577 1585w 1586m 1.09 1.24 $\nu_{C1C12}(20), \nu_{C1S15}(20)$ 118 1661 1596 1601w 1.89 5.28 $\nu_{C1C12}(20), \nu_{C1S15}(20)$ 120 1803 1732 1715vs 1714m 100 1.41 $\nu_{060C1}(90)$ 121 2923 2809 2808m 6.00 0.17 $\nu_{C4H1}(71), \nu_{C4H1}(29)$ 123 3004 2896 3.82 0.34 $\nu_{C3H44}(40), \nu_{C2H45}(24), \nu_{C3H1}(21)$ 124 3014 2896 3.82 0.34 $\nu_{C3H44}(70)$ 125 3024 2907 15.2 2.36 $\nu_{C3H64}(44), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(24), \nu_{C3H44}(25) 126 3025 2907 5.29 1.45 \nu_{C3H6}(82), \nu_{C3H4}(83), \nu_{C3H44}(2$	113	1527	1467			1.58	0.19	$\delta_{\rm H48C47H49}(11)$
115 1536 1476 149311 4.49 0.30 PCC (23) 116 1641 1576 1559w 0.15 0.75 PConcis (13), PConcis (11), PC31(29) (11) 117 1642 1577 1585w 1586m 1.09 1.24 PC1027 (13), PConcis (20), PC35(28) (20) 119 1661 1596 1601w 1.89 5.28 PC102(2), PC35(2) (20) C23(2) 120 1803 1732 1715vs 1714m 100 1.41 P050(10), PC311(29) 121 2923 2809 2808m 6.00 0.17 PC314(46), PC314(10) 124 3014 2896 3.82 0.34 PC3644(4), PC314(10) 124 3014 2896 3.82 0.34 PC3644(4), PC314(2), PC314(10) 125 3024 2905 13.3 0.88 PC3144(42), PC3146(2), PC314(2), PC314(2) 126 3025 2907 15.2 2.36 PC3146(37), PC3148(33), PC314(26) 128 3039 2920 2924s 3.68 2.61 PC31446(42), PC3147(42), PC3145(23) 130 3	114	1538	1477	1402		7.05	0.03	$\nu_{\rm CC}$ (23)
117 1641 1577 1585w 1586m 1.0 0.13 PLANE NET (13), PLANE (10),	115	1538	1478	1493111 1559w/		4.49	0.30	$V_{CC}(23)$
118 1661 1596 1601w 1.89 5.28 VCIGCI 4 (20), VCIBCI 5 (20) 119 1662 1597 1654w 1604s 2.46 7.59 VCITCGI 4 (20), VCIBCI 5 (20) 120 1803 1732 1715v 1714m 100 1.41 Voising 7 (20), VCIBCI 5 (20) 121 2923 2809 2808m 6.00 0.17 VCHII (71), VCHII (29) 122 2925 2810 2855s 2856m 40.8 3.01 VCHII (71), VCHII (29) 123 3009 2891 2870w 2890w 3.21 2.85 PC3HAI (46), VCHIA (28), VCHII (10) 124 3014 2896	117	1642	1577	1585w	1586m	1.09	1.24	ν_{C31C27} (13), ν_{C26C24} (10), ν_{C31C29} (11)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	118	1661	1596	1601w		1.89	5.28	ν_{C16C14} (20), ν_{C18C15} (20)
120 1803 1732 171 5vs 171 4m 100 1.41 νoscc1 (90) 121 2923 2809 2808m 6.00 0.17 νC4H9 (71), νC4H1 (29) 122 2925 2810 2850s 2856m 40.8 3.01 vC3H41 (71), vC4H9 (29) 123 3009 2891 2870w 2890w 3.21 2.85 VC3H44 (38), vC3H44 (38), vC3H41 (10) 124 3014 2896 3.82 0.34 vC3H46 (44), vC2H45 (24), vC3H4 (21) 125 3024 2907 15.2 2.36 vC3H46 (37), vC4H44 (33), vC3H44 (22), vC3H45 (24), vC3H1 (26) 126 3025 2907 15.2 2.36 vC3H46 (37), vC4H44 (33), vC4H45 (26) 128 3039 2920 2924s 3.68 2.61 vC3H44 (21), vC3H44 (31), vC4H45 (26) 129 3049 2929 162 1.72 vC3H44 (21), vC3H44 (25), vC3H4 (26) 130 3057 2937 5.29 1.45 vC2H6 (82), vC2H7 (16) 131 3061 2940 2949w 1.75 2.04 vC3H44 (45), vC3H44 (26), vC3H47 (20)	119	1662	1597	1654w	1604s	2.46	7.59	ν_{C27C25} (20), ν_{C29C26} (20)
121292328092808m6.000.17PCdB (71, VCBH1 (29)1222925281028552856m40.83.01VCBH1 (71), VCBH1 (29)123300928912870w2890w3.212.85VC39H4 (46), VC39H4 (38), VC36H4 (10)124301428963.820.34VC36H4 (70)1253024290515.22.36VC41H6 (24), VC2H45 (24), VC3H10 (21)1263025290715.22.36VC41H6 (37), VC47H8 (33), VC47H51 (26)127303629172914s2913w19.53.90VC47H49 (37), VC47H8 (33), VC47H51 (26)128303929202924s3.682.61VC3H14 (42), VC3H14 (10)130305729375.291.45VC2H6 (82), VC3H7 (16)1313061294114.90.24VC4BH49 (32), VC2H6 (26), VC3H44 (15)133310129799.650.06VC3BH38 (23), VC3 H17 (20)133310129799.650.06VC3BH38 (23), VC3 H17 (20)1343105298344.30.89VC4H49 (3), VC4H8 (17), VC4H49 (10)136313531022029m6.522.04VC2H17 (83), VC4H8 (17), VC4H49 (10)137317230483042w3.110.76VC2BH28 (68), VC2H32 (22)138317430492.880.62VC1H17 (63), VC4H8 (17), VC4H49 (10), VC2H43 (16), VC2H42 (17)14031813057305750.132.88VC1	120	1803	1732	1715vs	1714m	100	1.41	$\nu_{050C1}(90)$ (20)
122 2053 2010 2053 2050 2050 100 100 123 3009 2891 2870w 2890w 3.21 2.85 PC3H3 (46), VC3H4 (38), VC36H41 (10) 124 3014 2896 3.82 0.34 VC36H41 (70) 125 3024 2905 13.3 0.88 VC2H46 (44), VC3H4 (24), VC3H10 (21) 126 3025 2907 15.2 2.36 VC3H10 (72), VC4H4 (33), VC4H51 (26) 127 3036 2917 2914s 2913w 19.5 3.90 VC4H46 (42), VC3H43 (33), VC4H51 (26) 128 3039 2920 2924s 3.68 2.61 VC3H43 (32), VC4H51 (22) 129 3049 2929 16.2 1.72 VC3H43 (32), VC4H45 (23), VC4H44 (15) 130 3057 2937 5.29 1.45 VC2H46 (20), VC2H45 (22), VC2H4 (26), VC3H44 (15) 132 3081 2960 2956s 1.75 2.04 VC3H43 (32), VC2H46 (21), VC3H44 (31), VC3 H37 (20) 133 3101 2979 9.65 0.06 VC3H48 (32), VC2H46 (20), VC3H48 (31), VC3 H37 (20) 133<	121	2923	2809	2808111	2856m	40.8	0.17	$V_{C4H9}(71), V_{C3H11}(29)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	122	3009	2891	28503 2870w	2890w	3.21	2.85	ν_{C39H43} (46), ν_{C39H44} (38), ν_{C36H41} (10)
125 3024 2905 13.3 0.88 ν_{42H46} (44), ν_{62H45} (24), ν_{C5H10} (21) 126 3025 2907 15.2 2.36 ν_{C5H10} (72), ν_{62H46} (10) 127 3036 2917 2914s 2913w 19.5 3.90 ν_{C4H49} (37), ν_{C4H48} (33), ν_{C4H51} (26) 128 3039 2920 2924s 3.68 2.61 ν_{C3H49} (42), ν_{C3H43} (19), ν_{C42H45} (23) 129 3049 2929 16.2 1.72 ν_{C3H45} (22), ν_{C2H7} (16) 130 3057 2937 5.29 1.45 ν_{C42H45} (32), ν_{C3H44} (23), ν_{C3H44} (15) 132 3081 2960 2956s 1.75 2.04 ν_{C42H45} (32), ν_{C3H44} (38), ν_{C3H44} (15) 133 3101 2979 9.65 0.06 ν_{C3H44} (43), ν_{C4H44} (43), ν_{C4H44} (43), ν_{C3H44} (43), ν_{C3H44} (43), ν_{C3H44} (43), ν_{C3H44} (43) ν_{C4H46} (44), ν_{C4H46} (44), ν_{C4H46} (44) ν_{C4H46} (44), ν_{C4H46} (44) ν_{C4H46} (44) ν_{C3H44} (43) ν_{C4H46} (44), ν_{C4H46} (43) ν_{C3H44} (43), ν_{C3H44} (43) ν_{C3H44} (43) ν_{C3H44} (43) ν_{C3H44} (43) ν_{C3H44} (43) ν_{C3H44} (4	124	3014	2896			3.82	0.34	$\nu_{\rm C36H41}$ (70)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	125	3024	2905			13.3	0.88	ν_{C42H46} (44), ν_{C42H45} (24), ν_{C5H10} (21)
127303629172914s2913w19.53.90 ν_{C47H49} (37), ν_{C47H48} (33), ν_{C47H48} (26)128303929202924s3.682.61 ν_{C39H44} (42), ν_{C39H3} (51), ν_{C39H3} (51), ν_{C39H3} (51), ν_{C39H3} (51), ν_{C39H3} (51), ν_{C39H3} (51), ν_{C39H44} (23)130305729375.291.45 ν_{C39H44} (26), ν_{C39H4} (15)1313061294114.90.24 ν_{C42H45} (32), ν_{C42H46} (26), ν_{C39H44} (15)132308129602956s1.752.04 ν_{C36H40} (46) ν_{C35H38} (23), $\nu_{C35 H37}$ (20)133310129799.650.06 ν_{C35H38} (32), ν_{C3H40} (11), $\nu_{C35 H37}$ (20)1343105298344.30.89 ν_{C47H48} (43), ν_{C47H48} (17), ν_{C3H44} (10)136313530123029m6.522.04 ν_{C2H7} (83), ν_{C2H46} (17)137317230483042w3.110.76 ν_{C25H28} (68), ν_{C27H32} (22)138317430492.880.62 ν_{C14H17} (62), ν_{C16H21} (24)139318130560.182.37 ν_{C29H33} (46), ν_{C3H44} (15), ν_{C25H28} (17)140318130573057s0.132.88 ν_{C13H22} (37), ν_{C29H33} (28), ν_{C14H17} (19)1433202307720.41.22 ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (28), ν_{C14H17} (13)	126	3025	2907	2014	2012	15.2	2.36	$\nu_{\rm C5H10}$ (72), $\nu_{\rm C42H46}$ (10)
12930392920292453.062.01 ν_{C39H4} (42), ν_{C3H3} (13), ν_{C32H3} (23)1293049292916.21.72 ν_{C39H4} (42), ν_{C3H7} (16)130305729375.291.45 ν_{C3H46} (26), ν_{C3H44} (15)1313061294114.90.24 ν_{C42H45} (32), ν_{C42H46} (26), ν_{C39H44} (15)132308129602956s1.752.04 ν_{C36H40} (46) ν_{C35H38} (23), ν_{C35} H37 (20)133310129799.650.06 ν_{C35H38} (32), ν_{C36H40} (11), ν_{C35} H37 (20)1343105298344.30.89 ν_{C47H48} (17), ν_{C3H48} (17)135310929872989w2990w22.93.03 ν_{C47H51} (72), ν_{C47H48} (17), ν_{C47H49} (10)136313530123029m6.522.04 ν_{C2H7} (83), ν_{C2H6} (17)137317230483042w3.110.76 ν_{C25H28} (68), ν_{C27H32} (22)138317430492.880.62 ν_{C14H17} (62), ν_{C16H21} (24)139318130560.182.37 ν_{C29H33} (46), ν_{C3H34} (31), ν_{C25H28} (17)140318130573057s0.132.88 ν_{C18H22} (47), ν_{C29H33} (28), ν_{C14H17} (19)1413192306713.62.21 ν_{C16H21} (35), ν_{C16H21} (23), ν_{C20H23} (28), ν_{C14H17} (13)1433202307720.41.22 ν_{C15H19} (3), ν_{C16H21} (25), ν_{C20H23} (23) <td>127</td> <td>3036</td> <td>2917</td> <td>2914s</td> <td>2913w</td> <td>19.5</td> <td>3.90</td> <td>$\nu_{C47H49}(37), \nu_{C47H48}(33), \nu_{C47H51}(26)$</td>	127	3036	2917	2914s	2913w	19.5	3.90	$\nu_{C47H49}(37), \nu_{C47H48}(33), \nu_{C47H51}(26)$
130305729375.291.45 $\nu_{C2H6}(82), \nu_{C2H7}(16)$ 1313061294114.90.24 $\nu_{C42H45}(32), \nu_{C2H7}(16)$ 132308129602956s1.752.04 $\nu_{C36H40}(46) \nu_{C35H38}(23), \nu_{C35 H37}(20)$ 133310129799.650.06 $\nu_{C35H38}(32), \nu_{C36H40}(31), \nu_{C35 H37}(20)$ 1343105298344.30.89 $\nu_{C47H48}(43), \nu_{C47H48}(17), \nu_{C47H48}(17)$ 135310929872989w2990w22.93.03 $\nu_{C47H41}(17), \nu_{C47H48}(17), \nu_{C47H49}(10)$ 136313530123029m6.522.04 $\nu_{C2H7}(83), \nu_{C2H6}(17)$ 137317230483042w3.110.76 $\nu_{C25H28}(68), \nu_{C2TH2}(22)$ 138317430492.880.62 $\nu_{C1H117}(62), \nu_{C16H21}(24)$ 139318130560.182.37 $\nu_{C29H33}(46), \nu_{C3H34}(31), \nu_{C25H28}(17)$ 140318130573057s0.132.88 $\nu_{C1H22}(27), \nu_{C2H32}(23), \nu_{C2H43}(26), \nu_{C14H17}(19)$ 141319130663061m9.093.01 $\nu_{C2H32}(37), \nu_{C29H33}(28), \nu_{C3H34}(15), \nu_{C25H28}(11)$ 1433202307720.41.22 $\nu_{C15H19}(33), \nu_{C16H21}(25), \nu_{C20H23}(28)$	128	3049	2920	25245		16.2	1 72	$\nu_{\rm C39H44}$ (42), $\nu_{\rm C39H43}$ (15), $\nu_{\rm C42H45}$ (23)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	3057	2937			5.29	1.45	$\nu_{\rm C2H6}$ (82), $\nu_{\rm C2H7}$ (16)
132 3081 2960 2956s 1.75 2.04 ν_{C36H40} (46) ν_{C35H38} (23), $\nu_{C35 H37}$ (20) 133 3101 2979 9.65 0.06 ν_{C35H38} (32), $\nu_{C35 H37}$ (20) 134 3105 2983 44.3 0.89 ν_{C47H49} (43), ν_{C37H49} (17), ν_{C47H48} (17), ν_{C47H48} (17) 136 3135 3012 3029m 6.52 2.04 ν_{C47H47} (83), ν_{C27H48} (17), ν_{C47H49} (10) 137 3172 3048 3042w 3.11 0.76 ν_{C25H28} (68), ν_{C27H32} (22) 138 3174 3049 2.88 0.62 ν_{C14H17} (62), ν_{C16H21} (24) 139 3181 3056 0.18 2.37 ν_{C29H33} (46), ν_{C31H34} (31), ν_{C25H28} (17) 140 3181 3057 3057s 0.13 2.88 ν_{C14H17} (62), ν_{C14H17} (19) 141 3191 3066 3061m 9.09 3.01 ν_{C27H32} (37), ν_{C29H33} (28), ν_{C14H17} (19) 142 3192 3067 13.6 2.21 ν_{C16H21} (35), ν_{C18H22} (23), ν_{C20H23} (28), ν_{C20H23} (18), ν_{C14H17} (13) 143 3202 <td< td=""><td>131</td><td>3061</td><td>2941</td><td></td><td></td><td>14.9</td><td>0.24</td><td>ν_{C42H45} (32), ν_{C42H46} (26), ν_{C39H44} (15)</td></td<>	131	3061	2941			14.9	0.24	ν_{C42H45} (32), ν_{C42H46} (26), ν_{C39H44} (15)
133 3101 29/9 9.65 0.06 ν_{C35H38} (32), ν_{C36H40} (31), $\nu_{C35 H37}$ (20) 134 3105 2983 44.3 0.89 ν_{C47H49} (43), ν_{C47H48} (38) 135 3109 2987 2989w 2990w 22.9 3.03 ν_{C47H49} (43), ν_{C47H48} (17), ν_{C47H49} (10) 136 3135 3012 3029m 6.52 2.04 ν_{C217} (83), ν_{C2H6} (17) 137 3172 3048 3042w 3.11 0.76 ν_{C25H28} (68), ν_{C27H32} (22) 138 3174 3049 2.88 0.62 ν_{C14H17} (62), ν_{C16H21} (24) 139 3181 3056 0.18 2.37 ν_{C29H33} (46), ν_{C3H134} (31), ν_{C25H28} (17) 140 3181 3057 3057s 0.13 2.88 ν_{C18H22} (47), ν_{C20H23} (26), ν_{C14H17} (19) 141 3191 3066 3061m 9.09 3.01 ν_{C27H32} (37), ν_{C29H33} (28), ν_{C14H17} (13) 142 3192 3067 13.6 2.21 ν_{C16H21} (35), ν_{C16H21} (25), ν_{C10H23} (23), ν_{C14H17} (13) 143 3202 3077	132	3081	2960	2956s		1.75	2.04	ν_{C36H40} (46) ν_{C35H38} (23), ν_{C35} H37 (20)
134 3105 2953 44.3 0.89 ν_{C47H49} (43), ν_{C47H48} (38) 135 3109 2987 2989w 2990w 22.9 3.03 ν_{C47H49} (17), ν_{C47H48} (17), ν_{C47H49} (10) 136 3135 3012 3029m 6.52 2.04 $\nu_{C27F(83)}$, ν_{C2H6} (17) 137 3172 3048 3042w 3.11 0.76 ν_{C25H28} (68), ν_{C27H32} (22) 138 3174 3049 2.88 0.62 ν_{C14H17} (62), ν_{C16H21} (24) 139 3181 3056 0.18 2.37 ν_{C29H33} (46), ν_{C3H134} (31), ν_{C25H28} (17) 140 3181 3057 3057s 0.13 2.88 ν_{C18H22} (47), ν_{C20H23} (26), ν_{C14H17} (19) 141 3191 3066 3061m 9.09 3.01 ν_{C27H32} (37), ν_{C29H33} (28), ν_{C14H17} (19) 142 3192 3067 13.6 2.21 ν_{C16H21} (35), ν_{C16H21} (25), ν_{C10H23} (23), ν_{C14H17} (13) 143 3202 3077 20.4 1.22 ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (23)	133	3101	2979			9.65	0.06	ν_{C35H38} (32), ν_{C36H40} (31), $\nu_{C35 H37}$ (20)
136 3135 3012 3029m 6.52 2.04 $\nu_{C2H7}(83), \nu_{C2H4}(17), \nu_{C4H48}(17), \nu_{C4H$	134	3109	2987	2989w	2990w	44.5 22.9	3.03	ν_{C47H49} (4), ν_{C47H48} (30) ν_{C47H51} (72) ν_{C47H48} (17) ν_{C47H49} (10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	136	3135	3012	3029m	2000	6.52	2.04	ν_{C2H7} (83), ν_{C2H6} (17)
138 3174 3049 2.88 0.62 ν_{C14H17} (62), ν_{C16H21} (24) 139 3181 3056 0.18 2.37 ν_{C29H33} (46), ν_{C31H34} (31), ν_{C25H28} (17) 140 3181 3057 3057s 0.13 2.88 ν_{C18H22} (47), ν_{C20H23} (26), ν_{C14H17} (19) 141 3191 3066 3061m 9.09 3.01 ν_{C27H32} (37), ν_{C29H33} (28), ν_{C31H34} (15), ν_{C25H28} (11) 142 3192 3067 13.6 2.21 ν_{C16H21} (35), ν_{C18H22} (23), ν_{C20H23} (18), ν_{C14H17} (13) 143 3202 3077 20.4 1.22 ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (23)	137	3172	3048		3042w	3.11	0.76	ν_{C25H28} (68), ν_{C27H32} (22)
139 3181 3056 0.18 2.37 ν_{C29H33} (46), ν_{C31H34} (31), ν_{C25H28} (17) 140 3181 3057 3057s 0.13 2.88 ν_{C18H22} (47), ν_{C20H23} (26), ν_{C14H17} (19) 141 3191 3066 3061m 9.09 3.01 ν_{C27H32} (37), ν_{C29H33} (28), ν_{C31H34} (15), ν_{C25H28} (11) 142 3192 3067 13.6 2.21 ν_{C16H21} (35), ν_{C18H22} (23), ν_{C20H23} (18), ν_{C14H17} (13) 143 3202 3077 20.4 1.22 ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (23)	138	3174	3049			2.88	0.62	ν_{C14H17} (62), ν_{C16H21} (24)
140318130573057s0.132.88 v_{C18H22} (47), v_{C20H23} (26), v_{C14H17} (19)141319130663061m9.093.01 v_{C27H32} (37), v_{C29H33} (28), v_{C31H34} (15), v_{C25H28} (11)1423192306713.62.21 v_{C16H21} (35), v_{C18H22} (23), v_{C20H23} (18), v_{C14H17} (13)1433202307720.41.22 v_{C15H19} (33), v_{C16H21} (25), v_{C20H23} (23)	139	3181	3056		2057	0.18	2.37	ν_{C29H33} (46), ν_{C31H34} (31), ν_{C25H28} (17)
14151515000500111 5.05 5.01 ν_{C27H32} (57), ν_{C29H33} (20), ν_{C31H34} (15), ν_{C25H28} (11)1423192306713.62.21 ν_{C16H21} (35), ν_{C18H22} (23), ν_{C20H23} (18), ν_{C14H17} (13)1433202307720.41.22 ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (23)	140 141	3181 3101	3057 3066	3061m	3U57S	0.13	2.88	ν_{c18H22} (47), ν_{c20H23} (26), ν_{c14H17} (19)
143 3202 3077 20.4 1.22 ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (23)	142	3192	3067	500111		13.6	2.21	$\nu_{C2/H32}$ (37), ν_{C29H33} (26), ν_{C31H34} (13), ν_{C25H28} (11) ν_{C16H21} (35), ν_{C18H22} (23), ν_{C20H23} (18). ν_{C14H17} (13)
	143	3202	3077			20.4	1.22	ν_{C15H19} (33), ν_{C16H21} (25), ν_{C20H23} (23)

Table 2 (Continued)

Mode no.	Computed val	ues	Experiment	al	Intensity		TED ^d (≥10%)
	Unscaled	Scaled ^a	FT-IR	FT-Raman	I _{IR} ^b	I _{Raman} c	
144	3203	3077			10.1	3.64	ν _{C27H32} (28), ν _{C31H34} (28), ν _{C26H30} (25)
145	3209	3083			4.40	4.52	ν_{C15H19} (41), ν_{C18H22} (23), ν_{C20H23} (20)
146	3210	3084	3084m		6.31	8.84	ν _{C26H30} (53), ν _{C29H33} (21), ν _{C3H34} (13)
147	3522	3384	3316s	3317w	0.16	1.76	ν _{N12H8} (100)

 ν : stretching, δ : bending, T: torsion, vw: very week, w: week, m: medium, s: strong, vs: very strong.

^a Scaling factor: 0.9608 [28].

^b Relative absorption intensities normalized with highest peak absorption equal to 100.

^c Relative Raman intensities calculated by Eq. (1) and normalized to 100.

^d Total energy distribution calculated B3LYP 6-31G(d,p) level, TED less than 10% are not shown.

Tal	bl	e	3
-----	----	---	---

Second order perturbation theory analysis of Fock matrix in NBO basis (PDPO).

Donor (i)	ED/e	Acceptor (j)	ED/e	$E^{(2)}$ (kJ/mol) ^a	E(j) - E(i) a.u. ^b	F(i, j) (a.u.) ^c
6 6	1.050	$\pi^* C_{14} - C_{16}$	0.335	19.77	0.28	0.066
$\pi c_{13} - c_{15}$	1.656	$\pi^* C_{18} - C_{20}$	0.332	20.59	0.28	0.068
6 6	1.000	$\pi^* C_{13} - C_{15}$	0.342	20.99	0.28	0.069
$\pi C_{14} - C_{16}$	1.669	$\pi^* C_{18} - C_{20}$	0.332	19.69	0.28	0.066
- 6 6	1.004	$\pi^* C_{13} - C_{15}$	0.342	19.50	0.28	0.066
$\pi c_{18} - c_{20}$	1.664	$\pi^{*}_{14}-C_{16}$	0.335	20.74	0.28	0.068
- 6 6	1.050	$\pi^* C_{26} - C_{29}$	0.327	19.32	0.28	0.066
$\pi c_{24} - c_{25}$	1.659	$\pi^* C_{27} - C_{31}$	0.330	20.60	0.28	0.068
- 6 6	1 000	$\pi^* C_{24} - C_{25}$	0.347	21.53	0.28	0.070
$\pi C_{26} - C_{29}$	1.663	$\pi^* C_{27} - C_{31}$	0.330	19.92	0.28	0.067
- 6 6	1.000	$\pi^* C_{24} - C_{25}$	0.375	19.42	0.28	0.066
$\pi C_{27} - C_{31}$	1.662	$\pi^* C_{26} - C_{29}$	0.327	20.41	0.28	0.067
		$\sigma^* C_3 - C_{24}$	0.029	0.57	1.09	0.022
$\sigma C_3 - N_{12}$	1.979	$\sigma^* C_4 - N_{12}$	0.022	0.56	1.04	0.022
		$\sigma^* C_4 - C_{13}$	0.030	2.2	1.09	0.044
		$\sigma^* C_3 - N_{12}$	0.022	0.53	1.04	0.021
$\sigma C_4 - N_{12}$	1.981	$\sigma^* C_3 - C_{24}$	0.029	2.19	1.09	0.044
		$\sigma^* C_4 - C_{13}$	0.030	0.55	1.09	0.022
		$C_2 - C_3$	0.024	1.46	0.67	0.028
		C ₃ -H ₁₁	0.032	5.81	0.79	0.061
LPN ₁₂	1.927	C ₄ -C ₅	0.033	1.49	0.68	0.029
		C ₄ -H ₉	0.039	5.81	0.79	0.061
		C ₁₅ -H ₁₉	0.014	0.54	0.82	0.019
		$C_1 - C_2$	0.052	0.88	1.07	0.028
LPO50(1)	1.971	C1-C5	0.063	2.56	1.07	0.047
		C ₃₆ -H ₄₀	0.027	4.55	1.25	0.067
		$C_1 - C_2$	0.052	17.62	0.64	0.096
		$C_1 - C_5$	0.063	15.93	0.62	0.016
LPO(2)	1.897	$C_2 - C_3$	0.024	0.51	0.62	0.016
		$C_{36} - C_{39}$	0.032	0.55	0.68	0.018
		C ₃₆ -H ₄₀	0.027	5.32	0.82	0.060

^a $E^{(2)}$ means energy of hyperconjucative interactions (stabilization energy).

 $^{\rm b}\,$ Energy difference between donor and acceptor i and j NBO orbitals.

^c F(i, j) is the Fock matrix element between *i* and *j* NBO orbitals.

[27] reveals that the normal esters are characterized by the strong IR absorption due to the C=O stretching vibration in the range of $1750-1735 \text{ cm}^{-1}$. In this study, we have observed stretching of C=O at 1715 cm^{-1} as very strong in FT-IR and 1714 cm^{-1} as medium intense band in FT-Raman, while the computed frequency is 1732 cm^{-1} (mode no: 120) and its TED value (90%). The C-C stretching in phenyl ring and methylene chain is calculated in the range of $1035-864 \text{ cm}^{-1}$ (mode nos: 69-64, 62, 61, 57, 55, and 52-50). These vibrations are in line with experimental values (1028, 1001, 986, 973, 889, 857: FT-IR and 1030, 1003, 988, 919 cm^{-1}: FT-Raman) and also in consistent with literature values [22,23]. These assignments are further supported by the TED values.

The identification of C–N vibration is a very difficult task, since mixing of several bands are possible in this region. However, with the help of theoretical calculation (DFT), the C–N stretching vibrations are calculated. The C–N stretching vibration coupled with scissoring of N–H, is moderately to strongly active in the region 1275 ± 55 cm⁻¹ [17]. In the present investigation C–N

stretching frequencies are observed at 1046, 1056, 1068,1086 and 1110 cm⁻¹ by FT-IR and their corresponding calculated wavenumbers appeared in the range of 1049–1104 cm⁻¹ (mode nos: 70–76). These experimental values of C–N stretching mode show good agreement with theoretical values. The ν C–N stretching vibration normally appears around 1300 cm⁻¹ [17]. In this work the ν C–N frequencies are moderately lowered, which may be due to the mass effect around nitrogen atom.

5. NBO analysis

The hyperconjugation may be given as stabilizing effect that arises from an overlap between an occupied orbital with another neighboring electron deficient orbital when these orbitals are properly orientation. This non-covalent bonding-antibonding interaction can be quantitatively described in terms of the NBO analysis, which is expressed by means of the second-order perturbation interaction energy $(E^{(2)})$ [29–32]. This energy represents the estimation of the off-diagonal NBO Fock matrix elements. It can be deduced from the second-order perturbation approach [33]

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\varepsilon_j - \varepsilon_i}$$
⁽²⁾

where q_i is the donor orbital occupancy, ε_i and ε_i are diagonal elements (orbital energies) and F(i, j) is off diagonal NBO Fock matrix elements. In this present study we dealt with NBO analysis. Especially the amount of energy transfer from π bond orbital to anti bond π^* orbital, the stabilization energy $E^{(2)}$ associated with hyperconjugative interaction, LPO(2) \rightarrow C₁-C₂, and C₁-C₅ are obtained as 17.62 and 15.93 kJ/mol, respectively. The bond C₁₃-C₁₅ with electron density 1.656e, stabilize the energy of 19.77 and 20.59 kJ/mol to its acceptor anti bonding orbitals of C₁₄-C₁₆ and C₁₈-C₂₀, respectively. These interactions are observed as an increase in electron density (ED) in C-C antibonding orbital that weaken their bonds [34]. This investigation clearly demonstrates that the occupancy value of bonding orbitals make sure the hyperconjugative interaction with maximum stabilization between filled and unfilled subsystem of the molecule. The ED of C_{14} - C_{16} donor bond has ${\sim}1.669e,$ on the other hand its antibond ED (π^* $C_{13}{-}C_{15}$ and $C_{18}\text{-}C_{20})$ posses ${\sim}0.342$ and 0.332e, and their $E^{(2)}$ energies are 20.99 and 19.69 kJ/mol respectively. From the NBO analysis, the lower the ED of donor with larger the ED of acceptor have maximum delocalization and become strong bond interaction. The higher the ED value with lower $E^{(2)}$ energy which becomes lesser interaction and hence it shifts the vibrational frequencies from the actual frequencies. It is evident that the C_3-N_{12} (1.979e) and C_4-N_{12} (1.981e) bond stretching vibration (in the range from 1049 to 1123; mode nos. 70-76) lowers from the normal C-N bond stretching (1300 cm⁻¹) [17]. This may be due to the lesser hyperconjugative interaction between C-N donor bonds to C-C acceptor bands. The $E^{(2)}$ values and types of the transition are shown in Table 3.

6. HOMO-LUMO

The frontier molecular orbitals play an important role in the electric and optical properties, as well as in UV-vis spectra and chemical reactions [35]. The analysis of the wave function indicates that the electron absorption corresponds to the transition from the ground to the first excited state and is mainly described by one electron-excitation from the highest occupied molecular orbital (HOMO) to the lowest unoccupied orbital (LUMO) [36]. The energy gap for PDPO was calculated using B3LYP/6-31G(d,p) level. The bioactivity and chemical activity of the molecule depends on the eigen value of HOMO, LUMO and energy gap. LUMO as an electron acceptor represents the ability to obtain an electron; donor represents the ability to donate an electron. The frontier molecular orbitals are shown in Fig. 5. From the molecular orbital analysis the highest occupied level is 87 this locates over the C-N-C group. And the 88 is the excited frontier orbital (LUMO- π^*), this orbital located over the C₁-O₅₀ and carbon atoms in phenyl ring. The energy difference between the HOMO and LUMO is about 5.288 eV. The frontier molecular orbital of PDPO (HOMO-LUMO) is shown in Fig. 5.

HOMO energy = -6.169 eV

LUMO energy = -0.881 eV

Energy gap = 5.288 eV

The smaller band gap energy increases the stability of the molecule. The charge distribution of the molecule has calculated

LUMO (-0.881 eV)

Fig. 5. The frontier molecular orbital of PDPO (HOMO-LUMO).

Table 4Atomic charge of PDPO.

Atoms	Charges (a.u.)	Atoms	Charges (a.u.)
C ₁	0.402	C ₂₄	0.099
C ₂	-0.226	C ₂₅	-0.118
C ₃	-0.011	C ₂₆	-0.092
C ₄	0.022	C ₂₇	-0.088
C ₅	-0.119	C ₂₉	-0.099
N ₁₂	-0.515	C ₃₁	-0.079
C ₁₃	0.060	C ₃₅	-0.178
C ₁₄	-0.113	C ₃₆	-0.198
C ₁₅	-0.107	C ₃₉	-0.173
C ₁₆	-0.092	C ₄₂	-0.180
C ₁₈	-0.090	C ₄₇	-0.318
C ₂₀	-0.082	O ₅₀	-0.465

using B3LYP/6-31G(d,p) level. This calculation depicts the charges of the every atom in molecule. Distribution of positive and negative charges is the cause, to increase or decrease of bond length. The atomic charges of carbon, nitrogen and oxygen are listed in Table 4, in which nitrogen atom has maximum negative charge of -0.515 and -0.465 a.u., for oxygen atom. The HOMO part is located over the N₁₂-C₃, N₁₂-C₄ orbital, is mainly due to the lone pair of electron. Some of the carbon atoms have only positive charge about C₁ (0.402), C₄ (0.022), C₁₃ (0.060) and C₂₄ (0.099 a.u.). This clearly explains that the LUMO exist in those areas. The Mulliken charge plot is shown in Fig. 6.

Fig. 6. Mulliken charge plot of C, N, O in PDPO.

7. Conclusion

All possible conformers are calculated by changing the torsion angle rotation with respect to bond. The calculated bond parameters are compared with reported X-ray diffraction data. All the vibrational bands which are observed in the FT-IR and FT-Raman spectra of the title compound are completely assigned for the first time with the help of TED. The donor–acceptor interaction, as obtained from NBO analysis could fairly explains the decrease of occupancies of σ bonding orbital and the increase of occupancy of π^* antibonding orbitals. The bioactivity of the molecule is proposed by means of band gap (–5.288 eV) energy derived from HOMO and LUMO calculation. The atomic charges of the present molecule has been calculated and also plotted.

References

- R. Venketeshperumal, M. Adiraj, P. Shanmugapandian, Indian Drugs 38 (2001) 167–169.
- [2] A. Numata, T. Ibuka, A. Brossi, In the Alkaloids, vol. 31, Academic Press, New York, 1987, p. 193.
- [3] M.W. Edwards, J.W. Daly, C.W. Myers, J. Nat. Prod. 51 (1988) 1188-1197.
- [4] C.R. Ganellin, R.G.W. Spickett, J. Med. Chem. 8 (1965) 619-625.
- [5] (a) M. Srinivasan, S. Perumal, S. Selvaraj, Chem. Pharm. Bull. 54 (2006) 795;
 (b) N. Rameshkumar, A. Veena, R. Ilavarasan, M. Adiraj, P. Shanmugapandiyan, S.K. Sridhar, Biol. Pharm. Bull. 26 (2003) 188.

- [6] J. Chakkaravarthy, G. Muthukumaran, K. Pandiarajan, J. Mol. Struct. 889 (2008) 297–307.
- [7] P. Gayathri, J. Jayabarathi, G. Rajarajan, A. Thiruvalluvar, R.J. Butcher, Acta Cryst. 65E (2009) o3083.
- [8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.
- [9] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214-218.
- [10] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
- [11] D. Michalska, Raint Program, Wroclaw University of Technology, 2003.
- [12] D. Michalska, R. Wysokinski, Chem. Phys. Lett. 403 (2005) 211-217.
- [13] M.T. Gulluoglu, Y. Erdogdu, S. Yurdakul, J. Mol. Struct. 834 (2007) 540-547.
- [14] Y. Erdogdu, M.T. Gulluoglu, S. Yurdakul, J. Mol. Struct. 889 (2008) 361-370.
- [15] Y. Erdogdu, M.T. Gulluoglu, Spectrochim. Acta 74A (2009) 162–167.
- W.B. Tzeng, K. Narayanan, J.L. Lin, C.C. Tung, Spectrochim. Acta 55A (1998) 153-162.
 W.B. Decense A Civide to the Complete Intermetation of Infrared Construction 171 NPC Present Activide to the Complete Intermetation of Infrared Construction.
- [17] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994.
- [18] I.H. Joe, G. Aruldhas, S.A. Kumar, P. Ramasamy, Cryst. Res. Technol. 29 (1994) 685.
- [19] D. Lin-Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Hand Book of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991.
- [20] M. Silverstein, G. Clyton Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
- [21] N. Sundaraganesan, S. Ilakiyamani, B.D. Joushua, Spectrochim. Acta 67A (2007) 287–297.
- [22] K. Drużbicki, E. Mikuli, M.D. Ossowska-Chruściel, Vib. Spectrosc. 52 (2010) 54–62.
- [23] D. Dolega, A. Migal-Mikuli, J. Chruściel, J. Mol. Struct. 933 (2009) 30-37.
- [24] J.G. Mesu, T. Visser, F. Soulimani, B.M. Weckhuysen, Vib. Spectrosc. 39 (2005) 114-125.
- [25] M. Barthes, G. De Nunzio, M. Ribet, Synth. Met. 76 (1996) 337-340.
- [26] C.Y. Panicker, H.T. Varghese, D. Philip, H.I.S. Nogueira, K. Kastkova, Spectrochim.
- Acta 67 (2007) 1313–1320. [27] Y. Erdogdu, O. Unsalan, M. Amalanathan, I.H. Joe, J. Mol. Struct. 980 (2010) 24–30.
- [28] M A Palafox Int I Quant Chem 77 (2000) 661–684
- [29] A.E. Reed, F. Weinhold, J. Chem. Phys. 83 (1985) 1736.
- [30] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.
- [31] A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066.
- [32] I.P. Foster, F. Wienhold, I. Am. Chem. Soc. 102 (1980) 7211–7218.
- [33] J. Chocholousova, V. Vladimir Spirko, P. Hobza, Phys. Chem. Chem. Phys. 6 (2004) 37-41.
- [34] B. Smith, Infrared Spectral Interpretation: A Systemic Approach, CRC, Washington, DC, 1999.
- [35] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
- [36] I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964 (2010) 134.