

Contents lists available at ScienceDirect

# Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy



journal homepage: www.elsevier.com/locate/saa

# Molecular structure and vibrational spectra of 2- and 5-methylbenzimidazole molecules by density functional theory

M. Tahir Güllüoglu<sup>a,\*</sup>, Mustafa Özduran<sup>a</sup>, Mustafa Kurt<sup>a</sup>, S. Kalaichelvan<sup>b</sup>, N. Sundaraganesan<sup>c</sup>

<sup>a</sup> Ahi Evran Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü, 40040, Aşıkpaşa kampüsü, Kırşehir, Turkiye
<sup>b</sup> A.A.Govt. Arts College, Namakkal 637001, India

<sup>c</sup> Dept. of Physics (Engg), FEAT, Annamalai University, A. Nagar 608002, India

ARTICLE INFO

Article history: Received 8 September 2009 Received in revised form 23 February 2010 Accepted 26 February 2010

Keywords: Infrared spectra Raman spectra Density functional theory 2-Methylbenzimidazole and 5-methylbenzimidazole

#### ABSTRACT

The FT-IR and FT-Raman spectra of 2-methylbenzimidazole (2-MB) and 5-methylbenzimidazole (5-MB) molecules have been recorded between 400–4000 cm<sup>-1</sup> and 50–3500 cm<sup>-1</sup> region, respectively. The molecular geometry and vibrational frequencies of 2- and 5-MB molecules in the ground state have been calculated by using the density functional methods (B3LYP) with 6-311++G(d,p) and 6-31G(d,p) as basis sets. The total energy distributions (TEDs) for the normal modes were computed for the minimum energy structure of the molecules. Comparison of the observed fundamental vibrational frequencies of 2- and 5-MB molecules with calculated results by density functional B3LYP approach will give better result for our studied molecular vibrational problem.

© 2010 Elsevier B.V. All rights reserved.

# 1. Introduction

Benzimidazoles are heterocyclic compounds that have awakened great interest during the last few years because of their proven biological activity as antiviral, antimicrobial, and antitumor agents. For this reason, the development of a systematic FT-IR, FT-Raman and NMR study of 1- substituted compounds in 2-methylbenzimidazole (2-MB) constitutes a significant tool in understanding the molecular dynamics and structure parameters that govern their behaviors. Two new 1-alkyl-2-MB compounds were synthesized from reaction of 2-MB with primary and secondary alkyl halides using a strong base as a catalyst [1]. Benzimidazole is known for commercial and biological importance as pharmaceuticals, veterinary antheiminitics and fungicides. It is also of a considerable interest as a ligand towards transition of metal ions with a variety of biological molecules including ionheme systems, vitamin B<sub>12</sub> and its derivatives and several metallo-proteins [2]. Recently a number of vitamin  $B_{12}$  compounds have been isolated in which the 5,6-dimethylbenzimidazole part of the vitamin molecule has been replaced by adenine [3]. Benzimidazole and 1,2,3-benzotriazole have widespread applications in chemical practice as polymers, organic optical bistable switches or corrosion inhibitors [4].

A set of 2-alkylsulfonyl derivatives of 5-MB was synthesized and evaluated for antimycobacterial activity. The structures of the compounds were confirmed by <sup>1</sup>H NMR and IR data and their purity by elemental analysis. Antimycobacterial activities against Mycobacterium tuberculosis and nontuberculous mycobacteria were expressed as the minimum inhibitory concentration. These substances exhibited significant antimycobacterial activity, in particular against both strains of Mycobacterium kansasii. In order to enhance the activity of benzimidazole, they tried to substitute the hydrogen atoms at 2- and 5-positions. Thus, they synthesized derivatives of benzimidazole in which the CH<sub>3</sub> group on the benzimidazole ring at 5-position is maintained while the benzyl moiety on the sulfur atom at 2-position is further modified by groups with electron-accepting (NO<sub>2</sub>, CN, CF<sub>3</sub>) and electron-donating (Cl, F, Br, OCH<sub>3</sub>) properties in order to optimize the lipophilic and steric characteristic [5]. The purpose of this work is the detailed investigation of the substituent effects on the vibrational spectra of 2- and 5-MB. The clear-cut assignment of the available experimental spectra has been made on the basis of calculated total energy distribution (TED). Particular attention has been paid to the effect of the methyl substituent on the frequencies and the intensities of the corresponding bands in the vibrational spectra of these molecules.

# 2. Experimental

The sample of 2- and 5-MB are in solid form at room temperature was purchased from Sigma Aldrich Chemical Company, USA and was used as such without further purification. The infrared

<sup>\*</sup> Corresponding author. Tel.: +90 0 386 211 45 57; fax: +90 0386 211 45 25. *E-mail address:* mtahir@gazi.edu.tr (M.T. Güllüoglu).

<sup>1386-1425/\$ -</sup> see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2010.02.032

spectrums of the samples were recorded between 400–4000 cm<sup>-1</sup> on a Mattson 1000 FT-IR spectrometer which was calibrated using polystyrene bands. The samples were prepared as a KBr disc. The FT-Raman spectrums of the samples were recorded between 50–3500 cm<sup>-1</sup> region on a Bruker FRA 106/S FT-Raman instrument using 1064 nm excitation from an Nd:YAG laser. The detector is a liquid nitrogen cooled Ge detector. The observed experimental FT-IR and FT-Raman spectra are shown in Figs. 1 and 2.

# 3. Computational details

The molecular structures of 2- and 5-MB (in vacuum) in the ground state are optimized by B3LYP with 6-311++G(d,p) and 6-31G(d,p) as basis sets. Density functional for all studies reported in this paper has the following form

$$E_{\rm XC} = (1 - a_0)E_{\rm X}^{\rm LSDA} + a_0E_{\rm X}^{\rm HF} + a_{\rm X}\Delta E_{\rm X}^{\rm B88} + a_cE_{\rm C}^{\rm LYP} + (1 - a_c)E_{\rm C}^{\rm VWN}$$

where the energy terms are the Slater exchange, the Hartree–Fock exchange, Becke's exchange functional correction, and the gradient corrected correlation functional of Lee, Yang and Parr [6]. RB3LYP with 6-311G(d,p) and 6-31G(d) level of theory with the optimized geometries have been used to calculate all frequencies of 2- and 5-MB molecules. The calculated harmonic frequencies were also scaled by corresponding scaling factor [7]. The TED of vibrational modes was calculated by using the Scaled Quantum Mechanics (SQM) program [8,9]. All the calculations are performed by using Gauss-view molecular visualization program and Gaussian 03 program package on the personal computer [10,11]. The theoretical FT-IR spectra are shown in Figs. 3 and 4.



Fig. 1. Experimental FT-IR spectra of 2- and 5-MB.



Fig. 2. Experimental FT-Raman spectra of 2- and 5-MB.

### 3.1. Prediction of Raman intensities

The Raman activities  $(S_i)$  calculated with Gaussian 03 program [11] converted to relative Raman intensities  $(I_i)$  using the following relationship derived from the intensity theory of Raman scattering



Fig. 3. Theoretical FT-IR spectrum of 2-MB.



Fig. 4. Theoretical FT-IR spectrum of 5-MB.

#### [12,13].

$$I = \frac{f(v_o - v)^4 S_i}{v_i \left[1 - \exp(-hcv_i/kT)\right]}$$

where  $v_o$  is the exciting frequency in cm<sup>-1</sup>,  $v_i$  the vibrational wavenumber of the *i*th normal mode, *h*, *c* and *k* are fundamental constants, and *f* is a suitably chosen common normalization factor for all peak intensities. For simulation, the calculated FT-Raman spectra were plotted using pure Lorentizian band shape with a bandwidth of Full Width and Half Maximum (FWHM) of  $10 \text{ cm}^{-1}$  as shown in Fig. 5. In the FT-IR spectra, the theoretically simulated spectra are more regular than the experimental ones, because many vibrations presenting in condensed phase leads to strong perturbation of infrared intensities of many other modes.

### 4. Results and discussion

### 4.1. Geometrical structures

Optimized geometries of 2- and 5-MB in the ground state have belonged to C<sub>s</sub> and C<sub>1</sub> symmetry point group, respectively. Molecules of initial geometry generated from standard geometry parameters were minimized adopting the standard 6-311++G(d,p)basis set. The optimized structures were confirmed to complete for fixed at around of -CH<sub>3</sub> group itself and also fixed at the position of minima. The atom numbering scheme for 2- and 5-MB are shown in Fig. 6(a) and (b). The optimized bond lengths and angles from the geometry optimizations determined at the DFT/B3LYP levels with 6-311++G(d,p), 6-31G(d), 6-31G(d,p) as basis set for the title molecule are presented in Table 1. The crystal structure of 2-MB was reported by Obodouskaya et al. [14] and compared our calculated structural parameter values with the X-ray data of 2-MB. However the X-ray crystal structure of 5-MB is unknown, it is compared with other similar system such as 5,6-dimethylbenzimidazole [15]. From the theoretical values of both the 2- and 5-MB molecules, we find that most of the optimized bond lengths and angles are slightly smaller, as well as longer than the experimental value; this is due to the fact that the theoretical calculations belong to isolated molecule

in gaseous phase and experimental results belong to molecule in solid state.

2- and 5-MB are heterocyclic compounds and resonance effect is observed in the ring of these molecules. As a result, C–C bond length and C–C–C bond angles in the ring are similar to the benzene molecule. In the benzene ring, C–C bond length is about 1.396 Å [16], our calculations were similar to this value, for example the optimized bond length of C–C in phenyl ring fall in the range 1.390–1.413 Å at B3LYP/6-311++G(d,p) method show good agreement with X-ray data value of 1.360–1.395 Å for 2-MB. But in the case of 5-MB the C–C bond distance fall in range 1.388–1.415 Å also show excellent correlation with experimental data.

C–N bond distance was found to be 1.47 for some nitramines [17], but it is about 1.389Å in both 2- and 5-MB molecules by B3LYP/6-311++G(d,p) method. Moreover, all carbon and nitrogen atoms in the ring are coplanar, as in benzene ring. The N–C–N bond angle of 2-MB appears a little distorted because of substitution of methyl group. The X-ray data of N–C–N bond angles in the case of benzimidazole is 114° [18], where as in our 2-MB molecule it is 112.4° as shown in Table 1.

# 4.2. Vibrational assignments

Vibrational spectral assignments were performed on the recorded FT-IR and FT-Raman spectra based on the theoretically predicted wavenumbers by density functional B3LYP/6-311++G(d,p) method and are collected in Tables 2 and 3. None of the predicted vibrational spectra has imaginary frequencies, implying that the optimized geometry is located at the local lowest point on the potential energy surface. We know that ab initio HF and DFT potentials systematically overestimate the vibrational frequencies. These discrepancies are corrected either by computing anharmonic corrections explicitly or by directly scaling the calcu-



Fig. 5. Theoretical FT-Raman spectrum of (a) 2-MB and (b) 5-MB by B3LYP/6-311++G(d,p) method.



Fig. 6. Atom numbering scheme of (a) 2-MB and (b) 5-MB.

lated wavenumbers with a scaling factor of 0.961 and 0.968 for 6-31G(d,p) and 6-311++G(d,p) method, respectively. After the scaling, the deviation from the experiments is less than  $10 \text{ cm}^{-1}$  with a few exceptions.

The title molecule 2- and 5-MB each has 18 atoms. The 48 fundamental vibrations in the case of 2-MB is distributed as 33 A' (in-plane)+15 A" (out-of-plane) to show as C<sub>S</sub> symmetry. In FT-Raman spectrum, the A' vibrations give rise to polarized bands while the A" ones to depolarized bands. All the vibrations are active in both FT-IR and FT-Raman. In the case of 5-MB, there will not be any relevant distribution since it belong to C<sub>1</sub> symmetry. The calculated infrared and Raman frequencies together with experimental data of the title molecules are presented in Tables 2 and 3. The total energy distribution (TED) was calculated by using the Scaled Quantum Mechanics program [8,9] and fundamental vibrational modes were characterized by their TED.

# 4.2.1. N-H vibrations

It has been observed that the presence of NH atomic group in various molecules may be correlated with a constant occurrence of absorption bands whose positions are slightly altered from one compound to another; this is because the atomic group vibrates independently of the other groups in the molecule and has its own frequency. Normally in all the heterocyclic compounds, the N-H stretching vibration occurs in the region  $3000-3500 \,\mathrm{cm}^{-1}$  [18]. Tsuboi [19] reported the N-H stretching frequency at 3481 cm<sup>-1</sup> in aniline. In line with his observation, N-H stretching is assigned to the band at 3460 cm<sup>-1</sup> in the case of benzimidazole [2]. In our title molecule, 5-MB the weak band at 3447 cm<sup>-1</sup> in FT-IR corresponds to N-H stretching vibration. The theoretically calculated harmonic wavenumber at 3509 cm<sup>-1</sup> by B3LYP/6-311++G(d,p) shows little deviation on the higher side. The TED of this mode is pure stretching mode as it is evident from Table 2, which it is exactly contributing to 100%. In the case of 2-MB, the same vibration by B3LYP/6-311++G(d,p) method predicted at  $3502 \text{ cm}^{-1}$  is also coinciding with literature data [19]. The N-H in-plane and out-ofplane bendings are assigned to the wavenumber at 1398 cm<sup>-1</sup> and  $410 \text{ cm}^{-1}$  respectively predicted by B3LYP/6-311++G(d,p) for 2-MB. In the case of 5-MB molecule the band observed at 1324 cm<sup>-1</sup> and  $1360\,\mathrm{cm}^{-1}$  in FT-IR and FT-Raman spectra respectively are assigned to the N-H in-plane bending vibration. The theoretically computed value by B3LYP/6-311++G(d,p) method at 1342  $\rm cm^{-1}$  shows better correlation with experimental data.

### 4.2.2. C-H vibrations

The hetero aromatic structure shows the presence of C-H ring stretching vibrations in the region 3000–3100 cm<sup>-1</sup> which is the characteristic region for the ready identification of C-H stretching vibration. In this region the bands are not affected appreciably by the nature of substituent [20]. The 2-MB has four adjacent C-H moieties in benzene ring. The expected four C-H stretching vibrations correspond to mode nos 2, 3, 4 and 5. The scaled vibration mode nos 2, 3, 4 and 5 (Table 2) corresponds to stretching modes of C3-H, C4-H, C5-H and C6-H units. The calculated frequencies of the C-H stretching vibrations in 2-MB is 3060, 3052, 3040 and 3031 cm<sup>-1</sup> show very good agreement with experimental data. In the case of 5-MB it has two adjacent and one isolated C-H moieties in the benzene ring and one C-H moieties in the imidazole ring. The expected three C-H stretching vibrations in benzene ring and one C-H stretching in imidazole ring corresponds to mode nos 2, 3, 4 and 5 (Table 3). The scaled vibration modes nos 2, 3, 4 and 5 correspond to stretching modes of C3-H, C5-H, C6-H and C7-H units. The calculated frequencies of the C-H stretching vibrations in 5-MB are at 3095, 3048, 3045 and  $3026 \,\mathrm{cm}^{-1}$  also correlate with experimental observation. The TED of these C-H stretching vibrations is pure and it is almost contributing to 100%.

Substitution sensitive C–H in-plane bending vibrations lie in the region 1000–1300 cm<sup>-1</sup> [20]. In 2-MB four modes are associated mainly with the C–H in-plane bending vibrations, mode nos 21, 24 and 25. These mode numbers are observed at the following wavenumbers at 1120 cm<sup>-1</sup> in FT-IR and 1221, 1119, 1041 cm<sup>-1</sup> in FT-Raman. Similar observations are also found in the case of 5-MB. The C–H out-of-plane bending vibrations contribute mainly to the mode nos. 30, 31 and 32. The experimental observation for the C–H out-of-plane bending falls in the experimental value of 730–930 cm<sup>-1</sup>.

# 4.2.3. Methyl group vibration

The title molecules 2- and 5-MB possess a  $CH_3$  group in the second and fifth position, respectively. For the assignments of  $CH_3$  group frequencies, basically nine fundamentals can be associated with each  $CH_3$  group namely,  $CH_{3as}$ : asymmetric stretch;  $CH_3$  ips:

#### Table 1

Geometrical parameters optimized in 2- and 5-MB; bond lengths and angles.

| 2-Methylbenzimid |          |            |               | 5-Methylbenzimidazole |                  |          |            |               |              |
|------------------|----------|------------|---------------|-----------------------|------------------|----------|------------|---------------|--------------|
| Bond lengths (Å) | 6-31G(d) | 6-31G(d,p) | 6-311++G(d,p) | 2-MB[1]               | Bond lengths (Å) | 6-31G(d) | 6-31G(d,p) | 6-311++G(d,p) | 5,6-DMB [14] |
| C1-C2            | 1.416    | 1.416      | 1.413         | 1.395                 | C1-C2            | 1.414    | 1.414      | 1.411         | 1.411        |
| C1-C6            | 1.395    | 1.395      | 1.393         | 1.389                 | C1-C6            | 1.397    | 1.397      | 1.395         | 1.395        |
| C1-N13           | 1.385    | 1.385      | 1.385         | 1.383                 | C1-N12           | 1.386    | 1.385      | 1.385         | 1.385        |
| C2-C3            | 1.400    | 1.400      | 1.398         | 1.378                 | C2-C3            | 1.402    | 1.402      | 1.400         | 1.399        |
| C2-N14           | 1.390    | 1.390      | 1.389         | 1.389                 | C2-N13           | 1.391    | 1.391      | 1.389         |              |
| C3-C4            | 1.392    | 1.392      | 1.390         | 1.382                 | C3-C4            | 1.393    | 1.393      | 1.391         | 1.392        |
| C3-H8            | 1.086    | 1.085      | 1.084         |                       | C3-H8            | 1.087    | 1.086      | 1.084         | 1.085        |
| C4-C5            | 1.409    | 1.408      | 1.407         | 1.395                 | C4-C5            | 1.417    | 1.417      | 1.415         | 1.427        |
| C4-H9            | 1.087    | 1.086      | 1.084         |                       | C7-H18           | 1.513    | 1.512      | 1.512         | 1.082        |
| C5-C6            | 1.394    | 1.393      | 1.392         | 1.360                 | C5-C6            | 1.390    | 1.390      | 1.388         |              |
| C5-H10           | 1.087    | 1.086      | 1.084         | 1.084                 | C5-H9            | 1.088    | 1.087      | 1.085         |              |
| C6-H11           | 1.087    | 1.086      | 1.084         | 1.084                 | C6-H10           | 1.087    | 1.086      | 1.084         | 1.086        |
| C7-N13           | 1.383    | 1.383      | 1.383         | 1.339                 | C7-N12           | 1.377    | 1.377      | 1.376         | 1.377        |
| C7-N14           | 1.311    | 1.311      | 1.308         | 1.335                 | C7-N13           | 1.308    | 1.308      | 1.305         | 1.307        |
| C7-C15           | 1.494    | 1.493      | 1.492         |                       | C4-C14           | 1.083    | 1.083      | 1.081         | 1.511        |
| H12-N13          | 1.009    | 1.008      | 1.007         |                       | H11-N12          | 1.009    | 1.008      | 1.007         | 1.007        |
| C15-H16          | 1.091    | 1.090      | 1.089         |                       | C14-H15          | 1.095    | 1.093      | 1.092         | 1.092        |
| C15-H17          | 1.097    | 1.096      | 1.095         |                       | C14-H16          | 1.098    | 1.096      | 1.095         | 1.097        |
| C15-H18          | 1.097    | 1.096      | 1.095         |                       | C14-H17          | 1.098    | 1.096      | 1.095         | 1.097        |
| 2-Methylbenzimid | azole    |            |               |                       | 5-Methylbenzimic | lazole   |            |               |              |
| Bond angles (°)  | 6-31G(d) | 6-31G(d,p) | 6-311++G(d,p) | 2-MB[1]               | Bond angles (°)  | 6-31G(d) | 6-31G(d,p) | 6-311++G(d,p) | 5,6-DMB [14] |
| (2-(1-(6         | 122.6    | 122.6      | 122.5         | 122.5                 | (2-(1-(6         | 122.1    | 122.1      | 122.0         | 122.2        |
| C2-C1-N13        | 104 3    | 104 3      | 104.4         | 104 3                 | C2-C1-N12        | 104 5    | 104 5      | 104.6         | 104 5        |
| C6-C1-N13        | 133.1    | 133.1      | 133.1         | 10 115                | C6-C1-N12        | 133.4    | 133.4      | 133.4         | 133.4        |
| (1-(2-(3         | 1197     | 119.7      | 119.8         | 119.8                 | C1-C2-C3         | 119.8    | 119.9      | 120.0         | 122.2        |
| C1-C2-N14        | 110.4    | 110.4      | 110.2         | 110.1                 | C1-C2-N13        | 110.5    | 110.5      | 110.3         | 122.2        |
| C3-C2-N14        | 129.9    | 129.9      | 130.0         | 110.1                 | C3-C2-N13        | 129.7    | 129.7      | 129.8         |              |
| C2-C3-C4         | 118.1    | 118.1      | 118.1         | 118 1                 | (2-(3-(4         | 1191     | 1191       | 1191          | 1195         |
| C2-C3-H8         | 120.2    | 120.2      | 120.3         | 120.2                 | C2-C3-H8         | 1197     | 119.8      | 1197          | 1197         |
| C4-C3-H8         | 121.2    | 121.7      | 121.7         | 12012                 | C4-C3-H8         | 121.1    | 121.1      | 121.2         | 11017        |
| C3-C4-C5         | 121.0    | 121.0      | 121.7         | 1213                  | C3-C4-C5         | 119.6    | 119.6      | 1196          | 120.3        |
| C3-C4-H9         | 1195     | 119.5      | 119.6         | 119.6                 | C3-C4-C14        | 120.9    | 120.9      | 120.9         | 1197         |
| C5-C4-H9         | 119.1    | 119.5      | 119.0         | 115.0                 | C5-C4-C14        | 119.5    | 119.5      | 119.5         | 115.7        |
| C4-C5-C6         | 1215     | 121.5      | 1215          | 1214                  | C4-C5-C6         | 122.6    | 122.6      | 122.5         |              |
| C4-C5-H10        | 1193     | 119.3      | 1193          | 1193                  | C4-C5-H9         | 118.6    | 118.6      | 118.7         |              |
| C6-C5-H10        | 119.2    | 119.2      | 119.2         | 11010                 | C6-C5-H9         | 118.8    | 118.8      | 118.8         |              |
| C1-C6-C5         | 1167     | 116.7      | 116.8         | 1167                  | C1-C6-C5         | 116.8    | 116.8      | 116.9         |              |
| C1-C6-H11        | 122.0    | 122.0      | 122.1         | 122.1                 | C1-C6-H10        | 122.1    | 122.1      | 122.1         | 121.6        |
| C5-C6-H11        | 121.3    | 121.3      | 121.2         | 12211                 | C5-C6-H10        | 121.1    | 121.1      | 121.0         | 12110        |
| N13-C7-N14       | 112.13   | 112.7      | 112.4         | 112.4                 | N12-C7-N13       | 113.7    | 113.7      | 113.5         | 1137         |
| N13-C7-C15       | 122.0    | 122.0      | 122.0         | 122.0                 | N12-C7-H18       | 121.2    | 121.2      | 1213          | 1211         |
| N14-C7-C15       | 125.4    | 125.4      | 125.6         | 12210                 | N13-C7-H18       | 125.2    | 125.2      | 125.2         |              |
| C1-N13-C7        | 107.4    | 107.3      | 107.4         | 107 3                 | C1-N12-C7        | 106.7    | 106.7      | 106.7         | 1067         |
| C1-N13-H12       | 126.6    | 126.6      | 126.6         | 126.5                 | C1-N12-H11       | 126.9    | 126.9      | 127.0         | 127.0        |
| C7-N13-H12       | 126.1    | 126.1      | 126.0         | .20.0                 | C7-N12-H11       | 126.4    | 126.4      | 126.3         | 127.0        |
| C2-N14-C7        | 105.3    | 105.3      | 105.6         | 105.6                 | C2-N13-C7        | 104.6    | 104.6      | 104.9         |              |
| C7-C15-H16       | 108.7    | 108.7      | 108.8         | 108.8                 | C4-C14-H15       | 111.3    | 111.3      | 111.2         | 110.9        |
| C7-C15-H17       | 111.6    | 111.6      | 111.4         | 111.4                 | C4-C14-H16       | 111.5    | 111.5      | 111.3         | 111.9        |
| C7-C15-H18       | 111.6    | 111.6      | 111.4         |                       | C4-C14-H17       | 111.5    | 111.5      | 111.3         | 111.9        |
| H16-C15-H17      | 108.6    | 108.6      | 108.6         |                       | H15-C14-H16      | 107.7    | 107.7      | 107.8         |              |
| H16-C15-H18      | 108.6    | 108.6      | 108.6         |                       | H15-C14-H17      | 107.7    | 107.7      | 107.8         |              |
| H17-C15-H18      | 107.6    | 107.7      | 107.9         |                       | H16-C14-H17      | 107.0    | 107.0      | 107.2         |              |
|                  |          |            |               |                       |                  |          |            |               |              |

in-plane stretch (i.e., in-plane hydrogen stretching modes); CH<sub>3</sub> ipb: in-plane-bending (i.e., hydrogen deformation modes); CH<sub>3</sub> sb: symmetric bending; CH<sub>3</sub> ipr: in-plane rocking; CH<sub>3</sub> opr: outof-plane rocking and tCH<sub>3</sub>: twisting hydrogen bending modes. In addition to that, CH<sub>3</sub> ops: out-of-plane stretch and CH<sub>3</sub> opb: outof-plane bending modes of the CH<sub>3</sub> group would be expected to be depolarized for A" symmetry species. The stretching in CH<sub>3</sub> occurs at lower frequencies than those of aromatic ring (3000–3100 cm<sup>-1</sup>). The asymmetric C–H stretching mode of CH<sub>3</sub> group is expected around 2980 cm<sup>-1</sup> and symmetric one [21,22] is expected in the region 2870 cm<sup>-1</sup>. For 2-MB molecule, the CH<sub>3</sub>, stretching around 2900–3000 cm<sup>-1</sup>, the in-plane deformations around 1370–1450 cm<sup>-1</sup> and the rocking around 990–1040 cm<sup>-1</sup> [23]. The calculated and observed wavenumbers of asymmetric vibrations of CH<sub>3</sub> group for both molecules are listed in Tables 2 and 3. For the methyl substituted benzene derivatives the asymmetric and symmetric deformation vibrations of methyl groups normally appear in the region 1440–1465 cm<sup>-1</sup> and 1370–1390 cm<sup>-1</sup>, respectively [23,24]. The wavenumbers of these modes involving the CH<sub>3</sub> deformation agree with commonly accepted regions of these vibrations [25,26]. The work carried by Long et al. [27] on 4methylpyridine, the frequency of 974 and 1041 cm<sup>-1</sup> in FT-Raman are assignment to the rocking modes of CH<sub>3</sub>. The rocking vibrations of the CH<sub>3</sub> group in 2- and 5-MB appear as independent vibrations. These modes usually appear [28] in the region 1010–1070 cm<sup>-1</sup>. The theoretically calculated value by B3LYP/6-311++G(d,p) method for 2-MB at 1151 cm<sup>-1</sup> show excellent agreement with literature data [28]. The same vibration observed in 5-MB as a weak band in FT-IR at 1208 and 1219 cm<sup>-1</sup> in FT-Raman. The calculated value at 1201 cm<sup>-1</sup> also coincides with experimental observation. As

| Table | 2 |
|-------|---|
| C     |   |

Comparison of the calculated and experimental (FT-IR and FT-Raman) vibrational spectra and related assingnments of 2-MB.

| No | Sym. | 6-31G(d,p)          |         |        | 6-311++G(d,p)     |         |        | Exp.   |        | Characterization of normal modes with TED(%)                                                                |
|----|------|---------------------|---------|--------|-------------------|---------|--------|--------|--------|-------------------------------------------------------------------------------------------------------------|
|    |      | Freq <sup>a</sup> . | IR Int. | Raman  | Freq <sup>b</sup> | IR Int. | Raman  | Ir     | Raman  |                                                                                                             |
| 1  | A′   | 3671                | 48.47   | 105.62 | 3655              | 55.91   | 113.14 |        |        | v <sub>NH</sub> (100)                                                                                       |
| 2  | A′   | 3212                | 14.39   | 224.69 | 3195              | 11.12   | 256.07 |        | 3076s  | ν <sub>CH</sub> (97)                                                                                        |
| 3  | A′   | 3202                | 25.88   | 120.22 | 3186              | 19.31   | 105.29 |        | 3065s  | $v_{\rm CH}(100)$                                                                                           |
| 4  | A′   | 3190                | 13.48   | 113.87 | 3174              | 10.87   | 114.05 | 3181w  |        | $\nu_{\rm CH}(99)$                                                                                          |
| 5  | A′   | 3180                | 0.01    | 48.60  | 3164              | 0.03    | 47.00  |        |        | $\nu_{\rm CH}(97)$                                                                                          |
| 6  | A′   | 3167                | 3.35    | 69.93  | 3142              | 3.26    | 68.93  | 3146vw | 2970w  | $M\nu_{CH}(100)$                                                                                            |
| 7  | Α″   | 3096                | 16.18   | 117.50 | 3074              | 14.18   | 118.10 | 3064w  | 2920m  | $M\nu_{CH}(100)$                                                                                            |
| 8  | A′   | 3043                | 30.89   | 288.51 | 3027              | 31.17   | 375.27 |        |        | $M\nu_{CH}(100)$                                                                                            |
| 9  | A′   | 1681                | 14.87   | 5.16   | 1664              | 18.80   | 6.07   | 1624m  |        | $\nu_{\rm CC}(53) + \nu_{\rm CN}(12)$                                                                       |
| 10 | A′   | 1639                | 1.78    | 19.84  | 1623              | 2.35    | 25.14  |        | 1589s  | $\nu_{\rm CC}(67)$                                                                                          |
| 11 | A′   | 1596                | 51.50   | 115.81 | 1583              | 55.56   | 135.25 | 1556s  | 1544s  | $v_{\rm CN}(40) + v_{\rm CC}(25)$                                                                           |
| 12 | A′   | 1533                | 0.96    | 1.81   | 1519              | 0.80    | 2.08   |        |        | $\delta_{\text{HCC}}(34) + \nu_{\text{CC}}(27)$                                                             |
| 13 | A′   | 1504                | 2.58    | 34.17  | 1490              | 0.42    | 27.40  |        |        | $M\delta_{CH2}(41)$                                                                                         |
| 14 | Α″   | 1497                | 7.93    | 21.41  | 1483              | 9.09    | 10.41  | 1489w  | 1484vw | $M\delta_{CH2}(57) + \Gamma_{CCCN}(20) + \delta_{CCH}(12)$                                                  |
| 15 | A′   | 1487                | 35.25   | 54.92  | 1473              | 43.81   | 51.09  | 1450vs | 1451s  | $\delta_{\rm CCH}(35) + \nu_{\rm CC}(20)$                                                                   |
| 16 | A′   | 1437                | 52.46   | 7.73   | 1423              | 54.76   | 5.99   |        |        | $\delta_{CNH}(22) + \nu_{CN}(25) + \nu_{CC}(15) + \delta_{CCH}(15)$                                         |
| 17 | A′   | 1427                | 14.56   | 10.92  | 1416              | 16.67   | 4.84   | 1417s  | 1419w  | $M\delta_{CH2}(41) + \delta_{CCH}(36)$                                                                      |
| 18 | A′   | 1393                | 34.14   | 8.57   | 1378              | 31.39   | 7.07   | 1387vs | 1362w  | $\nu_{\rm CC}(34) + \nu_{\rm CN}(12) + M\delta_{\rm CH2}(14)$                                               |
| 19 | A′   | 1337                | 3.95    | 0.58   | 1327              | 1.67    | 1.27   |        | 1320w  | $\delta_{\rm CCH}(44) + \nu_{\rm CN}(18)$                                                                   |
| 20 | A′   | 1300                | 47.72   | 85.48  | 1286              | 59.74   | 98.57  | 1270vs | 1272vs | $v_{CN}(40) + v_{CC}(24) + \delta_{CCH}(12)$                                                                |
| 21 | A′   | 1255                | 3.01    | 16.09  | 1248              | 3.13    | 25.35  |        | 1221w  | $\delta_{\rm CCH}(27) + \nu_{\rm CN}(22) + \nu_{\rm CC}(13)$                                                |
| 22 | A′   | 1212                | 5.17    | 2.28   | 1207              | 5.81    | 2.14   |        |        | $\delta_{CNH}(38) + \nu_{CN}(19) + \nu_{CC}(11)$                                                            |
| 23 | A′   | 1177                | 0.74    | 4.90   | 1171              | 1.28    | 7.34   |        |        | $\delta_{\rm CCH}(88)$                                                                                      |
| 24 | A'   | 1139                | 1.11    | 8.48   | 1133              | 1.89    | 6.42   | 1120m  | 1119w  | $\delta_{\rm CCH}(50) + \nu_{\rm CC}(30)$                                                                   |
| 25 | Α″   | 1064                | 1.98    | 0.41   | 1060              | 1.10    | 0.06   |        | 1041vw | $\delta_{\rm CCH}(68) + \Gamma_{\rm NCCH}(25)$                                                              |
| 26 | A′   | 1044                | 1.81    | 27.99  | 1040              | 2.99    | 33.08  | 1044w  | 1029s  | $\nu_{\rm CC}(28) + \nu_{\rm CN}(13)$                                                                       |
| 27 | A′   | 1026                | 3.17    | 2.06   | 1020              | 4.88    | 6.04   | 1027s  | 1003w  | $\nu_{\rm CC}(45) + \delta_{\rm CCH}(14)$                                                                   |
| 28 | A′   | 986                 | 0.97    | 2.95   | 982               | 2.34    | 1.56   |        |        | $\nu_{\rm CN}(33) + \delta_{\rm CCH}(30)$                                                                   |
| 29 | Α″   | 975                 | 0.06    | 0.13   | 968               | 0.05    | 0.08   |        |        | $\Gamma_{\rm HCCH}(53) + \Gamma_{\rm CCCH}(32)$                                                             |
| 30 | Α″   | 933                 | 1.73    | 0.78   | 935               | 2.19    | 0.10   | 926w   |        | $\Gamma_{\rm HCCH}(45) + \Gamma_{\rm CCCH}(29)$                                                             |
| 31 | A'   | 902                 | 2.58    | 0.17   | 903               | 2.16    | 0.57   | 896w   |        | $\delta_{\text{CCC}}(37) + \delta_{\text{CCH}}(14)$                                                         |
| 32 | Α″   | 861                 | 0.44    | 4.21   | 850               | 0.66    | 0.14   |        |        | $\Gamma_{\text{CCCH}}(45) + \Gamma_{\text{HCCN}}(28) + \Gamma_{\text{HCCH}}(17) + \Gamma_{\text{CCCH}}(17)$ |
| 33 | A′   | 849                 | 3.94    | 14.11  | 845               | 3.54    | 18.23  | 835w   | 838m   | $\nu_{\rm CC}(55)$                                                                                          |
| 34 | Α″   | 776                 | 8.92    | 2.03   | 761               | 38.79   | 0.56   | 767w   |        | $\Gamma_{\rm CCCH}(34) + \Gamma_{\rm CCCC}(28)$                                                             |
| 35 | Α″   | 757                 | 44.76   | 2.20   | 743               | 43.42   | 0.11   | 735vs  |        | $\Gamma_{\rm CCCH}(57) + \Gamma_{\rm HCCN}(13)$                                                             |
| 36 | A′   | 679                 | 0.95    | 8.74   | 679               | 0.83    | 10.99  |        | 675m   | $\nu_{\rm CC}(25) + \delta_{\rm CCC}(20) + \delta_{\rm CCN}(13)$                                            |
| 37 | Α″   | 674                 | 4.62    | 1.74   | 669               | 8.04    | 0.44   |        |        | $\Gamma_{\text{CNCN}}(32) + \Gamma_{\text{HCCN}}(19) + \Gamma_{\text{CCCN}}(12) + \Gamma_{\text{HNCN}}(10)$ |
| 38 | A'   | 630                 | 0.18    | 7.80   | 631               | 0.29    | 8.49   |        | 626m   | $\delta_{\rm CCN}(32) + \delta_{\rm CCC}(32) + \nu_{\rm CC}(19)$                                            |
| 39 | A″   | 591                 | 3.34    | 0.12   | 582               | 2.98    | 0.06   |        |        | $\Gamma_{\text{CCCC}}(40) + \Gamma_{\text{CCCN}}(21) + \Gamma_{\text{CCCH}}(13)$                            |
| 40 | A'   | 504                 | 0.28    | 9.57   | 503               | 0.20    | 10.06  |        | 498m   | $\delta_{\rm CCC}(19) + \nu_{\rm CC}(23) + \nu_{\rm CN}(16)$                                                |
| 41 | A'   | 478                 | 6.07    | 0.88   | 481               | 6.35    | 1.16   |        |        | $\delta_{\rm CCN}(61) + \delta_{\rm CCC}(20) + \nu_{\rm CC}(13)$                                            |
| 42 | A″   | 441                 | 18.75   | 0.63   | 434               | 25.14   | 0.29   | 435m   | 100    | $I_{\text{CCCC}}(35) + I_{\text{CCCH}}(15) + I_{\text{CCNH}}(13) + I_{\text{CCNC}}(11)$                     |
| 43 | A″   | 435                 | 76.52   | 1.63   | 417               | 61.20   | 0.27   |        | 423vw  | $\Gamma_{\rm CCNH}(86)$                                                                                     |
| 44 | A''  | 320                 | 0.43    | 0.39   | 313               | 0.24    | 0.01   |        | 317vw  | $I \operatorname{cccn}(35) + I \operatorname{ccnH}(11)$                                                     |
| 45 | A'   | 264                 | 1.96    | 0.50   | 265               | 2.43    | 0.39   |        | 259vw  | $\delta_{\rm CCN}(b\delta)$                                                                                 |
| 46 | A''  | 258                 | 2.36    | 0.82   | 252               | 3.02    | 0.20   |        | 100    | $I_{\rm CCCN}(40) + I_{\rm CCCC}(27)$                                                                       |
| 4/ | A''  | 138                 | 3.76    | 2.18   | 134               | 5.05    | 1.20   |        | 122vs  | $I_{\text{CCCN}}(58) + I_{\text{HCCN}}(15)$                                                                 |
| 48 | Α"   | 93                  | 0.20    | 0.43   | 78                | 0.09    | 0.56   |        |        | I <sub>HCCN</sub> (95)                                                                                      |

M: methyl group; vs: very strong; s: strong; m: medium; w: weak; vw: very weak; sym: symmetry species; exp: experimental; freq: frequencies.

<sup>a</sup> Scaling factor: 0.961.

<sup>b</sup> Scaling factor: 0.968.

expected the  $CH_3$  torsional mode is expected below 400 cm<sup>-1</sup>, the computed bands at 77 in 2-MB and 54 cm<sup>-1</sup> in 5-MB are assigned to this mode, for the same vibration no spectral measurements were possible in this region due to instrumental limits.

# 4.2.4. C=N and C-N vibrations

The identification of C–N stretching frequency in the side chain is a rather difficult task since there are problems in identifying this frequency from other vibrations due to mixing. Pinchas et al. [29] assigned the C–N stretching band at 1368 cm<sup>-1</sup> in benzamide. Kahovec and Kohlreusch [30] identified the stretching frequency of the C=N band in salicylic aldoxime at 1617 cm<sup>-1</sup>. Sundaraganesan et al. assigned the band at 1689 cm<sup>-1</sup> and 1302 cm<sup>-1</sup> to C=N and C–N stretching vibration, respectively [2]. Referring to the above workers, the band at 1556 cm<sup>-1</sup> is a strong band in FT-IR and 1272 cm<sup>-1</sup> is also a very strong band in FT-Raman is assigned to C=N and C–N stretching vibration respectively in 2-MB. The theoretically scaled values at 1556 and 1264 cm<sup>-1</sup> exactly correlates with experimental observation. The same vibration observed as a strong band in 5-MB at 1543 cm<sup>-1</sup> and in FT-Raman at 1250 cm<sup>-1</sup> as also a very strong band in FT-IR. The theoretically scaled values for 5-MB also exactly correlates well with experimental observation as shown in Table 3. The TED of these vibrations for both the molecules is mixed modes as evident from Tables 2 and 3.

### 4.2.5. C=C vibrations

The C=C vibration are more interesting if the double bonds are in conjugation with the ring. The actual positions are determined not so much by the nature of substituents but by the form of the substitution around the ring [31]. The two doubly degenerate  $e_{2g}$ modes corresponding to C-C stretching in benzene are assigned to the bands at 1387, 1556, 1589 and 1624 cm<sup>-1</sup> in 2-MB. The same vibrations in 5-MB are at 1340, 1479, 1590 and 1626 cm<sup>-1</sup>. The theoretically scaled values for both the molecules also show exact

| Table 3                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------|
| Comparison of the calculated and experimental (FT-IR and FT-Raman) vibrational spectra and related assignments of 5-ME |

| No | Sym.    | 6-31G(d,p)          |         |        | 6-311++G(d,p)     |               |        | Exp.         |                                                                               | Characterization of normal modes with TED(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|---------|---------------------|---------|--------|-------------------|---------------|--------|--------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         | Freq <sup>a</sup> . | IR Int. | Raman  | Freq <sup>b</sup> | IR Int.       | Raman  | IR           | Raman                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1  | A′      | 3676                | 61.38   | 145.15 | 3662              | 70.74         | 150.94 | 3447vw       |                                                                               | v <sub>NH</sub> (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2  | A′      | 3248                | 3.52    | 147.23 | 3231              | 1.50          | 137.43 | 3073m        |                                                                               | ν <sub>CH</sub> (99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3  | A′      | 3199                | 3.52    | 156.39 | 3181              | 2.02          | 198.77 |              |                                                                               | $\nu_{\rm CH}(100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4  | A′      | 3195                | 24.79   | 86.44  | 3179              | 21.32         | 65.82  |              |                                                                               | $\nu_{\rm CH}(99)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5  | A′      | 3175                | 8.57    | 69.75  | 3159              | 7.43          | 70.86  | 3017m        | 3075m                                                                         | $\nu_{\rm CH}(100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6  | A′      | 3125                | 16.51   | 59.93  | 3102              | 17.21         | 63.83  | 2986m        | 2967vw                                                                        | $M\nu_{CH}(100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7  | Α″      | 3089                | 23.56   | 106.31 | 3068              | 19.50         | 102.89 | 2917vw       | 2917v                                                                         | $M\nu_{CH}(100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  | A′      | 3036                | 39.44   | 211.95 | 3022              | 40.75         | 280.78 | 2804vs       |                                                                               | $M\nu_{CH}(100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9  | A′      | 1683                | 0.90    | 5.90   | 1665              | 2.35          | 4.62   | 1626m        | 1621vw                                                                        | $\nu_{\rm CC}(61)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10 | A'      | 1637                | 9.99    | 19.04  | 1622              | 11.97         | 20.41  | 1590w        | 1588m                                                                         | $\nu_{\rm CC}(67)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 | A′      | 1547                | 34.79   | 46.07  | 1528              | 36.22         | 69.06  |              | 1543s                                                                         | $\nu_{\rm CN}(50) + \delta_{\rm CNC}(22)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12 | A′      | 1535                | 10.87   | 11.78  | 1522              | 8.72          | 6.69   | 1479vs       |                                                                               | $\nu_{\rm CC}(33) + M\delta_{\rm CH2}(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13 | A′      | 1506                | 16.06   | 2.71   | 1492              | 19.25         | 0.79   | 1445vs       |                                                                               | $M\delta_{CH2}(26) + \delta_{CCH}(22) + \Gamma_{CCCH}(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14 | Α″      | 1499                | 4.85    | 21.52  | 1487              | 7.07          | 10.32  |              |                                                                               | $M\delta_{CH2}(58) + \Gamma_{CCCH}(20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15 | A′      | 1482                | 15.84   | 5.32   | 1467              | 23.03         | 4.93   | 1420w        | 1451m                                                                         | $\nu_{\rm CC}(17) + \delta_{\rm CCH}(14) + \delta_{\rm CNH}(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16 | A′      | 1429                | 22.39   | 35.83  | 1415              | 5.02          | 35.67  |              |                                                                               | $M\delta_{CH2}(44) + \delta_{CCH}(43)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 | A'      | 1427                | 0.87    | 22.76  | 1414              | 20.54         | 13.71  |              | 1418m                                                                         | $\nu_{\rm CC}(26) + \delta_{\rm CNC}(22) + \delta_{\rm CCH}(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18 | A'      | 1382                | 33.80   | 58.60  | 1369              | 24.29         | 69.65  | 1342s        | 1360w                                                                         | $\nu_{\rm CC}(32) + \nu_{\rm CN}(17) + \delta_{\rm CNH}(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19 | A'      | 1333                | 18.65   | 1.75   | 1320              | 20.91         | 2.01   | 1291vs       |                                                                               | $v_{\rm CC}(30) + v_{\rm CN}(26)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20 | A'      | 1299                | 10.74   | 35.82  | 1288              | 11.66         | 38.54  |              |                                                                               | $\nu_{\rm CC}(30)$ + $\delta_{\rm CCH}(27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21 | A'      | 1284                | 14.25   | 8.11   | 1274              | 16.57         | 34.35  | 1250vs       | 1278vs                                                                        | $\nu_{\rm CN}(25) + \delta_{\rm CCH}(20) + \delta_{\rm CNH}(19) + \nu_{\rm CC}(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 | A'      | 1228                | 2.69    | 5.86   | 1222              | 3.68          | 6.66   | 1208w        | 1219w                                                                         | $\delta_{\text{CCH}}(28) + \delta_{\text{CNH}}(16) + \nu_{\text{NH}}(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23 | A'      | 1165                | 3.66    | 3.82   | 1158              | 4.23          | 3.46   | 1162s        | 1152w                                                                         | $\delta_{\rm CC} H(57) + \nu_{\rm CC}(27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24 | A'      | 1147                | 3.25    | 3.85   | 1139              | 3.26          | 3.26   | 1123m        | 1117vs                                                                        | $\delta_{\rm CCH}(25) + \nu_{\rm CC}(23) + \nu_{\rm CN}(23)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25 | A″      | 1102                | 15.32   | 10.63  | 1095              | 20.19         | 11.81  |              |                                                                               | $\nu_{\rm CN}(51) + \delta_{\rm CNH}(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 26 | A'      | 1066                | 3.86    | 0.55   | 1061              | 2.78          | 0.06   | 1040w        |                                                                               | $M\delta_{CCH}(62) + \Gamma_{CCCH}(33)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27 | A'      | 1026                | 10.57   | 2.34   | 1021              | 10.40         | 1.22   | 1003w        | 1029s                                                                         | $\delta_{\rm CCH}(54) + \Gamma_{\rm CCCH}(34) + \nu_{\rm CC}(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 28 | A'      | 953                 | 3.49    | 6.69   | 951               | 4.51          | 10.69  | 953vs        |                                                                               | $\nu_{\rm CC}(24) + \delta_{\rm NCN}(12) + \delta_{\rm CCN}(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 29 | A″      | 945                 | 2.16    | 2.58   | 945               | 1.77          | 1.94   |              |                                                                               | $\nu_{\rm CC}(23) + \delta_{\rm NCN}(16) + \delta_{\rm CNH}(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30 | A''     | 938                 | 0.43    | 0.74   | 939               | 0.74          | 0.14   |              |                                                                               | $I_{\rm CCCH}^{\circ}(48) + I_{\rm HCCH}^{\circ}(40)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31 | A'      | 902                 | 7.66    | 2.82   | 889               | 11.31         | 0.03   | 865s         |                                                                               | $\Gamma_{\rm CCCH}(78)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32 | A''     | 854                 | 4.78    | 1.25   | 849               | 8.23          | 0.63   | 000          |                                                                               | $I_{CNCH}(57) + I_{HNCH}(28)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 | A'      | 821                 | 3.47    | 10.69  | 820               | 3.77          | 13.69  | 806VS        | 838m                                                                          | $v_{\rm CC}(27) + v_{\rm CN}(17) + \delta_{\rm CCN}(18) + \delta_{\rm CCC}(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34 | A″      | 806                 | 27.23   | 2.60   | 798               | 39.56         | 0.10   | 740          |                                                                               | $I_{\rm CCCH}(88)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35 | A'      | 774                 | 0.80    | 1.58   | 759               | 0.46          | 18.79  | 748W         |                                                                               | $I_{\text{CCCC}}(26) + I_{\text{CCCH}}(17) + I_{\text{CCCN}}(14) + I_{\text{CNCN}}(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30 | A''     | 760                 | 0.57    | 15.84  | 753               | 0.06          | 0.15   | <b>C</b> 22a | 674                                                                           | $V_{\rm CC}(43) + O_{\rm CCN}(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3/ | A'      | 616                 | 0.34    | 1.80   | 616               | 0.88          | 0.91   | 6335         | 674111<br>626m                                                                | I CNCN(33) + I CCCN(14) + I HNCN(12) + I CNCH(11)<br>S (24) + N (22) + S (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20 | A       | 616                 | 12.05   | 0.42   | 500               | 16.05         | 4.91   | 0005         | 020111                                                                        | $O_{CCC}(54) + V_{CC}(22) + O_{CCN}(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 39 | A'      | 495                 | 12.03   | 0.45   | 399<br>495        | 10.01         | 0.05   | 402          | 4076                                                                          | $1_{CCCC}(24) + 1_{CCCH}(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40 | A<br>A/ | 465                 | 1.04    | 0.22   | 400               | 1.17          | 0.01   | 402VW        | 4975                                                                          | $\delta_{CCC}(50) \neq V_{CC}(25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41 | A       | 440                 | 45.12   | 0.55   | 430               | 4.57          | 2.00   | 4278         |                                                                               | $O_{CCC}(41) + O_{CCN}(27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42 | Δ″      | 437                 | 4.01    | 1.49   | 427               | 85 1 <i>4</i> | 0.49   |              |                                                                               | $\Gamma_{\text{CCC}}(40) + \Gamma_{\text{CCCH}}(20) + \Gamma_{\text{CCCN}}(14)$<br>$\Gamma_{\text{conv}}(58) + \Gamma_{\text{conv}}(16) + \Gamma_{\text{conv}}(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 45 | A"      | 452                 | 1 1 1   | 2.57   | 422               | 05.14         | 0.40   |              |                                                                               | $\Gamma$ (22) + $\Gamma$ (21) + $\Gamma$ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 44 | Α′      | 292                 | 3.84    | 0.07   | 292               | 4.47          | 0.02   |              | I CCCN(33) + I CCCC(21) + I CCCH(19)<br>$\delta_{rec}(65) + \delta_{rec}(12)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 45 | Δ″      | 232                 | 0.20    | 0.03   | 232               | 4.47          | 0.12   |              |                                                                               | $\Gamma_{1} = \Gamma_{1} (AA) + \Gamma_{2} = \Gamma_{2} (AA) + \Gamma_{2} (AA) + \Gamma_{2} = \Gamma_{2} (AA) + \Gamma$ |
| 40 | Δ″      | 148                 | 7.15    | 1 30   | 143               | 933           | 1.08   |              | 123vs                                                                         | $\Gamma_{\text{conv}}(35) + \Gamma_{\text{conv}}(32)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 48 | A″      | 65                  | 0.20    | 0.22   | 55                | 0.16          | 0.41   |              | 12393                                                                         | $\Gamma_{\rm cccu}(95)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 |         | 05                  | 0.20    | 0.22   | 55                | 0.10          | 0.11   |              |                                                                               | · (((n(00))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

M: methyl group; vs: very strong; s: strong; m: medium; w: weak; vw: very weak; sym: symmetry species; exp: experimental; freq: frequencies.

<sup>a</sup> Scaling factor: 0.961.

<sup>b</sup> Scaling factor: 0.968.

correlation with our measured experimental data as well as literature data [32]. The TED of these vibrations for both the molecules is mixed modes as it is shown in Tables 2 and 3. The C-C ring breathing and C-C-C trigonal bending modes are assigned to the bands at 835 and 1027 cm<sup>-1</sup> in 2-MB. The ring breathing mode predicted at 831 cm<sup>-1</sup> by B3LYP/6-311++G(d,p) method exactly correlate with FT-Raman value at 838 cm<sup>-1</sup> for 2-MB. The theoretically computed value of C–C–C trigonal bending vibrational mode of 5-MB at 1003 cm<sup>-1</sup> exactly matches with experimental observation at 1003 cm<sup>-1</sup> in FT-Raman spectrum. As it is evident from TED (Tables 2 and 3) for both the molecules, the ring breathing mode is a pure mode where as C-C-C trigonal bending mode is a mixed mode. In addition, there are several C-C-C in-plane and out-of-plane bending vibrations of the benzimidazole ring carbons. The C-C-C in-plane and out-of-plane bending vibrations is in agreement with both experimental and theoretical spectra. Small changes in frequency observed for these modes are due to the change in force

constants, reduced mass ratio resulting mainly due to the extent of mixing between ring and substituent groups.

# 4.3. Conclusions

Attempts have been made in the present work for the molecular parameters and frequency assignments for the compounds 2and 5-MB molecules from FT-IR and FT-Raman spectra. The equilibrium geometries, harmonic frequencies of 2- and 5-MB were determined and analyzed at DFT level of theory using 6-31G(p,d)and 6-31++G(d,p) basis sets. The DFT level using 6-311++G(d,p)as higher basis set results exactly correlates with experimental data when compared with other 6-31G(d,p) lower basis set. The difference between observed and theoretical values of most the fundamental is very small. Any discrepancy noted between the observed and the calculated wavenumbers may be due to the fact that the calculations have been done on single molecule in the gaseous state is contrary to the experimental value recorded in the presence of inter molecular interactions. Therefore, the assignments made at DFT level of theory using 6-311++G(d,p) as higher basis set with only reasonable deviations from the experimental values seem to be correct. The theoretically constructed FT-IR and FT-Raman spectrum exactly coincides with experimental spectra.

# Acknowledgements

This work was supported by the Research Fund of the Gazi University Project Numbers: 30/2005-01. We wish to thank the central laboratory of METU for Raman spectra of molecule and Gazi University Art and Science Faculty, Department of Chemistry for Infrared spectra of molecule. The visit of Dr. N. Sundaraganesan to Ahi Evran University was facilitated by the Scientific and Technical Research Council of Turkey (TUBİTAK) BIDEB-2221.

# References

- [1] R.I. Castillo, L.A.R. Montalvo, S.P.H. Rivera, J. Mol. Struct. 877 (2008) 10.
- [2] N. Sundaraganesan, S. Ilakiamani, P. Subramanian, B.D. Joshua, Spectrochim. Acta 67A (2007) 628.
- [3] V. Krishnakumar, S. Seshadri, S. Muthunatasen, Spectrochim. Acta 68A (2007) 811.
- [4] B.B. Ivanova, L.I. Pindeva, J. Mol. Struct. 79 (2007) 144.
- [5] V. Klimesova, J. Koci, K. Waisser, J. Kaustova, I.L Farmaco 57 (2002) 259.
- [6] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200.
- [7] A.P. Scott, L. Radom, J. Phys. Chem. 16502 (1996) 100.
- [8] J. Baker, A.A. Jarzccki, P. Pulay, J. Phys. Chem. 102A (1998) 1412.
- [9] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
- [10] A. Frisch, A. B. Nielsen, A. J. Holder, Gauss-View Users Manual, Gaussian Inc., Carnegie Office Park, Building 6, Pittsburg, PA 15106, USA, 2000.

- [11] Gaussian 03 Program, Gaussian Inc., Wallingford, CT, 2004.
   [12] G. Keresztury, S. Holly, J. Varga, G. Besenyi, A.Y. Wang, J.R. Durig, Spectrochim.
- Acta 49A (1993) 2007. [13] G. Keresztury, J.M. Chalmers, P.R. Griffith (Eds.), Raman Spectroscopy; Theory,
- [13] G. Refesztury, J.M. Chamers, P.R. Grintin (Eds.), Raman Spectroscopy; Theory, Hand book of Vibrational Spectroscopy, vol. 1, John Wiley and Sons Ltd., New York, 2002.
- [14] A.E. Obodovskaya, Z.A. Starikova, S.N. Belous, I.E. Pokrovskaya, J. Struct. Chem. 32 (1991) 421.
- [15] B.Y.J. Lee, W.R. Schemidt, Acta Crystallogr. 42C (1986) 1652.
- [16] L.E. Suton, Tables of Interatomic Distance, Chem. Soc., London, 1958.
- [17] D. Habibollahzedeh, J.S. Murray, P.C. Redfern, P. Politzer, J. Phys. Chem. 95 (1991) 7702.
- [18] G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd ed., Wiley, Chichester, 2001.
- [19] M. Tsuboi, Spectrochim. Acta 16A (1960) 505.
- [20] G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. 1 and 2, Academia Kiado, Budapest, 1973.
- [21] D.A. Kleinman, Phys. Rev. 126 (1977) 1962.
   [22] B. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press, Washington, DC, 1999.
- [23] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990.
- [24] G. Socrates, Infrared Characteristic Frequencies, Wiley–Inter Science Publication, New York, 1990.
- [25] D.L. Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991.
- [26] M. Diem, Introduction to Modern Vibrational Spectroscopy, Wiley, New York, 1993.
- [27] D.A. Long, W.O. George, Spectrochim. Acta 19 (1963) 1777.
- [28] M. Silverstein, G. Clayton Basseler, C. Morill, Spectrometric Identification of Organic Compound, Wiley, New York, 1981.
- [29] S. Pinchas, D. Samuel, M.W. Broday, J. Chem. Soc. (1961) 1688.
- [30] L. Kavovec, K.W.F. Kohlreusch, Monatsch. Chem. 74 (1941) 333.
- [31] LJ. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley, New York, 1959.
- [32] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1964, p. 74.