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DFT simulations and vibrational spectra

of 4-chloro and 4-bromophenylboronic acid
molecules

M. Kurt*

The experimental and theoretical vibrational spectra of 4-chloro- and 4-bromophenylboronic acids (abbreviated as 4Clpba
and 4Brpba) were studied. The Fourier transform Raman and Fourier transform infrared (FTIR) spectra of 4Clpba and 4Brpba
molecules were recorded in the solid phase. The structural and spectroscopic analyses of the molecules were made by using
Hartree-Fock and density functional harmonic calculations. In both 4Clpba and 4Brpba only one form was most stable using
B3LYP level with the 6-311++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of
the scaled theoretical wavenumbers by their total energy distribution (TED). Finally, geometric parameters as well as infrared
(IR) and Raman bands were compared with the experimental data of the molecules. Copyright (¢) 2008 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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Introduction

The boronic acid ligands have been used in biological, phar-
maceutical, industrial, and various other applications. Recently,
arylboronic acids have become the object of interest again be-
cause of their newer and wider applications.' 3! Wide synthetic
applications were developed after Miyaura and Suzuki’s discov-
ery of palladium-catalyzed coupling of arylboronic acid with aryl
halides. As compared with the earlier methods of the synthesis
of biaryls, arylboronic acids used instead of various organometal-
lic reagents are air- and water-stable compounds of low toxicity.
Because of its versatility, Suzuki coupling is now the best way
to obtain the aryl-aryl bond® and is extended to alkylboronic
acids.[®”! The other important synthetic application is Petasis syn-
thesis of a-amino acids.®Many other synthetic applications have
been reviewed by Hall® and Cuthbertson.

Biology and medicine are also the fields of numerous appli-
cations of boronic acids.®! They are used in anticancer therapy,
both as boron neutron capture therapy (BNCT)'% and chemother-
apeutic agents.!"" They are also potent antiviral drugs.['? Fast and
reversible formation of esters with polyols, reported in 1954 by
Kuivila et al.!'! leads to the use of boronic acids as molecular re-
ceptors for sugars, enabling their detection in aqueous solutions.
A variety of artificial receptors is used as chemosensors for saccha-
rides with various types of detection, such as circular dichroism
(CD), fluorescent, colored, electrochemical, and others.!'3'4 The
use of these compounds for other bioanalytes is still in progress.

The use of boronic acid in crystal engineering in order to
generate predictably organized crystalline materials was recently
reviewed.['! There are also other fields in which boronic acids or
their derivatives are used, e.g. as podand solvents!'® or additivities
to conducting polymers.'””) The presence of hydroxy groups
connected to a boron atom strongly influences the properties
of boronic acids by formation of inter- and intramolecular
hydrogen bonds. The reactivity, physical properties, ability of

complex formation, biological functions, and other features of
these compounds are connected with their structures. Recently,
the crystal structure of the dipeptide boronic acid and anticancer
drug bortezomib in complex with proteasome was determined,
which allowed the establishment of the binding mode of the acid
to the proteasome’s active sites.'® The use of boron compounds
in the coupling reaction presents several advantages, such as
stability to heat, oxygen, and water; flexibility towards functional
groups; and commercial availability.['”!

In recent studies, inhibition by boronic acids has been
studied with some bacterial ureases and plant ureases. Ravi
etall?® reported that among boric acid, boronic acid, and
4-bromophenylboronic acid, the latter was found to be the
most potent competitive inhibitor for pigeon pea urease.
Manishkumar etal.2"! reported supramolecular architecture in
some 4-halophenylboronic acid including 4-chloro, 4-bromo and
hydrates of 4-iodophenylboronic acid. In their work, only crystal
geometry of 4-halophenylboronic acid molecules wasdiscussed in
detail.

To our knowledge, no theoretical Hartree—Fock (HF) or density
functional theory (DFT) calculations, or detailed vibrational
infrared (IR) and Raman analyses, have been performed on
the 4-chlorophenylboronic acid and 4-bromophenylboronic acid
(4Clpba and 4Brpba, respectively) molecules. A detailed quantum
chemical study will aid in understanding the vibrational modes
of the 4Clpba and 4Brpba and clarifying the experimental data
available for these molecules. DFT calculations are known to
provide excellent vibrational wavenumbers of organic compounds
if the calculated wavenumbers are scaled to compensate for
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the approximate treatment of electron correlation, for basis set
deficiencies, and for the anharmonicity effects.?2=2”) DFT is now
accepted as a popular post-HF approach for the computation of
molecular structure, vibrational wavenumbers, and energies of
molecules by the ab initio community .28

In this work, by using HF and B3LYP methods we calculated
the vibrational wavenumbers of 4Clpba and 4Brpba molecules
in the ground state to distinguish the fundamentals from the
many experimental vibrational wavenumbers and geometric
parameters. These calculations are valuable for providing insight
into the vibrational spectrum and molecular parameters.

Experimental

The 4Clpba and 4Brpba samples were purchased from Acros
Chemical Company with a stated purity of greater than 98%
and were used as such without further purification. The samples
of 4Clpba and 4Brpba are in solid form at room temperature.
IR spectra of the samples were recorded between 4000 and
400 cm~' on a Mattson 1000 Fourier transform infrared (FTIR)
spectrometer which was calibrated using the polystyrene bands.
The samples were prepared as a KBr disc. FT-Raman spectra of
the samples were recorded on a Bruker RFS 100/S FT-Raman
instrument using 1064 nm excitation from a Nd:YAG laser. The
detector was a liquid-nitrogen-cooled Ge detector. Five hundred
scans were accumulated at 4 cm~" resolution using a laser power
of 100 mW.

Calculations

The molecular structures of 4Clpba and 4Brpba in the ground
state (in vacuo) were optimized by HF and B3LYP with the
6-3114++G(d,p) basis set. There are no significant differences
in geometry and vibrational wavenumbers by the selection of the
different basis sets.

The Becke's three-parameter hybrid density functional,
B3LYP,282% was used to calculate harmonic vibrational wavenum-
bers with the 6-3114+4G(d,p) basis set. It is well known in
quantum chemical literature that among available function-
als the B3LYP functional yields a good description of har-
monic vibrational wavenumbers for small and medium-sized
molecules.

Three sets of vibrational wavenumbers for these species
were calculated with the hybrid method and then scaled by
the corresponding scaling factors (see http://srdata.nist.gov).
In the literature, there is no global scaling factor for the
B3LYP/6-311+4+G(d,p) basis set. All calculations were performed
by using Gauss View molecular visualization program® and
Gaussian 03 program package on a personal computer." The
programs allows one to examine, graphically, the GO3 generated
IR spectra. Then the spectral numerical data was copied to the
Microsoft Excel Program XP version where the spectral ranges
were edited.

Results and Discussion

The molecules of 4Clpba and 4Brpba consist of 16 atoms; so it
has 42 normal vibrational modes. Our first set of calculations
involved the investigation of the possible conformations of
4Clpba and 4Brpba. There are three possible conformers for the
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Figure 1. Comparison of the calculated and experimental IR spectra
of the studied molecules: (a) simulated IR spectra of 4Brpba by using
B3LYP/6-311G-++(d,p) theory level; (b) experimental IR spectra of 4Brpba;
(c) simulated IR spectra of 4Clpba by using B3LYP/6-311G++(d,p) theory
level; (d) experimental IR spectrum of 4Clpba.

studied molecules, illustrated in Fig. S1 (Supporting Information),
depending on the positions of the hydrogen atoms bonded to
oxygen, i.e. whether they are directed away from or toward the
benzene ring. Our calculations show that the three conformations
do not differ greatly in energy, but demonstrate that the
conformation cis—trans (abbreviated as ct = tc) has the lowest
energy. On the basis of a C; symmetry, the 42 fundamental
vibrations of the ct and tc forms of 4Clpba and 4Brpba can
be distributed as 13A” + 29A’. In the cc, ct (= tc), and tt
forms of the molecules, boronic acid and the benzene ring are
in the same plane. The G, structure is the lowest in energy
at all levels. The molecular structure and numbering of the
atoms of 4Clpba and 4Brpba are shown in Fig. ST (Supporting
Information). We have reported some geometric parameters and
vibrational wavenumbers for 4Clpba and 4Brpba by using B3LYP
and compared some observed bond lengths and bond angles
for crystal structure of these molecules. Vibrational assignments
are based solely on the B3LYP/6-311+44-G(d,p) calculations. The
calculated wavenumbers of the molecule for the tc (or tc) form
were compared to the corresponding observed IR and Raman
spectra of the molecule as shown in Figure 1, Tables1 and
2. The vibrational assignments of most of the fundamental
vibration of the molecule was straightforward on the basis of
their calculated total energy distribution (TED) values (Tables 1
and 2).
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Geometrical structures

As the experimental values for 4Clpba and 4Brpba are known,
the theoretically calculated values may give an idea about the
geometry of these molecules and also an idea of how the geometry
of these molecules changes from that of phenylboronic acid when
we substitute C-X (X = Cl or Br) bonds in place of C—H bonds.
The geometry parameters of the title molecules are given in
Table S1 (Supporting Information), in accordance with the atom
numbering scheme given in Fig. S1 (Supporting Information).
4Clpba and 4Brpba molecules can be all trans, all cis, or mixed
trans—cis relative to the B-C bond. According to theoretical
results, the ct conformation is the most stable for the 4Clpba and
4Brpba molecules. Both hydrogens are in the O-B-0 plane. Most
probably, the oxygen lone pairs have a resonance interaction with
the empty p orbital of boron, which forces the hydrogen to be in
the O-B-0 plane. Thus, in the lowest-energy form of 4Clpba and
4Brpba, the —B(OH), groups are planar, and at all computational
levels lie in the plane of the benzene ring. The calculated B-O and
B-C bond lengths in 4Clpba and 4Brpba molecules are in good
agreement with those found in the X-ray structure.l?"

Theoretical calculations show that the C-H bonds of phenyl-
boronic acid are approximately equal to those of 4Clpba and
4Brpba. Therefore similar treatments are valid between the C-C
ring bond lengths and bond angles of these molecules by using
B3LYP/6-31G(d) level of theory. For example, in the phenyl-
boronic acid (pba) molecule, ring C-C bond lengths vary from
1386 to 1394 A. In p3 and p4 molecules, these bond lengths
vary from ~1.360 to 1.400 A.3? In general, typical B-O distances
are ~1.360 A, consistent with relatively strong 7-interactions.3!
Conversely, the C-B bond length is sligtly larger than that typi-
cally found in boroxines, indicating a weakening of this bond by
the electron-withdrawing nature of the ring group. But by using
HF/6-31G(d) levels of theory, for a few boronic acids including
the phenylboronic acid molecule Chen et al. found approximately
same value for this bond length.34

Bond angles at B and C are consistent with sp? hybridization
but with significant deviations from the expected 120° angles
occurring in close proximity the —B(OH), substituent on C4 atoms
for 4Clpba and 4Brpba.

As can be seen in Table S1 (Supporting Information), there
is good agreement for the bond angles at B and C4. In the
pentafluorophenylboronic acid molecule,®>! while the C5-C4-B
bond angle is ~122,6°, this bond angle varies from 122.9° to
123.3° for p3-boronic acid and p4-boronic acid formations.!3?
Experimental values of the corresponding bond angle is 122.0°
for pba,% 121.9° for 1,4 phenylenediboronic acid,’?” 120.4° for
4Clpba, and 121.2° for 4Brpba molecules.?" Theoretical computed
values of these angles are from 119.5° (HF) to 119.7° (B3LYP) for
both 4Clpba and 4Brpba molecules. As can be seen in Table S1
(Supporting Information), there is excellent agreement between
calculated and experimental bond angles by using the B3LYP level
of theory.

The experimental results show that the -B(OH), group is
twisted by 21.4, 35.0, and 38.14°, relative to the ring group
for phenylboronic acid,’®® 1,4-phenylenediboronic acid,*”! and
pentafluorophenylboronic acid,’®** respectively. For 4Clpba and
4Brpba, the corresponding measured values are 26.3 and 26.9°,
respectively.2"! The corresponding calculated values are different
from these values (= 0°), because both the ring and the B(OH);
groups lie in the same plane.

Potential energy scans with the whole levels of theoretical
approximation were performed along the C-C-B-0O torsional

angle of 4Clpba and 4Brpba molecules in order to localize
the structures that correspond to the energy minima. All the
geometrical parameters were simultaneously relaxed during the
calculations, while the C-C-B-0 torsional angle was varied in
steps of 10°. The resulting potential energy curve depicted in
Fig. S2 (Supporting Information) show the ct form to have the
minimum energy.

Vibrational spectra

In order to obtain the spectroscopic signature of the 4Clpba and
4Brpba molecules studied, we performed a wavenumber calcu-
lation analysis. Calculations were made for a free molecule in
vacuum, while experiments were performed for solid samples, so
there are disagreements between the calculated and observed
vibrational wavenumbers. Vibrational wavenumbers were calcu-
lated for 4Clpba and 4Brpba molecules using the B3LYP method
and a larger basis set. The theoretical wavenumbers obtained with
the larger basis set (6-311+4G**) are in good agreement with
the experimental ones. Table 1 presents the calculated vibrational
wavenumbers and experimental values. According to the theoret-
ical calculation, the studied molecules were assumed to possess
a planar structure of C; point group symmetry. The 42 normal
vibrations are distributed as 13A” + 29A’ considering C; symmetry.
All the 42 fundamental vibrations are active in both IR and Raman.

The C; structure was the lowest in energy at all levels. Therefore
we ignored the cc and tt conformations (both of them belong
to G,y symmetry) of the molecule. All of the calculated modes
are numbered from the largest to the smallest wavenumber
within each fundamental wavenumber, v. On the basis on our
calculations, as well as experimental IR and Raman spectra,
we made a reliable one-to-one correspondence between the
fundamentals and any of the wavenumbers calculated by the
B3LYP method.

Owing to the lack of sufficiently detailed experimental data for
the 4Clpba and 4Brpba molecules, the vibrational spectra were ob-
tained by molecular orbital calculation using Gaussian 03. Because
of the low IR and Raman intensity of some modes, it is difficult to
observe them in the IR and Raman spectra. Vibrational modes of
4Clpba and 4Brpba were investigated by harmonic wavenumber
calculations performed at the corresponding energy-optimized
geometries. The assignments of the vibrational absorptions were
made by the comparison with those of related molecules and also
with the results obtained from the theoretical calculations. The
descriptions of the modes presented here are only approximate,
some of the vibrations being mixed together.

In the O-H region, very strong and broad bands occur at
~3300cm~" in the spectra of some boronic acid molecules.
The assignment of these bands to O-H stretching vibrations is
straightforward. In the spectra of phenylboronic acid,3¥! pentaflu-
orophenylboronic acid,’*! and 3- and 4-pyridineboronic acids,’*?
the absorption bands at 3280, 3467 and 3410, and 3320cm™'
have been assigned to these vibrations. The experimental IR spec-
tra of 4Clpba and 4Brpba molecules are very rich with bands in the
3000-3300 cm~ region, and from the strength and broadening of
these bands we may suggest that intramolecular hydrogen bonds
occur in different environments of boronic acid molecules. As seen
in the tables, we selected some bands for comparing with the
calculated wavenumber values of title molecules. The calculated
values of O-H stretching modes are unreliable, because the dif-
ferences between the calculated and experimental wavenumbers
are very high for both molecules. In this region, the experimental
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wavenumbers corresponding to these modes appear strong and
broad in the IR spectra but weak in the Raman spectra. The TED
values of O—H modes suggest that these are pure modes.

In the IR spectrum of 4Clpba molecule, four weak bands at
3099, 3081, 3067, and 3040 cm~" are assigned to C-H stretching
vibrations. In the Raman spectrum, two bands at 3087 and
3064 cm™' are assigned to these vibrations. Similarly, for the
4Brpba, one middle band at 3058 cm~! is also assigned to C-H
stretching vibration, and the bands at 3080 (vw), and 3060 cm™’
(s) are assigned to these vibrations in the IR and Raman spectrum,
respectively. The corresponding calculated values fall in the
same region. In the high wavenumber region, TED calculations
show that all the C-H stretching vibrations are pure modes.
The corresponding computed bands at 3095, 3093, 3078, and
3035 cm™! also show clear C—H stretching vibration.

The experimental sharp and strong bands at ~1600 cm~' may
come from the absorption due to the stretching vibration of
the C-C bond and the bending vibration of the C-C-H in
the ring part. These bands are observed at 1649 (IR), 1657 (IR),
1634 (IR) and 1633 cm™" (R), for pentafluorobenzene, «-bromo-
pentafluorotoluene,3¥ and CsF51"% molecules, respectively. With
the B(OH); coordination, these modes do not change significantly.
Therefore the modes at ~1600cm~' are insensitive to the
B(OH), coordination. If we consider the phenylboronic acid
case, the band at 1607 cm~' is shifted to 1657 cm~' for
pentafluorophenylboronic acid. For the 4Clpba and 4Brpba
molecules, these bands are observed at 1596 and 1591 cm™'
in the IR spectrum, and at 1596 and 1588 cm™' in the Raman
spectrum, respectively. These means that with the coordination
of heavy atoms to the phenylboronic acid molecule, the band
at 1607 cm~! is shifted to 1591 and 1596 cm™~' negatively (see
Table 1). However, the TED values in Tables 1 and 2 reveal that
these modes are not characteristic and are coupled with the
H-C-C bending vibration. But these may be almost pure modes
as evidenced from 63 and 64% of TED (Tables 1 and 2) for the title
molecules.

The other strong bands in the Raman spectra of 4Clpba and
4Brpba occur at 1404, 1370, 1349 cm~' and at 1397, 1361 cm™'
in the IR spectrum. These band are very intense and should
include also the v(B—0) asymmetric stretching vibrations, which
for phenylboronic and pentafluorophenyl boronic acid are located
at 1349and 1350 cm ™', respectively.?841 Vargas et al.*? assigned
the band around 1370 cm™" as the v(B-0) stretching vibration for
the homo-and heterotrinuclear boron complexes. The TED values
in Tables 1 and 2 reveal that these modes are not characteristic but
are coupled with H-C-C bending, C-C stretching, and H-O-B
bending vibrations.

Stretching vibrations of double bonds usually give rise to
very strong absorption bands. Therefore, it is possible that
the high intensity of the B-O asymmetric stretching vibration
could indicate some double bond character for the studied and
phenylboronic acid molecules. The observed wavenumbers for
the asymmetric B-O stretching vibrations in the title molecules
are very similar to those reported by Faniran and Shurvell®® and
in our previous papers for this vibration in the spectra of similar
molecules.3235!

Santucci and Gilman[*? associated an absorption band between
1080 and 1110 cm~! with a B-C stretching mode, v(B-C), in
arylboronic acids. Faniran and Shurvell®® also assigned the
bands at 1089 and 1085 cm™" in the spectra of the normal and
deuterated phenylboronic acids, respectively, and at 1084 cm~" in
diphenyl phenylboronate to the B-C stretching vibration. But in

the 1090-1140 cm~" region we could not assign B—C stretching
mode by using theoretical TED value owing to the lack of B-C
modes.

Similar comparative analyses have been made for the other
selected strong or medium bands. As seenin Tables 1 and 2 for TED
values, the calculated modes are mixed with C-H, pyridine C-Cl,
C-Br, C-Cand boronic acid group modes in different proportions.
Empirical assignments of the vibrational modes for peaks in
the fingerprint region are difficult. In the wavenumber region
of 600-1660cm™" the spectrum observed in the experiments
closely resembles the calculated spectrum, except for differences
in details. These wavenumbersin the sameregionareinreasonable
agreement with experimental results (Tables 1 and 2).

Conclusion

Attempts have been made in the present work for calculation
of the molecular conformational parameters and wavenumber
assignments for the compounds 4Clpba and 4Brpba from FTIR
and FT-Raman spectra. With regard to the C-B bonds, we
considered the conformations cc, tt, and ct. We found a preference
for the ct conformation for both molecules. With equilibrium
geometries, the harmonic wavenumbers of 4Clpba and 4Brpba
were determined and analyzed at DFT level of theory utilizing
6-3114++G(d,p) basis sets. There is considerable mixing of the
ring vibrational modes and also of the ring and substituent modes.
The descriptions of the C-H, pyridine C-C, and boronic acid
group modes are very difficult because of the low symmetry of the
molecules, as there is no regularity in the change of wavenumbers
of the analyzed bands with the position of the substituted B(OH),
group in the aromatic ring. The fundamental vibrational modes
were characterized by their TED.
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