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We also show that if ϕ ∈ D is an extremal function (i.e. 
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|ϕ(z)| exist for every eit ∈ ∂D as z approaches eit from within 
any polynomially tangential approach region.
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1. Introduction

Let D denote the open unit disc in the complex plane and let dA denote Lebesgue 
measure on D. The Hardy space H2 is

H2 = {f : D → C : f analytic and ‖f‖2
H2 = sup

r<1

∫
|z|=1

|f(rz)|2 |dz|2π < ∞}

and the classical Dirichlet space on D is defined by

D = {f : D → C : f analytic and
∫
D

|f ′|2dA < ∞}.

The norm on D is defined by ‖f‖2 = ‖f‖2
H2 +

∫
D
|f ′(z)|2 dA(z)

π . For f ∈ H for H = H2

or D we write

[f ]H = clos H{pf : p a polynomial},

and we say that f is cyclic in H, if [f ]H = H. Usually it will be clear from the context 
which space we are considering, and we will drop the subscript and write [f ] instead 
of [f ]H.

The cyclic functions in H2 were characterized as a consequence of Beurling’s invariant 
subspace theorem, [3]. They turned out to be the outer functions in H2. However, it is 
one of the most intriguing open questions about the Dirichlet space to determine exactly 
which functions are cyclic in D. It follows easily from the contractive inclusion D ⊆ H2

that cyclic functions in D have to be cyclic in H2. Thus cyclic functions in D must be 
outer. Furthermore, in [7] Brown and Shields showed that for cyclic functions f in D the 
radial zero set

Z(f) = {eit ∈ ∂D : lim
r→1−

f(reit) = 0}

has logarithmic capacity zero. The Brown–Shields conjecture stipulates that these two 
conditions characterize the cyclic functions in D, see [7].

There are many results which support this conjecture, see e.g. [17], [24] and [13]. For 
further details the book [12] is a good reference. Here we just mention that while the 
conjecture has been shown to be true for some functions whose radial zero set satisfies 
certain regularity conditions, in general the conjecture is still open even for the case 
where one assumes that the function f extends to be continuous on D, i.e. f ∈ A(D), 
the disc algebra.

We now discuss the more general problem of finding a description of all invariant 
subspaces of D. A subspace M ⊆ D is called invariant, if the function zf ∈ M, whenever 
f ∈ M. It was shown in [21] that every non-zero invariant subspace of D is of the form 
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M = [ϕ], where ϕ is extremal for M, i.e. ϕ ∈ M � zM, ‖ϕ‖ = 1. Furthermore, if 
ϕ = Sf is the inner–outer factorization of the extremal function for M, then f ∈ D and 
M = SH2 ∩ [f ]. Thus, the quest for a description of all invariant subspaces splits into 
the two subquestions of which inner factors may occur for Dirichlet functions, and what 
are the invariant subspaces generated by outer functions. Beurling showed that for any 
f ∈ D the radial limit limr→1− f(reit) exists for every eit ∈ ∂D except perhaps for eit in 
a set of logarithmic capacity zero (see [2]). We will say a property holds quasi-everywhere 
(q.e.), if it holds except perhaps on a set of capacity zero. In Section 2 we will review 
further details about this concept, and also consider other capacities. It follows easily 
from the modern proofs of Beurling’s theorem that for any E ⊆ ∂D the set

DE = {f ∈ D : lim
r→1−

f(reit) = 0 q.e. on E}

is closed and then it easily follows that it is an invariant subspace of D. Furthermore, if 
DE 	= (0), then it is not hard to see that DE must contain an outer function. This leads 
to the extended Brown–Shields conjecture:

Conjecture 1.1. (See Question 11 of [7].) If f ∈ D is outer, then [f ] = DE for some 
E ⊆ ∂D.

Note that if f ∈ DE , then Z(f) ⊇ E q.e. and hence [f ] ⊆ DZ(f) ⊆ DE . Thus, if the 
extended Brown–Shields conjecture holds, then it must hold with E = Z(f). Of course, 
if Z(f) has logarithmic capacity 0, then 1 ∈ DZ(f) and hence DZ(f) = D. Thus the 
extended Brown–Shields conjecture implies the Brown–Shields conjecture.

Unfortunately very little is known about the extended Brown–Shields conjecture. 
Let A∞ be the algebra of all functions that are infinitely differentiable on the closed 
unit disc and analytic on the open unit disc. Recall that a closed set E ⊆ ∂D is called a 
Carleson set, if log 2

dist(eit,E) ∈ L1(∂D). Korenblum showed that if E is a Carleson set, 
then there is an outer function fE ∈ A∞ such that fE and all of its derivatives vanish 
on E, but fE is nonzero on D\E, [18]. Thus, a special case of the extended Brown–Shields 
conjecture would be to show that [fE] = DE for Carleson sets. For algebras of analytic 
functions on D that satisfy a Lipschitz condition Korenblum developed a method to show 
that fE generates the ideal of all functions vanishing on E (along with an appropriate 
number of derivatives of f), see [18] and [5], [19], [27], [30], [31].

By use of a result from [13] one easily shows

Theorem 1.2. If E ⊆ ∂D is a Carleson set, and if there is a function g ∈ D such that

• DE = [g],
• there are c, α > 0 such that

|g(z)| ≤ c(dist(z, E))α for a.e. z ∈ ∂D,
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then for any outer function f ∈ D with Z(f) = Z(f) = E we have [f ] = DE. Here

Z(f) = {eit : lim inf
w→eit

|f(w)| = 0}.

Proof. If f ∈ D is an outer function with Z(f) = Z(f) = E, then f ∈ DE = [g]. Thus it 
suffices to show that g ∈ [f ]. For α = 1 this is an immediate consequence of Theorem 3.1 
of [13]. It remains to handle the case 0 < α < 1. Since DE = [g] g must be outer. In that 
case g1/α ∈ D and we conclude from the above that [g1/α] ⊆ [f ]. The result now follows 
from the fact that [g] = [g1/α], see [24]. �

In particular, it follows from the above theorem that if [g] = DE for some g ∈ Lip α, 
then [f ] = DE for all outer functions f ∈ D ∩ A(D) with Z(f) = E. In this paper we 
will show the following theorem.

Theorem 1.3. If E ⊆ ∂D is a Carleson set, then there is g ∈ D∩A(D) such that [g] = DE.

Our starting point will be the fact that extremal functions are known to satisfy certain 
extra regularity properties. However, we do not know whether the extremal function 
for DE satisfies the conclusion of Theorem 1.3, rather we will modify it appropriately. 
For all extremal functions we have the following theorem:

Theorem 1.4. If ϕ ∈ D is an extremal function, then for every c > 0, α ≥ 1, and eit ∈ ∂D

lim
w→eit,w∈Γα

c (eit)
|ϕ(w)| = lim sup

w→eit,w∈D

|ϕ(w)|. (1.5)

Here

Γα
c (eiθ) = {z ∈ D : |z − eiθ|α ≤ c(1 − |z|)}

is a polynomially tangential approach region.

In [25] the above theorem was shown with a radial limit on the left hand side of (1.5). 
Thus the novelty here is that the limit exist even from within the approach regions 
Γα
c (eit). Note that if α = 1 and c > 1, then the region Γc(eiθ) is simply a non-tangential 

approach region (Stolz angle). If c > 0, then

Γ2
c(eiθ) ≈ Oc(eiθ) := {z ∈ D : |z − eiθ|2 ≤ c(1 − |z|2)}

and a short computation shows that Oc(eiθ) is a disc internally tangent to the unit 

circle ∂D at eiθ with center eiθ

c + 1 and radius c

c + 1. This region is also called an oricylic 

approach region. If α > 1, then Γα
c (eiθ) is a region contained in the unit disc D which 

touches unit circle ∂D at eiθ tangentially. As α increases, the degree of tangency also 
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increases. We note that Nagel, Rudin, and Shapiro, [20] showed that for functions in D

boundary limits exist a.e. even from within approach regions that make exponential 
contact with ∂D.

The extended Brown–Shields conjecture is about the invariant subspace structure 
of the Dirichlet shift. By [22] every invariant subspace is of the form M = ϕD(mϕ). 
Here mϕ is a measure associated with the extremal function ϕ for M and D(mϕ) is a 
harmonically weighted Dirichlet space. The main tool for the proof of Theorem 1.3 is 
Theorem 3.2, which holds for all harmonically weighted Dirichlet spaces. Since that is 
interesting in its own right, we decided to prove this result in greater generality than 
would be needed for Theorem 1.3. We have the included the necessary background details 
in Section 2.

We would like to thank the referee for bringing the paper [14] to our attention. In 
Theorem 1 of that paper the authors establish the special case of our Theorem 3.2, where 
the sets E and F coincide and thus the Fσ-set F is assumed to be compact.

2. Background on harmonically weighted Dirichlet spaces

We start with the definition of the local Dirichlet integral of an L1(∂D)-function, 
see [26], Section 4 for more details. This will be needed for the treatment of capacities 
for the weighted Dirichlet spaces.

If f ∈ L1(∂D) and λ ∈ D, then f(λ) = P [f ](λ) is the value of the Poisson integral of 
f at λ and

Dλ(f) =
∫

|z|=1

|f(z) − f(λ)
z − λ

|2 |dz|2π . (2.1)

If λ ∈ ∂D and if P [f ] has nontangential limit f(λ) at λ, then (2.1) also defines Dλ(f), 
while for those λ ∈ ∂D where the nontangential limit of P [f ] does not exist, we set 
Dλ(f) = ∞. Dλ(f) is called the local Dirichlet integral of f . Clearly, if Dλ(f) < ∞ for 
some λ, then f ∈ L2(∂D). We refer the reader to [23] for more information on Dλ(f)
for analytic functions f . Furthermore, Lemma 4.1 of [26] shows that if f, g ∈ H2, then 
Dλ(f + g) = Dλ(f) + Dλ(g) for all |λ| ≤ 1.

Consider a positive measure μ on ∂D, define

Dh(μ) = {f ∈ L2(∂D) :
∫

λ∈∂D

Dλ(f)dμ(λ) < ∞}

with norm

‖f‖2
μ = ‖f‖2

L2 +
∫

Dλ(f)dμ(λ).

λ∈∂D
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We also set D(μ) = Dh(μ) ∩ H2. If μ is normalized Lebesgue measure on ∂D, then 
D(μ) = D. In fact, if for any measure μ on ∂D, we let wμ = P [μ] be the Poisson integral 
of μ, then

∫
|λ|=1

Dλ(f)dμ(λ) =
∫
D

|f ′|2wμ
dA

π
for all f ∈ H2, (2.2)

see [23].
We now fix a measure μ that is supported in ∂D. All of the concepts that we are about 

to define will depend on μ. For ease of presentation we will suppress that dependence in 
the notation.

The real parts of functions of Dh(μ) ⊆ L2(∂D) form a Dirichlet space in the sense 
of Beurling–Deny, see [4]. An extensive general potential theory of such spaces has been 
developed. A good reference for this is [15], Chapter 2. For the case of the spaces Dh(μ)
we recall the definition of capacity and we describe the related concepts that we will 
need. If U ⊆ ∂D is an open set, then the capacity is defined by

cμ(U) = inf{‖f‖2 : f ∈ Dh(μ), f ≥ 1 a.e. on U}.

For arbitrary subsets A ⊆ ∂D one sets

cμ(A) = inf{cμ(U) : A ⊆ U,U open}.

This capacity turns out to be a Choquet capacity, [10], and as a consequence one has

cμ(E) = sup{cμ(K) : K ⊆ E,K compact}

for every Borel set E ⊆ ∂D. One says that a property holds quasi-everywhere (q.e.) if it 
holds except perhaps on a set of capacity 0. A set E ⊆ ∂D is called quasi-closed, if for 
each ε > 0, there is an open set A of capacity < ε such that E \A is closed. Similarly, a 
function f is called quasi-continuous, if for any ε > 0 there is an open set A of capacity 
< ε such that f |∂D \ A is continuous. Every f ∈ Dh(μ) has a quasi-continuous a.e. 
representative, and any two quasi-continuous representatives of the same function agree 
q.e. We refer the reader to Chapter 2 of [15] for the results mentioned above and further 
basic results about these capacities and exceptional sets. The paper [16] also contains 
a nice overview. Furthermore we mention that Chacon [9] showed that the harmonic 
extensions of Dh(μ)-functions have nontangential limits q.e., and it follows from this 
that the resulting non-tangential limit function is a quasi-continuous representative.

We will need results about equilibrium potentials and equilibrium measures of Borel 
sets. Again we refer the reader e.g. to Chapter 2 of [15] for the proofs of these results. 
Every Borel set E has an equilibrium potential fE satisfying:
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0 ≤ fE ≤ 1 on ∂D,

fE = 1 q.e. on E, and

cμ(E) = ‖fE‖2
μ.

A positive Borel measure σ on ∂D has finite energy, if there is C > 0 such that ∫
|g|dσ ≤ C‖g‖μ for all continuous functions in Dh(μ). Note that the trigonometric 

polynomials are dense in Dh(μ) (see [22] for the density of polynomials in D(μ) and 
then use the identity Dλ(f + g) = Dλ(f) + Dλ(g)). Thus by the Riesz representation 
theorem any such measure gives rise to a function fσ such that 〈g, fσ〉μ =

∫
gdσ for all 

g ∈ Dh(μ) ∩C(∂D). If σ has finite energy, then sets of capacity 0 have σ-measure 0 and 
one gets

〈g, fσ〉μ =
∫

gdσ for all g ∈ Dh(μ).

It turns out that equilibrium potentials come from unique measures of finite energy in the 
way just described. Such measures are called equilibrium measures. If E is a quasi-closed 
set, then the equilibrium measure σE for E satisfies fE = fσE

, σ(∂D \E) = 0, and hence

cμ(E) = ‖fE‖2
μ = 〈fE , fσE

〉μ =
∫

fEdσE = σE(E).

Let kλ(z) be the reproducing kernel for D(μ), then one checks that uλ(z) =
2 Re kλ(z) − 1 is the reproducing kernel for Dh(μ), f(λ) = P [f ](λ) = 〈f, uλ〉μ for 
all f ∈ Dh(μ). In particular, if σ has finite energy, then

fσ(λ) = 〈fσ, uλ〉μ =
∫

uλ(z)dσ(z).

In [29] Shimorin showed that kλ(z) is a normalized complete Nevanlinna–Pick kernel, 
i.e. it is of the form

kλ(z) = 1
1 −

∑
n bn(λ)bn(z)

for some functions bn ∈ D(μ) with bn(0) = 0 for all n. From this it follows easily that 
uλ(z) ≥ 0 for all λ, z ∈ D. The following is the analogue of Lemma 3.4.2 of [12].

Lemma 2.3. Let μ be a measure on ∂D, and let σ be a measure of finite energy that is 
supported on a compact set F . Set f(λ) =

∫
uλdσ and g(λ) =

∫
(2kλ(z) − 1)dσ(z). Then

(a) 0 ≤ f = Re g,
(b) ‖g‖2

μ ≤ 2‖f‖2
μ,

(c) |g(λ)| ≤ 4σ(F ) .
dist(λ,F )
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In particular, if σ is the equilibrium measure for a set F , then ‖g‖2
μ ≤ 2cμ(F ) and 

|g(λ)| ≤ 4cμ(F )
dist(λ,F ) .

Proof. (a) is obvious and we have

f = Re g = 1
2(g − g(0) + 2g(0) + g − g(0)).

Thus by orthogonality ‖f‖2
μ = ‖g−g(0)‖2

μ

2 + |g(0)|2 = ‖g‖2
μ+|g(0)|2

2 , and (b) follows.
In order to prove (c) we recall formula (12) from Shimorin’s paper [28]: For all |λ| < 1

and a.e. z ∈ ∂D we have

| 1
1 − λz

|2 = (1 − |λ|2)kλ(λ)
|1 − λz|2

+ |kλ(z) − 1
1 − λz

|2 +
∫

D

|kλ(z) − kλ(u)
z − u

|2dμ(u).

This implies that for all |λ| < 1 and a.e. z ∈ ∂D we have

|2kλ(z) − 1| ≤ 4
|1 − λz|

and hence the inequality holds also for all |λ|, |z| < 1, and thus for fixed |λ| < 1 it holds 
for q.e. z ∈ ∂D. Hence

|g(λ)| ≤
∫

|2kλ(z) − 1|dσ(z) ≤ 4σ(F )
dist(λ, F ) . �

3. The construction

We start with a known lemma.

Lemma 3.1. If log f ∈ D(μ) and f ∈ H∞, then f is cyclic in D(μ).

This is Theorem 5.8 of [1]. Since that reference may not be widely available, we have 
indicated a short proof below.

Proof. Set g = log f . If α > 0, then fα = eαg and hence

|(fα)′(z)| = α|f(z)|α|g′(z)| ≤ α‖f‖α∞|g′(z)|.

By (2.2) and dominated convergence this implies that fα → 1 as α → 0+. We know by 
Theorem 9.1.7 of [12] that [fα] = [f ], thus 1 ∈ [f ] and f must be cyclic. �

This observation is why part (d) of the following construction is important.
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Theorem 3.2. Let μ be a measure on ∂D. Let E ⊆ ∂D be closed, and let F ⊆ E be an 
Fσ-set with cμ(F ) = 0. Then there is an f ∈ D(μ) such that

(a) |f(z)| ≤ 1 for all z ∈ D,
(b) lim supz→w |f(z)| = 0 for all w ∈ F ,
(c) f is continuous on D \ E and f(w) 	= 0 for all w ∈ D \ E,
(d) log f ∈ D(μ).

Proof. If D(μ) = D and E = F is a compact set of logarithmic capacity 0, then this 
theorem reduces to a result of Brown–Cohn [6], which in turn was based on a result that 
was published in [8], Theorem 4. Our proof follows the ideas of Brown–Cohn as presented 
in the proof of Theorem 3.4.1 of the book [12]. Let Fn be an increasing sequence of 
compact sets with 

⋃
n Fn = F , and let Kn be an increasing sequence of compact sets 

such that Kn ⊆ intKn+1 for each n and 
⋃∞

n=1 Kn = ∂D \ E.
Let εn > 0 such that 

∑
n εn < ∞, and for each n ∈ N choose an open set Un ⊆ ∂D

such that Fn ⊆ Un ⊆ ∂D \Kn, and cμ(Un) < ε2
n.

Now it is routine to find open sets Vn such that Fn ⊆ Vn ⊆ V n ⊆ Un. For each n let σn

be the equilibrium measure for V n, and let gn be the analytic function as in Lemma 2.3
such that Re gn = fn = the equilibrium potential for V n. Then ‖gn‖μ ≤

√
2εn.

Notice that fn(w) = 1 a.e. on the open set Vn. Fn is a compact subset of Vn, hence 
there is an rn such that fn(z) ≥ 1/2 for all |z| ≥ rn and z/|z| ∈ Fn.

Now consider the function f(z) = e−
∑∞

n=1 gn(rnz). It satisfies (a) since each 
Re gn(rnz) ≥ 0 in D and it satisfies (d), because ‖ log f‖μ = ‖ 

∑
n gn,rn‖μ ≤∑

n ‖gn,rn‖μ ≤ c 
∑

n εn < ∞.
Next we will verify (b). Let w ∈ F , then there is N ∈ N such that w ∈ Fn for all 

n > N . By Fatou’s lemma we have

lim inf
z→w

∞∑
n=1

fn(rnz) ≥
∞∑

n=N+1
lim inf
z→w

fn(rnz)

=
∞∑

n=N+1
fn(rnw)

≥
∑

n≥N+1

1
2 = ∞.

Thus (b) holds.
Finally we show that (c) is satisfied as well. Since each function gn,rn is continuous 

on D it suffices to show that 
∑∞

n=1 gn,rn converges uniformly on each set KN .
Fix N ∈ N. Note Vn ⊆ Un ⊆ ∂D \ Kn ⊆ ∂D \ intKn ⊆ ∂D \ intKN+1 for each 

n ≥ N + 1 and

dN = inf{|rz − w| : 0 ≤ r < 1, z ∈ KN , w ∈ ∂D \ intKN+1} > 0.
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Thus for z ∈ KN and n ≥ N + 1 we have by Lemma 2.3 (c)

|gn,rn(z)| ≤ ccμ(Fn)
dist(rnz, Vn)

≤ cε2
n

dist(rnz, Vn)
≤ cε2

n

dN
.

Hence it follows from the Weierstrass M-test that 
∑

n gn,rn converges uniformly 
on KN . �

We can now prove Theorem 1.3.

Proof. We will use Theorem 3.2 with μ equal to normalized Lebesgue measure. Then 
D(μ) = D and the capacity cμ is equivalent to logarithmic capacity.

Let ϕ be the extremal function for DE. The ϕ is a multiplier of D (see [24]), and by 
Theorem 5.1 of [25], the radial limit limr→1 |ϕ(rw)| exists for every w ∈ ∂D, we have

lim
r→1

|ϕ(rw)| = lim sup
z→w

|ϕ(z)| for all w ∈ ∂D,

and Z(ϕ) is a Gδ-set with Z(ϕ) ⊆ Z(ϕ).
For a subset M ⊆ D we set Z(M) =

⋂
h∈M Z(h). Then since E is a Carleson set, it 

is clear that Z(DE) ⊆ E. By Theorem 3.2 and Lemma 3.1(a) of [25] Z(ϕ) = Z(DE) ⊆ E

and ϕ extends to be analytic across each complementary arc of Z(DE).
Since ϕ ∈ DE it follows that F = E \ Z(ϕ) has logarithmic capacity 0. Also note 

that F ⊆ E is an Fσ-set. Thus let f be the corresponding function given by the previous 
theorem that satisfies (a)–(d).

We claim that g = fϕ has the required properties. Indeed, since f is cyclic there will 
be polynomials pn such that pnf → 1 in D. Since ϕ is a multiplier we have pnfϕ → ϕ

and hence ϕ ∈ [fϕ] and hence DE = [ϕ] ⊆ [fϕ]. The other inclusion is obvious.
It is left to show that fϕ extends to be continuous on D and Z(fg) = E.
We need to check that fϕ is continuous at every point w ∈ ∂D. If w ∈ ∂D \E, then f

extends to be continuous by construction and ϕ is analytic in a neighborhood of w, hence 
the product will extend to be continuous at w. It also follows from the construction that 
fϕ 	= 0 on ∂D \E. On E = F ∪ Z(ϕ) we set fϕ to be 0. Now if w ∈ F and zn ∈ D such 
that zn → w then |f(zn)ϕ(zn)| ≤ |f(zn)| → 0. The case of w ∈ Z(ϕ) follows analogously. 
This implies that fϕ extends to be continuous on D. �
Question 3.3. In Theorem 1.3, can one drop the hypothesis Carleson set and replace it 
with E closed such that DE 	= (0)?

4. Tangential limits of extremal functions

In this Section we will prove Theorem 1.4. Let ϕ be an extremal function in the 
Dirichlet space D. Then by formula (5.1) in [25], we have the following equation for 
w = reit ∈ D,
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r =
r∫

0

(∫
∂D

Pseit(z)Dz(ϕ) |dz|2π

)
ds + r

∫
∂D

Pw(z)|ϕ(z)|2 |dz|2π , (4.1)

where Pw(z) = 1 − |w|2
|z − w|2 denotes the Poisson kernel.

The first integral on the right-hand side of (4.1) is positive and increasing in r, hence 
its limit exists for each eit and its limit is less than or equal to 1.

By an application of Hölder’s inequality to the Poisson integral representation of ϕ
or Theorem 2.12 of [11], we have

|ϕ(w)|2 ≤
∫
∂D

Pw(z)|ϕ(z)|2 |dz|2π ≤ 1

where the second inequality follows from the equation (4.1) and hence

lim
r→1−

∫
∂D

Preit(z)|ϕ(z)|2 |dz|2π

exists for every eit ∈ ∂D.
Since the Dirichlet space is contained in VMOA (see [32]), the radial limit

|ϕ|2(eit) := lim
r→1−

|ϕ(reit)|2 = lim
r→1−

∫
∂D

Preit(z)|ϕ(z)|2 |dz|2π

exists for each eit ∈ ∂D and is less than or equal 1 as well. Also, by dividing equation (4.1)
by r, we obtain

∫
∂D

Pw(z)|ϕ(z)|2 |dz|2π = 1 −
∫
∂D

(
1
r

r∫
0

Pseit(z)ds
)
Dz(ϕ) |dz|2π . (4.2)

A direct computation shows

1
r

r∫
0

Pseit(z)ds = 2Rekw(z) − 1, (4.3)

where kw(z) = 1
wz

log 1
1 − wz

is the reproducing kernel for the Dirichlet space D. There-
fore, (4.2) is equal to

∫
∂D

Pw(z)|ϕ(z)|2 |dz|2π = 1 −
∫
∂D

(
2Rekw(z) − 1

)
Dz(ϕ) |dz|2π . (4.4)
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Proposition 4.5. Let ϕ be an extremal function in the Dirichlet space D. Then

sup
0�=w∈D

∫
|z|=1

1
|w|

∣∣∣∣log
(

1
1 − wz

)∣∣∣∣Dz(ϕ) |dz|2π < ∞.

Proof. Let w ∈ D \{0} and z ∈ ∂D be such that wz = reiθ. Since the reproducing kernel 
kw(z) is small for small w, we will assume that |w| ≥ 1

2 . Observe that

Rekw(z) = cos(θ)
|r| log 1

|1 − reiθ| + sin(θ)
|r| Arg

(
1

1 − reiθ

)
.

Set

Sw =
{
z ∈ ∂D : wz = reiθ,

∣∣∣θ − π

2

∣∣∣ < π

4

}
.

Then there is a constant C that is independent of |w| ≥ 1/2 such that

1
|w|

∣∣∣∣log
(

1
1 − wz

)∣∣∣∣ ≤ C

for all z ∈ ∂D \ Sw. This implies

sup
1/2≤|w|<1

∫
z∈∂D\Sw

1
|w|

∣∣∣∣log
(

1
1 − wz

)∣∣∣∣Dz(ϕ) |dz|2π < C.

Furthermore on the set Sw it is easy to see |kw(z)| is comparable with the real part 
of the reproducing kernel kw(z), i.e. |kw(z)| ≈ Rekw(z), where again the constant is 
independent of w, 1/2 ≤ |w| < 1. Thus equation (4.4) implies that

sup
1/2≤|w|<1

∫
z∈Sw

1
|w|

∣∣∣∣log
(

1
1 − wz

)∣∣∣∣Dz(ϕ) |dz|2π < C.

This finishes the proof. �
Now we are ready to prove Theorem 1.4.

Proof. Let c > 0, α ≥ 1, and let ϕ be an extremal function in D. Without loss of gen-
erality, we assume eit = 1. We have to show that |ϕ(w)|2 → lim supw→1,w∈D

|ϕ(w)|2
as w = reiθ → 1 in the approach region Γα

c (1). Theorem 5.1 of [25] states that 
limr→1− |ϕ(r)|2 = lim supw→1,w∈D

|ϕ(w)|2. Furthermore, the Dirichlet space is contained 
in VMOA, hence we have limz→1 Pz[|ϕ|2] − |ϕ(z)|2 = 0 and we may substitute Pz[|ϕ|2]
for |ϕ(z)|2. Thus, it will suffice to prove that
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∫
∂D

P|w|(z)|ϕ(z)|2 |dz|2π −
∫
∂D

Pw(z)|ϕ(z)|2 |dz|2π → 0

as w → 1, w ∈ Γα
c (1). We now apply (4.4) with w and |w| and observe that this is 

equivalent to proving that

U(w) :=
∫
∂D

Re(k|w|(z) − kw(z))Dz(ϕ) |dz|2π → 0

as w → 1, w ∈ Γα
c (1).

Write w = reiθ. Then for all |z| = 1

kr(z) − kreiθ (z) = 1
rz

log
(

1 − zre−iθ

1 − rz

)
+ 1

rz
(1 − eiθ) log

(
1

1 − zre−iθ

)
,

and hence

|Re(kr(z) − kreiθ (z))| ≤
1
r

∣∣∣∣log
(

1 − zre−iθ

1 − rz

)∣∣∣∣ + 1
r

∣∣1 − eiθ
∣∣
∣∣∣∣log

(
1

1 − zre−iθ

)∣∣∣∣ .
Therefore,

U(reiθ) ≤
∫

|z|=1

2
r

∣∣∣∣log
(

1 − zre−iθ

1 − rz

)∣∣∣∣Dz(ϕ) |dz|2π

+ 2
r

∣∣1 − eiθ
∣∣ ∫
|z|=1

∣∣∣∣log
(

1
1 − zre−iθ

)∣∣∣∣Dz(ϕ) |dz|2π . (4.6)

By Proposition 4.5 the second term on the right-hand side of (4.6) will go to zero as 
w = reiθ → 1 in D. It is left to show that the first integral in (4.6) goes to zero as well. 
Note that

∫
|z|=1

2
r

∣∣∣∣log
(
z − reiθ

z − r

)∣∣∣∣Dz(ϕ) |dz|2π ≤
∫

|z|=1

2
r

∣∣∣∣log
∣∣∣∣z − reiθ

z − r

∣∣∣∣
∣∣∣∣Dz(ϕ) |dz|2π

+
∫

|z|=1

2
r

∣∣∣∣Arg
(
z − reiθ

z − r

)∣∣∣∣Dz(ϕ) |dz|2π . (4.7)

The second integral on the right-hand side of (4.7) will converge to zero as reiθ → 1 by 

the Dominated Convergence Theorem (DCT), since 

∣∣∣∣Arg
(
z − reiθ

z − r

)∣∣∣∣ is bounded (one 

can see this from the picture) and will approach zero as reiθ → 1 in Γα
c (1). Thus, what 
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we really need to show that is the first integral on the right-hand side of (4.7) converges 
to zero.

For w = reiθ ∈ Γα
c (1), define

Rw =
{
z ∈ ∂D :

∣∣∣∣r − w

z − r

∣∣∣∣ ≥ 1
2

}
.

Since z−w
z−r = 1 + r−w

z−r we have

log 1
2 < log |z − w

z − r
| < log 3

2

for all z ∈ ∂D \Rw. Thus by the dominated convergence theorem we conclude that

∫
z∈∂D\Rw

2
r

∣∣∣∣log
∣∣∣∣z − w

z − r

∣∣∣∣
∣∣∣∣Dz(ϕ) |dz|2π → 0

as w → 1.
It remains to show that

∫
z∈Rw

2
r

∣∣∣∣log
∣∣∣∣z − w

z − r

∣∣∣∣
∣∣∣∣Dz(ϕ) |dz|2π → 0

as w → 1 in Γα
c (1). By Proposition 4.5 and the generalized dominated convergence 

theorem it will be enough to show that
∣∣∣∣log

∣∣∣∣z − w

z − r

∣∣∣∣
∣∣∣∣

log 2
|z − r|

≤ 1 +
log 2

|z − w|

log 2
|z − r|

(4.8)

is bounded on Rw.
To this end let w = reiθ ∈ Γα

c (1) and z ∈ Rw. Then

|z − r| ≤ 2 |r − w|
≤ 2((1 − r) + |1 − w|)

≤ 2((1 − r) + (c(1 − r)) 1
α )

≤ 2(1 + c1/α)(1 − r)1/α.

Hence

log 2 ≥ 1 log 1 − log(1 + c1/α)
|z − r| α 1 − r
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and we conclude that for all r sufficiently close to 1

log 2
|z − w|

log 2
|z − r|

≤ α
log 2

1 − r

log 1
1 − r

− α log(1 + c1/α)
.

This last expression has a finite limit as r → 1−, hence the term in (4.8) is uniformly 
bounded for w = reiθ ∈ Γα

c (1) and z ∈ Rw. That finishes the proof. �
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