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A B S T R A C T

In this work, we find position vectors of non-null helices in the n-dimensional Minkowski spacetime. We present
methods to generate helices from polynomial curves. We also present methods to generate helices from other
helices which lie in different dimensional Minkowski spacetime.

1. Introduction

Helices are very interesting curves that attracted attention in a wide
range of disciplines such as mathematics, physics, architecture, en-
gineering and biology. Therefore, a rich literature exists [2,3,5–7,16].

In 3-dimensional Euclidean space, a helix is a curve whose tangent
vector field makes a constant angle with a fixed direction called the axis
of the helix. This definition suggests that a curve is a helix if and only if

/ is constant, where is the curvature and is the torsion of the curve
[9,14]. The notion of helix can be extended to higher dimensional
spaces using the same definition [7,12].

The notion of helix in 3-dimensional Minkowski spacetime is de-
veloped similarly and it can be extended to higher dimensions. Many
different characterizations of helices in Minkowski spacetimes have
been built, based on this definition, researchers gave many character-
izations of these curves in 3-dimensional Minkowski spacetime.

Pythagorean-hodograph (PH) curve notion is introduced by Farouki
and Sakkalis in [4]. Helical polynomial curves in Euclidean spaces are
studied in [4,13]. PH curves in 3-dimensional Minkowski spacetime are
studied in [10].

In this paper, we study position vectors of non-null helices similar to
[1] in which Altunkaya and Kula studied polynomial helices in n-di-
mensional Euclidean space by using the PH curve notion. Although,
there is a rich literature about helices in 3-dimensional Minkowski
spacetime has been created, there are only a few papers discussing
helices in n-dimensional Minkowski spacetime when >n 3. To the best
of our knowledge, no example or application of position vectors of
helices in n-dimensional Minkowski spacetime has been studied in the
literature when n is even. The methods presented here can also be

further used for finding different families of curves e.g. timelike poly-
nomial helices with spacelike axis, etc.

2. Preliminaries

Let = …X x x x( , , , )n1 2 and = …Y y y y( , , , )n1 2 be nonzero vectors in the
n-dimensional real vector space n and …e e e{ , , , }n1 2 be the standard
orthonormal basis of this vector space. For X Y, n

=
=

g X Y x y x y,
i

n

i i n n
1

1

is called Minkowski inner product. The couple g{ , (,)}n is called
Minkowski space(time) and denoted by n

1 [15]. The vector X of n
1 is

called (see [11])

• timelike if <g X X( , ) 0,
• spacelike if >g X X( , ) 0 or =X 0,
• lightlike or null vector if =g X X X( , ) 0, 0.

For a given curve I: n
1 , we call the curve is spacelike (resp.

timelike, lightlike) if is spacelike (resp. timelike, lightlike) at any
t I , where = d dt/ [15].

The Frenet curvatures and Frenet equations of the curve can be
defined as follows.

Let I: n
1 be a non-null curve. The curve is called Frenet curve

of asculating order d if its higher order derivatives … +, , , ,d d 1 are
no longer linearly independent for all t I . For each Frenet curve of
order d, one can associate an orthonormal d-frame …V V V, , d1 2 along
(such that =V1 ) called the Frenet frame and d 1 functions
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…k k k I R, , , :d1 2 1 called the Frenet curvatures. For =n d, the Frenet
formulae are defined in the usual way:

=
= +

= +
=

+ +

V k V
V k V k V

V k V k V
V k V

,
,

,i i i i i i i

n n n n

1 2 1 2

2 1 1 1 3 2 3

1 1 1 1 1

1 1 1 (1)

where = = g| ( , )|1/2 and = g V V( , )i i i for i n1 [8].

Definition 2.1. A curve I: n
1 is called helix if and only if

there exists a constant vector U n
1 with g V U( , ) 01 is constant [5].

U is called the axis of the curve .

3. Spacelike helices in Rn
1

Now, we study spacelike helices with a spacelike axis.

3.1. Spacelike helices in n
1 when n is even

Theorem 3.1. Let

I: ,1
4

be a curve defined by

= +t c t c t c t c t c t( ) ,
3

,
3 5

,
2

.1
2 3 3 3 4 5 5 2

If

= = = = =c d c d d c d c d c d d, 2 , , , 21 1 2
2

1 3 3 2 4 3 5
2

1 2

with <+j d d d d1 3, , 4j 2
2

1 3, then is a spacelike helix with the
axis

U
U

and the tangent vector

=
+

+V t
d t d t d

c c t c t c t c t( ) 1 ( , , , )1
3

4
2

2
1

1 2
2

3
2

4
4

5

where

=U ( 1, 0, 1, 0).

Proof. If necessary calculations are executed, we get

=
+

+V t
d t d t d

c c t c t c t c t( ) 1 ( , , , ).1
3

4
2

2
1

1 2
2

3
2

4
4

5

Additionally, since

=g V t U
U

( ), 1
21

and =g V V( , ) 11 1 , we conclude that is a spacelike helix where

=U ( 1, 0, 1, 0).

Example 3.1. If we choose = = =d d d1, 21 2 3 in Theorem 3.1, then it is
= = = = =c c c c c1; 2; 2; 2; 21 2 3 4 5 and we have

= +t t t t t t( ) , 2
3

, 2
3

2
5

, ,3 3 5 2

=
+

V t
t t

t t t t( ) 1
2 2 1

( 1, 2 , 2 2 , 2 ),1 4 2
2 4 2

=g V t U
U

( ), 1
2

.1

Given the necessary calculations are made, we obtain

= + >g t t t t t( ( ), ( )) (2 2 1) 0, ,4 2 2

then the curve is a spacelike helix.

In 1
6, we can obtain a spacelike helix as follows.

Theorem 3.2. Let

> >a b b a: ( , ) , 1,1
6

be a curve defined by

= +t c t c t c t c t c t c t c t( ) ,
3

,
4

,
5

,
5 7

,
2

.1
2 3 3 4 4 5 5 5 6 7 7 2

For i c2 3, {0}i , if

= = =
= = = =

c d c d d d c d d d d
c d d c d c d c d d

, 2 , 2 2 ,
2 , , , 2 ,

1 1 2
2

2
2

1 3 3
2

2 3 1 4

4
2

2 4 5 3 6 4 7
2

1 2

with < = + + = >+
=j d d d d d d d d d d d1 4, , ; 2 ;j j j1 2

4
2 3 4 2

2
1 3 2 3

d d1 4, then is a spacelike helix with the spacelike axis

U
U

and the tangent vector

=
+ +

+V t
d t d t d t d

c c t c t c t c t c t c t( ) 1 ( , , , , , )1
4

6
3

4
2

2
1

1 2
2

3
3

4
4

5
4

6
6

7

where

=U d
c

1, , 0, 0, 1, 0 .2

2

Proof. We omit the proof since it is quite similar to the proof of
Theorem 3.1. □

Theorem 3.3. Let n 8 be an even number and

> >a b b a: ( , ) , 1,n
1

be a curve defined by

= … +
+

+ +t c t c t c
n

t c
n

t c
n

t c t( ) ,
3

, ,
1

,
1 1

,
2

.n n n n n n n
1

2 3 2 1 1 1 1 1 2

For i n c2 4, {0}i , if

= = =

= = =

= +

= +

+

+ +

+ +
=

+

=
+

c d c d d d c d d

c d c d c d d

c d d d d d k

c d d d d l

, 2 , 2 ,

, , 2 ,

2 2 , 2 ,

2 2 , 2

n n n

n n n n n

k k k
j

k

j k j
n

l l
j

l

j l j
n

1 1 2
2

2
2

1 3 2
2 2

2
2

2

1 2
2

2 1
2

1 2

2
2

1
2

1 2 1
2

2 2
4

2

2 1
2

1 2
2

2 1
2

2

with = = …= =+ + + +j d d d d1 , , 0n
j n n n

2
2 4

2
6

2
2 , and >=

+
d dj

n
j2

2
2 1, then

is a spacelike helix with the spacelike axis

U
U

n

n

and the tangent vector

=

+

… +

=

+ +V t

d d t

c c t c t c t c t( ) 1 , , , ,

j

n

j
j

n
n

n
n

n1

1
2

2
2

2( 1)

1 2
2

1
2

1

where

= + +
=

U e d
c

e
d

c
e .n

m

n

m

m
m

n

n
n1

2

2
2

2 2
2 2

2

1
1
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Proof. We can write

=

= … +

= … +

+

+ +( )

V t

c c t c t c t c t c t

d c t c t d t d t c t

( )

( , , , , , )

, , , , ,

t
t

t n
n

n
n

n
n

n

t n
n n n n n

n

1
( )
( )
1
( ) 1 2

2
2

2
1

2
1

1
( ) 1 2

2
2

2
2

2 2
2

1

Therefore, we have

= +
=

+

g t t d d t( ), ( )
j

n

j
j

1
2

2
2

2( 1)

2

and since >g ( , ) 0, is a spacelike curve, then

= =g V t U
U U

constant( ), 1 .n

n n
1

Consequently, is a spacelike helix. □

Example 3.2. If we choose = = = = = =n d d d d d8; 1, 21 3 4 5 2 in
Theorem 3.3, then it is = = = =c c c c1; 2 ; 2 ; 3 ;1 2 3 4

= = = = =c c c c c6 ; 2 ; 1; 1; 25 6 7 8 9 and we have

= +t t t t t t t t t t( ) , 2
3

, 2
4

, 3
5

, 2
6

, 2
7

,
9 7

, ,
3 4 5 6 7 9 7

2

=
+ + +

+

V t

t t t t
t t t t t t t t

( )
1

2 1
(1, 2 , 2 , 3 , 6 , 2 , , 2 ),

1

8 6 4 2
2 3 4 5 6 8 6

=g V t U
U

( ), 3
131

where

=U 1, 2 , 0, 1
3

, 0, 0, 1, 0 .

Given the necessary calculations are made, we obtain

= + + + >g t t t t t t t( ( ), ( )) ( 2 1) 0, ,8 6 4 2 2

then the curve is a spacelike helix.

In the rest of the paper, the proofs are similar to the proofs of the
Theorem 3.1 or Theorem 3.3, therefore we will omit the proofs.

3.2. Spacelike helices in n
1 when n is odd

Theorem 3.4. Let

> >a b b a: ( , ) , 1,1
3

be a curve defined by

=t c t c t c t( ) ,
3

,
2

.1
2 3 3 2

If

= = =c d c d c d d, , 21 1 2 2 3
2

1 2

with <+d d d d, ,1 2 1 2, then is a spacelike helix with the axis

U
U

and the tangent vector

=V t
d t d

c c t c t( ) 1 ( , , )1
2

2
1

1 2
2

3

where

=U ( 1, 1, 0).

Theorem 3.5. Let

> >a b b a: ( , ) , 1,1
5

be a curve defined by

=t c t c t c t c t c t( ) ,
3

,
4

,
5

,
2

.1
2 3 3 4 4 5 5 2

For c {0}2 , if

= = = = =c d c d d d c d d c d c d d, 2 , 2 , , 21 1 2
2

2
2

1 3 3
2

2 3 4 3 5
2

1 2

with < ++j d d d d1 3, ,j 1 2 3, then is a spacelike helix with the
spacelike axis

U
U

and the tangent vector

=
+

V t
d t d t d

c c t c t c t c t( ) 1 ( , , , , )1
3

4
2

2
1

1 2
2

3
3

4
4

5

where

=U d
c

1, , 0, 1, 0 .2

2

Example 3.3. If we take = = =d d d1, 21 3 2 in Theorem 3.5, then it is
= = = = =c c c c c1; 2 ; 2; 1; 21 2 3 4 5 and we have

=t t t t t t( ) , 2
3

, 1
2

, 1
5

, .3 4 5 2

The curve is a spacelike helix with the spacelike axis

=U
U

1
2

, 1
2

, 0, 1
2

, 0

and the tangent vector

=
+

V t
t t

t t t t( ) 1
2 1

1, 2 , 2 , , 2 .1 4 2
2 3 4

Besides,

=g V t U
U

( ), 1
2

.1

Theorem 3.6. Let n 7be an odd number and

> >a b b a: ( , ) , 1,n
1

be a curve defined by

= …t c t c t c
n

t c t( ) ,
3

, , ,
2

.n n n
1

2 3 1 2

For i c2 , {0}n
i

1
2 , if

= = = =

= +

= +

+

+ +
=

+

=
+

c d c d d d c d c d d

c d d d d d k

c d d d d l

, 2 , , 2 ,

2 2 , 2 ,

2 2 , 2

n n n

k k k
j

k

j k j
n

l l
j

l

j l j
n

1 1 2
2

2
2

1 3 1 1
2

2
1 2

2
2

1
2

1 2 1
2

2 2
3

2

2 1
2

1 2
2

2 1
1

2

with = = …= = >+ + + + =j d d d d d d1 , , 0,n
j n n n j

n
j

1
2 3

2
5

2
1 2

2 1,
then the curve is a spacelike helix with the spacelike axis

U
U

n

n
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and the tangent vector

=

+

…

=

+V t

d d t

c c t c t c t( ) 1 , , , ,

j

n

j
j

n
n

n1

1
2

1
2

2( 1)

1 2
2

1
1

where

= +
=

+

U e d
c

e .n
m

n

m

m
m1

2

1
2

2 2
2 2

Example 3.4. If we take =n 7; = = = =d d d d1, 21 3 4 2 in Theorem 3.6,
then it is = = = = = = =c c c c c c c1; 2 ; 2 ; 5 ; 2 ; 1; 21 2 3 4 5 6 7 and we
have

=t t t t t t t t( ) , 2
3

, 2
4

, 5
5

, 2
6

,
7

, .
3 4 5 6 7

2

The curve is a spacelike helix with the spacelike axis

=U
U

5
21

, 10
21

, 0, 1
21

, 0, 5
21

, 0

and the tangent vector

=
+ +

V t
t t t

t t t t t t( ) 1
2 1

(1, 2 , 2 , 5 , 2 , , 2 ).1 6 4 2
2 3 4 5 6

Besides,

=g V t U
U

( ), 5
21

.1

As a result of Theorem 3.3, we have the following corollary.

Corollary 3.1. If =+d 0n 2
2

in Theorem 3.3, then the curve lies in the (n-
1)-dimensional hyperplane of n

1 . So it can be considered as a spacelike helix
in (n-1)-dimensional Minkowski spacetime.

4. Generating spacelike helices from spacelike helices that lie in
different dimensional Minkowski spacetime

4.1. Generating spacelike helices in 1
4 from spacelike helices in 1

3

Let +d d,1 2 ,

=

=

=

t d t

t t

t t

( ) ,

( ) ,

( ) .

d

d d

1 1

2 3
3

3
2

2
2

2

1 2

Then, =t t t t( ) ( ( ), ( ), ( ))1 2 3 (see Fig. 1) is a spacelike helix in 1
3 and

the Minkowski scalar product of tangent vector of with the spacelike
vector = ( ), , 0U

U
1
2

1
2 is 1

2
, where =U ( 1, 1, 0).

Let =t t t t t( ) ( ( ), ( ), ( ), ( ))1 2 3 4 be a curve in 1
4 denoted by

=
=
=
=

t t
t t t
t t t
t t t

( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ).

1

2 1

3 2

4 3

with the Minkowski scalar product of tangent vector V of with the
spacelike vector = ( )0, , , 0U

U
1
2

1
2 is constant (equal to the corre-

sponding of ), where t( ) is a real valued function. Thus, we have

=g V t v( ( ), ) 1
2

.1

By solving this equation, we find

=
+

t c
d d t

( )
61 2

4

where c {0}. Then, we have

=
+

t c
d d t

d t d t
d d

t( )
6

1, ,
3

,
2

2
.

1 2
4 1

2 3 1 2 2

The curve is a spacelike helix and the Minkowski scalar product of
tangent vector of with the spacelike vector

U
U

is constant where

=U (0, 1, 1, 0).

4.2. Generating spacelike helices in 1
5 from spacelike helices in 1

4

Let +d d d, ,1 2 3 ,

=

=

= +

=

t d t

t t

t t t

t t

( ) ,

( ) ,

( ) ,

( ) .

d d

d d

d d

1 1

2
2

3
3

3 3
3

5
5

4
2

2
2

1 3

2 3

1 2

From Theorem 3.1, =t t t t t( ) ( ( ), ( ), ( ), ( ))1 2 3 4 is a spacelike helix in
1
4 the Minkowski scalar product of tangent vector of with the

spacelike vector = ( ), 0, , 0U
U

1
2

1
2 is 1

2
, where =U ( 1, 0, 1, 0).

Let =t t t t t t( ) ( ( ), ( ), ( ), ( ), ( ))1 2 3 4 5 be a curve in 1
5 denoted

by

=
=
=
=
=

t t
t t t
t t t
t t t
t t t

( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( )

1

2 1

3 2

4 3

5 4

with the Minkowski scalar product of tangent vector V1 of with the
spacelike vector = ( )0, , 0, , 0U

U
1
2

1
2 is constant (equal to the cor-

responding of ), where t( ) is a real valued function. Thus, we have

=g V t U
U

( ), 1
2

.1

By solving this equation, we find

Fig. 1. For = =d d1, 21 2 , the spacelike helix lies on =y xz2
3 .
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=
+ +

+

t

c
d d t d d t

d t
d d t

d t d t d d t

( )

16 15 90
1, ,

2
3

,
3 5

,
2

2

1 3
6

1 2
4 1

1 3
3

2
3

3
5 1 2

2

where c {0}.
The curve is a spacelike helix and the Minkowski scalar product of

tangent vector of with the spacelike vector

U
U

is constant where

=U (0, 1, 0, 1, 0).

We can similarly construct spacelike helices in upper dimensions.

5. Timelike helices in n
1

In this section, we study timelike helices with null axis.

5.1. Timelike helices with null axis in n
1

Theorem 5.1. Let

I I: , 01
3

be a curve defined by

= +t c t c t c t c t( ) ,
2

,
3

.1
2 2 3 3

1

If

= +c c
c

c c c
2

, , , {0},1
2
2

3
1 3 2

then is a timelike helix with the null axis

=U (1, 0, 1)

and the tangent vector

= +V t
c t

c c t c t c( ) 2 , , .1
3

2 1 2 3
2

1

Besides,

=g V t U( ( ), ) 1.1

Theorem 5.2. Let n 4 and

= …

+ + + …++

t c t c t c t c
n

t

c t c t c t c
n

t

( ) ,
2

,
3

, ,
1

,

3 5 2 3

n n

n n n n

1
2 2 3 3 1 1

1
3 1 5 2 3 2 3

be a curve in n
1 with +c1 and c i n{0}, 2 1i . If

= = … =+c c
c

c c
c

c c
c2

,
2

, ,
2

,n n n
n2

2

1
1

3
2

1
2 3

1
2

1

then is a timelike helix with the null axis

= +U e en1

and the tangent vector

= … + + + …+

=

+V t c

c t
c c t c t c t c c t c t c t( ) 2 , , , , , .

j

n

j
n

n n n n n n1
1

3

1
2 2 4

1 2 3 2 1 2 1 2 1 4 2 3 2 4

Example 5.1. If we take = = = =n c c c4, 11 2 3 in Theorem 5.2, then
we obtain

= + +t t t t t t t( ) , 1
2

, 1
3

, 1
10

1
6

.2 3 5 3

The curve is a timelike helix with the axis

=U (1, 0, 0, 1)

and the tangent vector

=
+

+ +V t
t t

t t t t( ) 2 1, , , 1 1
2

1
2

.1 4 2
2 2 4

Besides,

=g V t U( ( ), ) 1.1

We can give the following corollary as a result of Theorem 5.2.

Corollary 5.1. If =c 0n 1 in Theorem 5.2, then the curve lies in the (n-
1)-dimensional hyperplane of n

1 . So it can be considered as a timelike helix
in (n-1)-dimensional Minkowski spacetime.

6. Generating timelike helices from timelike helices that lie in
different dimensional Minkowski spacetime

6.1. Generating timelike helices in 1
4 from timelike helices in 1

3

Let

=

=

= +

t t

t t

t t t

( ) ,

( ) ,

( ) ,

1

2
2

2
2

3
1
3

3

then =t t t t( ) ( ( ), ( ), ( ))1 2 3 (see Fig. 2) is a timelike helix in 1
3 and

the Minkowski scalar product of tangent vector of with the null vector
=U (1, 0, 1) is constant.
Let =t t t t t( ) ( ( ), ( ), ( ), ( ))1 2 3 4 be a curve in 1

4 denoted by

=
=
=
=

t t
t t t
t t t
t t t

( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( )

1

2 1

3 2

4 3

with the Minkowski scalar product of tangent vector V1 of with the
null vector =U (0, 1, 0, 1) is constant (equal to the corresponding of ),
where t( ) is a real valued function. Therefore, we have the differential
equation

Fig. 2. The timelike helix lies on = +z x y( 1)2
3 .
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=g V t U( ( ), ) 1.1

By solving this differential equation, we find

=t c
t

( )
64

where c {0}. Then, we have

= +t c
t

t t t t( )
6

1, , 2
2

, 1
3

.4
2 3

The curve is a timelike helix with the null axis

=U (0, 1, 0, 1).

6.2. Generating timelike helices in 1
5 from timelike helices in 1

4

Let

=
=

=

= + +

t t
t t

t t

t t t t

( ) ,
( ) ,

( ) ,

( ) .

1

2
1
2

2

3
1
3

3

4
1

10
5 1

6
3

From Theorem 5.2, =t t t t t( ) ( ( ), ( ), ( ), ( ))1 2 3 4 is a timelike helix in
1
4 and the Minkowski scalar product of tangent vector of with the

null vector =U (1, 0, 0, 1) is constant.
Let =t t t t t t( ) ( ( ), ( ), ( ), ( ), ( ))1 2 3 4 5 be a curve in 1

5 denoted
by

=
=
=
=
=

t t
t t t
t t t
t t t
t t t

( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),

1

2 1

3 2

4 3

5 4

with the Minkowski scalar product of tangent vector V1 of with the
null vector =U (0, 1, 0, 0, 1) is constant (equal to the corresponding of
), where t( ) is a real valued function. Therefore, we have the dif-

ferential equation

=g V t U( ( ), ) 1.1

By solving this differential equation, we find

=
+

+ +t c
t t

t t t t t t( )
16 15 180

1, , 1
2

, 1
3

, 1
10

1
66 4

2 3 5 3

where c {0}.
The curve is a timelike helix with null axis

=U (0, 1, 0, 0, 1).

We can similarly construct timelike helices in upper dimensions.
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