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1 Introduction

Norm inequalities for several classical operators of harmonic analysis havebeenwidely
studied in the context of Orlicz spaces. It is well known that many of such operators
fail to have continuity properties when they act between certain Lebesgue spaces and,
in some situations, the Orlicz spaces appear as adequate substitutes. For example, the
Hardy-Littlewood maximal operator is bounded on L p for 1 < p < ∞, but not on L1,
but using Orlicz spaces, we can investigate the boundedness of the maximal operator
near p = 1, see [3,5,6,9] for more precise statements.

Let T be the classical singular integral operator, the commutator [b, T ] generated
by T and a suitable function b is given by

[b, T ] f = bT ( f ) − T (b f ). (1.1)

A well known result due to Coifman, Rochberg and Weiss [2] (see e.g. [8]) states
that b ∈ BMO(Rn) if and only if the commutator [b, T ] is bounded on L p(Rn)

for 1 < p < ∞. In 1978, Janson [8] gave some characterizations of the Lipschitz
space �̇β(Rn) (see Definition 4.1 below) via commutator [b, T ] and proved that b ∈
�̇β(Rn)(0 < β < 1) if and only if [b, T ] is bounded from L p(Rn) to Lq(Rn) where
1 < p < n/β and 1/p − 1/q = β/n (see also Paluszyński [11]).

Let 0 < α < n. The fractional maximal operator Mα is given by

Mα f (x) = sup
B�x

|B|−1+ α
n

∫
B

| f (y)|dy

and the fractional maximal commutator of Mα with a locally integrable function b is
defined by

Mb,α f (x) = sup
B�x

|B|−1+ α
n

∫
B

|b(x) − b(y)|| f (y)|dy,

where the supremum is taken over all balls B ⊂ R
n containing x . If α = 0, then

M ≡ M0 is the Hardy-Littlewood maximal operator and Mb ≡ Mb,0 is the maximal
commutator of M .

On the other hand, similar to (1.1), we can define the (nonlinear) commutator of
the fractional maximal operator Mα with a locally integrable function b by

[b, Mα]( f )(x) f = b(x)Mα( f )(x) − Mα(b f )(x).

For more details about the operators Mb,α and [b, Mα], where 0 ≤ α < n, we refer to
[1,13] and references therein.

Our main aim is to characterize the functions involved in the boundedness on Orlicz
spaces of the fractional maximal operator Mα . Actually, such a characterization was
done in [3, Theorem 1]. But our technique of the proof and characterization different
from the ones in [3]. As an application of this result we consider the boundedness of
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Mb,α and [b, Mα] on Orlicz spaces when b belongs to the Lipschitz space, by which
some new characterizations of the Lipschitz spaces are given.

Throughout the whole paper, the notation A � B means that there exists a constant
C > 0 such that A ≤ CB, where C is independent of appropriate quantities. If
C1B ≤ A ≤ C2B for some positive constants C1 and C2, we shall write A ≈ B.

2 Preliminaries

Before we proceed with the proofs of the main results, we shall introduce some pre-
liminary denitions and properties concerning Orlicz spaces.

Definition 2.1 A function � : [0,∞) → [0,∞] is called a Young function if � is
convex, left-continuous, limr→+0 �(r) = �(0) = 0 and limr→∞ �(r) = ∞.

From the convexity and �(0) = 0 it follows that any Young function is increasing.
The set of Young functions such that

0 < �(r) < ∞ for 0 < r < ∞

will be denoted by Y . If � ∈ Y , then � is absolutely continuous on every closed
interval in [0,∞) and bijective from [0,∞) to itself.

For a Young function � and 0 ≤ s ≤ ∞, let

�−1(s) = inf{r ≥ 0 : �(r) > s}.

If � ∈ Y , then �−1 is the usual inverse function‘ of �. It is well known that

r ≤ �−1(r)�̃−1(r) ≤ 2r, r ≥ 0, (2.1)

where �̃(r) is defined by

�̃(r) =
{
sup{rs − �(s) : s ∈ [0,∞)}, r ∈ [0,∞)

∞, r = ∞.

A Young function � is said to satisfy the �2-condition, denoted also as � ∈ �2,
if

�(2r) ≤ C�(r), r ≥ 0

for some C ≥ 2. If � ∈ �2, then � ∈ Y . A Young function � is said to satisfy the
∇2-condition, denoted also by � ∈ ∇2, if

�(r) ≤ 1

2C
�(Cr), r ≥ 0

for some C > 1. We can verify the following examples: The function �(r) = r
satisfies the �2-condition but does not satisfy the ∇2-condition. If 1 < p < ∞, then
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�(r) = r p satisfies both the conditions. The function �(r) = er − r − 1 satisfies the
∇2-condition but does not satisfy the �2-condition.

Definition 2.2 (Orlicz Space). For a Young function �, the set

L�(Rn) =
{
f ∈ L1

loc(R
n) :

∫
Rn

�(k| f (x)|)dx < ∞ for some k > 0

}

is called Orlicz space. If �(r) = r p, 1 ≤ p < ∞, then L�(Rn) = L p(Rn). If
�(r) = 0, (0 ≤ r ≤ 1) and �(r) = ∞, (r > 1), then L�(Rn) = L∞(Rn). The
space L�

loc(R
n) is defined as the set of all functions f such that f χB ∈ L�(Rn) for

all balls B ⊂ R
n .

L�(Rn) is a Banach space with respect to the norm

‖ f ‖L� = inf

{
λ > 0 :

∫
Rn

�
( | f (x)|

λ

)
dx ≤ 1

}
.

For ameasurable set	 ⊂ R
n , a measurable function f and t > 0, letm(	, f, t) =

|{x ∈ 	 : | f (x)| > t}|. In the case 	 = R
n , we shortly denote it by m( f, t).

Definition 2.3 The weak Orlicz space

WL�(Rn) = { f ∈ L1
loc(R

n) : ‖ f ‖WL� < ∞}

is defined by the norm

‖ f ‖WL� = inf
{
λ > 0 : sup

t>0
�(t)m

( f

λ
, t

)
≤ 1

}
.

We note that ‖ f ‖WL� ≤ ‖ f ‖L� ,

sup
t>0

�(t)m(	, f, t) = sup
t>0

t m(	, f, �−1(t)) = sup
t>0

t m(	, �(| f |), t)

and
∫

	

�
( | f (x)|
‖ f ‖L�(	)

)
dx ≤ 1, sup

t>0
�(t)m

(
	,

f

‖ f ‖WL�(	)

, t
)

≤ 1, (2.2)

where ‖ f ‖L�(	) = ‖ f χ	‖L� and ‖ f ‖WL�(	) = ‖ f χ	‖WL� .
The following analogue of the Hölder’s inequality is well known (see, for example,

[12]).

Theorem 2.4 Let 	 ⊂ R
n be a measurable set and functions f and g measurable on

	. For a Young function� and its complementary function �̃, the following inequality
is valid

∫
	

| f (x)g(x)|dx ≤ 2‖ f ‖L�(	)‖g‖L�̃(	)
.
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By elementary calculations we have the following property.

Lemma 2.5 Let � be a Young function and B be a set in R
n with finite Lebesgue

measure. Then

‖χB‖L� = ‖χB‖WL� = 1

�−1
(|B|−1

) .

By Theorem 2.4, Lemma 2.5 and (2.1) we get the following estimate.

Lemma 2.6 For a Young function � and B = B(x, r), the following inequality is
valid:

∫
B

| f (y)|dy ≤ 2|B|�−1
(
|B|−1

)
‖ f ‖L�(B).

3 The boundedness of fractional maximal operator

In this section, we shall give a necessary and sufficient condition for the boundedness
of Mα on Orlicz spaces and weak Orlicz spaces. We begin with the boundedness of
the maximal operator on Orlicz spaces.

Theorem 3.1 [10] Let � be a Young function.

(i) The operator M is bounded from L�(Rn) to W L�(Rn), and the inequality

‖M f ‖WL� ≤ C0‖ f ‖L� (3.1)

holds with constant C0 independent of f .
(ii) The operator M is bounded on L�(Rn), and the inequality

‖M f ‖L� ≤ C0‖ f ‖L� (3.2)

holds with constant C0 independent of f if and only if � ∈ ∇2.

We recall that, for functions � and 
 from [0,∞) into [0,∞], the function 
 is said
to dominate � globally if there exists a positive constant c such that �(s) ≤ 
(cs)
for all s ≥ 0.

In the theorem below we also use the notation


̃P (s) =
∫ s

0
r P

′−1(B−1
P (r P

′
))P

′
dr, (3.3)

where 1 < P ≤ ∞ and 
̃P (s) is the Young conjugate funtion to
P (s), whereB−1
P (s)

is inverses to

BP (s) =
∫ s

0


(t)

t1+P ′ dt.

In [3], Cianchi found the necessary and sufficient conditions for the boundedness
of Mα on Orlicz spaces.



170 V. S. Guliyev et al.

Theorem 3.2 Let 0 < α < n.

(i) Mα is bounded from L�(Rn) to W L
(Rn) if and only if

� dominates globally the function Q, (3.4)

whose inverse is given by

Q−1(r) = rα/n
−1(r).

(ii) Mα is bounded from L�(Rn) to L
(Rn) if and only if

∫ 1

0


(t)

t1+n/(n−α)
dt < ∞ and �dominatesgloballythefunction
n/α. (3.5)

Here, 
n/α is the Young function defined as in (3.3).

In order to prove our main theorem, we also need the following lemma.

Lemma 3.3 If B0 := B(x0, r0), then |B0| α
n ≤ MαχB0(x) for every x ∈ B0.

Proof For x ∈ B0, we get

MαχB0(x) = sup
B�x

|B|−1+ α
n |B ∩ B0| ≥ |B0|−1+ α

n |B0 ∩ B0| = |B0| α
n .

��
The following result completely characterizes the boundedness of Mα on Orlicz

spaces.

Theorem 3.4 Let 0 < α < n, �,
 be Young functions and � ∈ Y . The condition

r− α
n �−1(r) ≤ C
−1(r) (3.6)

for all r > 0, where C > 0 does not depend on r, is necessary and sufficient for the
boundedness of Mα from L�(Rn) to W L
(Rn). Moreover, if � ∈ ∇2, the condition
(3.6) is necessary and sufficient for the boundedness of Mα from L�(Rn) to L
(Rn).

Proof For arbitrary ball B = B(x, r) we represent f as

f = f1 + f2, f1(y) = f (y)χ2B(y), f2(y) = f (y)χ �
(2B)

(y), r > 0,

and have

Mα f (x) = Mα f1(x) + Mα f2(x).

Let y be an arbitrary point in B. If B(y, t) ∩ �
(B(x, 2r)) �= ∅, then t > r . Indeed,

if z ∈ B(y, t) ∩ �
(B(x, 2r)), then t > |y − z| ≥ |x − z| − |x − y| > 2r − r = r .
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On the other hand, B(y, t) ∩ �
(B(x, 2r)) ⊂ B(x, 2t). Indeed, if z ∈ B(y, t) ∩

�
(B(x, 2r)), then we get |x − z| ≤ |y − z| + |x − y| < t + r < 2t .
Hence by Lemma 2.6

Mα f2(y) � sup
t>0

1

|B(y, t)|1− α
n

∫
B(y,t)∩ �

(B(x,2r))
| f (z)|dz

� sup
t>2r

1

|B(x, t)|1− α
n

∫
B(x,t)

| f (z)|dz

� ‖ f ‖L� sup
r<t<∞

tα �−1(|B(x, t)|−1).

Consequently from Hedberg’s trick, see [7], and the last inequality, we have

Mα f (y) � rαM f (y) + ‖ f ‖L� sup
r<t<∞

tα �−1(t−n).

Thus, by (3.6) we obtain

|Mα f (x)| � M f (x)

−1(r−n)

�−1(r−n)
+ ‖ f ‖L� 
−1(r−n).

Choose r > 0 so that �−1(r−n) = M f (x)
C0‖ f ‖L�

. Then


−1(r−n)

�−1(r−n)
=

(
−1 ◦ �)(
M f (x)

C0‖ f ‖L�
)

M f (x)
C0‖ f ‖L�

.

Therefore, we get

|Mα f (x)| ≤ C1‖ f ‖L�(
−1 ◦ �)
( M f (x)

C0‖ f ‖L�

)
.

Let C0 be as in (3.1). Then by Theorem 3.1, we have

sup
r>0


(r)m
(
B,

|Mα f (x)|
C1‖ f ‖L�

, r
)

= sup
r>0

r m
(
B, 


( |Mα f (x)|
C1‖ f ‖L�

)
, r

)

≤ sup
r>0

r m
(
B,�

( M f (x)

C0‖ f ‖L�

)
, r

)
≤ sup

r>0
�(r)m

( M f (x)

‖M f ‖WL�

, r
)

≤ 1,

i.e.
‖Mα f ‖WL
(B) � ‖ f ‖L�. (3.7)

By taking supremum over B in (3.7), we get

‖Mα f ‖WL
 � ‖ f ‖L�,
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since the constants in (3.7) don’t depend on x and r .
Let C0 be as in (3.2). Since � ∈ ∇2, by Theorem 3.1, we have

∫
B




( |Mα f (x)|
C1‖ f ‖L�

)
dx ≤

∫
B

�

(
M f (x)

C0‖ f ‖L�

)
dx ≤

∫
Rn

�

(
M f (x)

‖M f ‖L�

)
dx ≤ 1,

i.e.
‖Mα f ‖L
(B) � ‖ f ‖L�. (3.8)

By taking supremum over B in (3.8), we get

‖Mα f ‖L
 � ‖ f ‖L�,

since the constants in (3.8) don’t depend on x and r .
We shall now prove the necessity. Let B0 = B(x0, r0) and x ∈ B0. By Lemma 3.3,

we have rα
0 ≤ CMαχB0(x). Therefore, by Lemma 2.5, we have

rα
0 � 
−1(|B0|−1)‖MαχB0‖WL
(B0) � 
−1(|B0|−1)‖MαχB0‖WL


� 
−1(|B0|−1)‖χB0‖L� � 
−1(r−n
0 )

�−1(r−n
0 )

and

rα
0 � 
−1(|B0|−1)‖MαχB0‖L
(B0) � 
−1(|B0|−1)‖MαχB0‖L


� 
−1(|B0|−1)‖χB0‖L� � 
−1(r−n
0 )

�−1(r−n
0 )

.

Since this is true for every r0 > 0, we are done. ��
We recover the following well known result by taking �(t) = t p at Theorem 3.4.

Corollary 3.5 Let 0 < α < n and 1 ≤ p ≤ n/α. Then the condition 1/q = 1/p
−α/n is necessary and sufficient for the boundedness of Mα from L p(Rn) toW Lq(Rn)

and for p > 1 from L p(Rn) to Lq(Rn).

From Theorems 3.2 and 3.4 we have the following corollary.

Corollary 3.6 Let 0 < α < n, �,
 be Young functions and � ∈ Y , then:

(1) Condition (3.4) holds if and only if condition (3.6) holds.
(2) Moreover if � ∈ ∇2, then condition (3.5) holds if and only if (3.6) holds.

4 Characterization of Lipschitz spaces via commutators

In this section, as an application of Theorem 3.4 we consider the boundedness of Mb,α

and [b, Mα] on Orlicz spaces when b belongs to the Lipschitz space, by which some
new characterizations of the Lipschitz spaces are given.
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Definition 4.1 Let 0 < β < 1, we say a function b belongs to the Lipschitz space
�̇β(Rn) if there exists a constant C such that for all x, y ∈ R

n ,

|b(x) − b(y)| ≤ C |x − y|β.

The smallest such constant C is called the �̇β(Rn) norm of b and is denoted by
‖b‖�̇β (Rn).

To prove the theorems, we need auxiliary results. The first one is the following
characterizations of Lipschitz space, which is due to DeVore and Sharply [4].

Lemma 4.2 Let 0 < β < 1, we have

‖ f ‖�̇β (Rn) ≈ sup
B

1

|B|1+β/n

∫
B

| f (x) − fB |dx,

where fB = 1
|B|

∫
B f (y)dy.

Lemma 4.3 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n and b ∈ �̇β(Rn), then the
following pointwise estimate holds:

Mb,α f (x) ≤ C‖b‖�̇β (Rn)Mα+β f (x).

Proof If b ∈ �̇β(Rn), then

Mb,α( f )(x) = sup
B�x

|B|−1+ α
n

∫
B

|b(x) − b(y)|| f (y)|dy

≤ C‖b‖�̇β (Rn) sup
B�x

|B|−1+ α+β
n

∫
B

| f (y)|dy
= C‖b‖�̇β (Rn)Mα+β f (x).

��
Lemma 4.4 If b ∈ L1

loc(R
n) and B0 := B(x0, r0), then

|B0| α
n |b(x) − bB0 | ≤ Mb,αχB0(x) for every x ∈ B0.

Proof For x ∈ B0, we get

Mb,αχB0(x) = sup
B�x

|B|−1+ α
n

∫
B

|b(x) − b(y)|χB0(y)dy

= sup
B�x

|B|−1+ α
n

∫
B∩B0

|b(x) − b(y)|dy ≥ |B0|−1+ α
n

∫
B0∩B0

|b(x) − b(y)|dy

≥ ∣∣|B0|−1+ α
n

∫
B0

(b(x) − b(y))dy
∣∣ = |B0| α

n |b(x) − bB0 |.

��
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The following theorem is valid.

Theorem 4.5 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n, b ∈ L1
loc(R

n), �,
 be
Young functions and � ∈ Y .

1. If � ∈ ∇2 and the condition

t−
α+β
n �−1(t) ≤ C
−1(t), (4.1)

holds for all t > 0, where C > 0 does not depend on t, then the condition
b ∈ �̇β(Rn) is sufficient for the boundedness of Mb,α from L�(Rn) to L
(Rn).

2. If the condition


−1(t) ≤ C�−1(t)t−
α+β
n , (4.2)

holds for all t > 0, where C > 0 does not depend on t, then the condition
b ∈ �̇β(Rn) is necessary for the boundedness of Mb,α from L�(Rn) to L
(Rn).

3. If � ∈ ∇2 and 
−1(t) ≈ �−1(t)t−
α+β
n , then the condition b ∈ �̇β(Rn) is

necessary and sufficient for the boundedness of Mb,α from L�(Rn) to L
(Rn).

Proof (1) The first statement of the theorem follows from Theorem 3.4 and Lemma
4.3.

(2) We shall now prove the second part. Suppose that 
−1(t) � �−1(t)t−(α+β)/n

and Mb,α is bounded from L�(Rn) to L
(Rn). Choose any ball B in R
n , by

Lemmas 2.5 and 2.6

1

|B|1+ β
n

∫
B

|b(y) − bB |dy = 1

|B|1+ α+β
n

∫
B

∣∣∣ 1

|B|1− α
n

∫
B
(b(y) − b(z))dz

∣∣∣dy

≤ 1

|B|1+ α+β
n

∫
B
Mb,a

(
χB

)
(y)dy

≤ 2
−1(|B|−1)

|B| α+β
n

‖Mb,α
(
χB

)‖L
(B)

≤ C

|B| α+β
n


−1(|B|−1)

�−1(|B|−1)
≤ C.

Thus by Lemma 4.2 we get b ∈ �̇β(Rn).
(3) The third statement of the theorem follows from the first and second parts of the

theorem.
��

If we take α = 0 at Theorem 4.5, we have the following result.

Corollary 4.6 Let 0 < β < 1, b ∈ L1
loc(R

n), �,
 be Young functions and � ∈ Y .

1. If � ∈ ∇2 and the condition �−1(t)t−β/n � 
−1(t) holds, then the condition
b ∈ �̇β(Rn) is sufficient for the boundedness of Mb from L�(Rn) to L
(Rn).

2. If 
−1(t) � �−1(t)t−β/n, then the condition b ∈ �̇β(Rn) is necessary for the
boundedness of Mb from L�(Rn) to L
(Rn).
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3. If � ∈ ∇2 and 
−1(t) ≈ �−1(t)t−β/n, then the condition b ∈ �̇β(Rn) is
necessary and sufficient for the boundedness of Mb from L�(Rn) to L
(Rn).

If we take �(t) = t p and 
(t) = tq with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ at Theorem
4.5, we have the following result.

Corollary 4.7 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n, b ∈ L1
loc(R

n),

1 < p < q ≤ ∞ and 1
p − 1

q = α+β
n . Then the condition b ∈ �̇β(Rn) is necessary

and sufficient for the boundedness of Mb,α from L p(Rn) to Lq(Rn).

Remark 4.8 For α = 0, Corollary 4.7 was proved in [15].

The following theorem is valid.

Theorem 4.9 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n, b ∈ L1
loc(R

n), �,
 be
Young functions and � ∈ Y .

1. If condition (4.1) holds, then the condition b ∈ �̇β(Rn) is sufficient for the
boundedness of Mb,α from L�(Rn) to W L
(Rn).

2. If condition (4.2) holds and t1+ε


(t) is almost decreasing for some ε > 0, then the

condition b ∈ �̇β(Rn) is necessary for the boundedness of Mb,α from L�(Rn) to
W L
(Rn).

3. If 
−1(t) ≈ �−1(t)t−(α+β)/n and t1+ε


(t) is almost decreasing for some ε > 0,

then the condition b ∈ �̇β(Rn) is necessary and sufficient for the boundedness of
Mb,α from L�(Rn) to W L
(Rn).

Proof (1) The first statement of the theorem follows from Theorem 3.4 and Lemma
4.3.

(2) For any fixed ball B0 such that x ∈ B0 by Lemma 4.4 we have |B0|α/n|b(x) −
bB0 | ≤ Mb,αχB0(x). This together with the boundedness of Mb,α from L�(Rn)

to WL
(Rn) and Lemma 2.5

|{x ∈ B0 : |B0|α/n|b(x) − bB0 | > λ}| ≤ |{x ∈ B0 : Mb,αχB0(x) > λ}|
≤ 1



(

λ
C‖χB0‖L�

) = 1



(

λ�−1(|B0|−1)
C

) .

Let t > 0 be a constant to be determined later, then

∫
B0

|b(x) − bB0 |dx = |B0|−α/n
∫ ∞

0
|{x ∈ B0 : |b(x) − bB0 | > |B0|−α/nλ}|dλ

= |B0|−α/n
∫ t

0
{x ∈ B0 : |b(x) − bB0 | > |B0|−α/nλ}|dλ

+ |B0|−α/n
∫ ∞

t
|{x ∈ B0 : |b(x) − bB0 | > |B0|−α/nλ}|dλ

≤ t |B0|1−α/n + |B0|−α/n
∫ ∞

t

1



(

λ�−1(|B0|−1)
C

)dλ
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� t |B0|1−α/n + |B0|−α/nt



(
t�−1(|B0|−1)

C

) ,

where we use almost decreasingness of t1+ε


(t) in the last step. Set t = C |B0| α+β
n in

the above estimate, we have

∫
B0

|b(x) − bB0 |dx � |B0|1+β/n .

Thus by Lemma 4.2 we get b ∈ �̇β(Rn) since B0 is an arbitrary ball in R
n .

(3) The third statement of the theorem follows from the first and second parts of the
theorem.

If we take α = 0 at Theorem 4.9, we have the following result.

Corollary 4.10 Let 0 < β < 1, b ∈ L1
loc(R

n), �,
 be Young functions and � ∈ Y .

1. If the condition �−1(t)t−β/n � 
−1(t) holds, then the condition b ∈ �̇β(Rn)

is sufficient for the boundedness of Mb from L�(Rn) to W L
(Rn).

2. If 
−1(t) � �−1(t)t−β/n and t1+ε


(t) is almost decreasing for some ε > 0, then

the condition b ∈ �̇β(Rn) is necessary for the boundedness of Mb from L�(Rn)

to W L
(Rn).
3. If 
−1(t) ≈ �−1(t)t−β/n and t1+ε


(t) is almost decreasing for some ε > 0, then

the condition b ∈ �̇β(Rn) is necessary and sufficient for the boundedness of Mb

from L�(Rn) to W L
(Rn).

If we take �(t) = t p and 
(t) = tq with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ at Theorem
4.9, we have the following result.

Corollary 4.11 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n, b ∈ L1
loc(R

n),

1 ≤ p < q ≤ ∞ and 1
p − 1

q = α+β
n . Then the condition b ∈ �̇β(Rn) is necessary

and sufficient for the boundedness of Mb,α from L p(Rn) to W Lq(Rn).

Remark 4.12 For α = 0, Corollary 4.11 was proved in [15].

To state our results, we recall the definition of the maximal operator with respect
to a ball. For a fixed ball B0, the fractional maximal function with respect to B0 of a
function f is given by

Mα,B0( f )(x) = sup
B0⊇B�x

1

|B0|1− α
n

∫
B

| f (y)|dy, 0 ≤ α < n,

where the supremum is taken over all the balls B with B ⊆ B0 and x ∈ B.

Theorem 4.13 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n and b be a locally
integrable non-negative function. Suppose that �,
 be Young functions, � ∈ Y ∩∇2

and 
−1(t) ≈ �−1(t)t−
α+β
n . Then the following statements are equivalent:
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1. b ∈ �̇β(Rn).
2. [b, Mα] is bounded from L�(Rn) to L
(Rn).
3. There exists a constant C > 0 such that

sup
B

|B|−β/n
−1(|B|−1)‖b(·) − |B|−α/nMα,B(b)(·)‖L
(B) ≤ C. (4.3)

Proof (1) ⇒ (2): The following estimate was proved in [14]. Let b be any non-
negative locally integrable function. Then

|[b, Mα]( f )(x)| ≤ Mb,α( f )(x), x ∈ R
n (4.4)

holds for all f ∈ L1
loc(R

n).
It follows from (4.4) and Theorem 4.5 that [b, Mα] is bounded from L�(Rn) to

L
(Rn) since b ∈ �̇β(Rn).
(2) ⇒ (3): For any fixed ball B ⊂ R

n and all x ∈ B, we have (see (2.4) in [13]).

Mα(χB)(x) = |B|α/n and Mα(bχB)(x) = Mα,B(b)(x).

Then,

|B|−β/n
−1(|B|−1)‖b(·) − |B|−α/nMα,B(b)(·)‖L
(B)

= |B|− α+β
n 
−1(|B|−1)‖b(·)Mα(χB)(·) − Mα(bχB)(·)‖L
(B)

= |B|− α+β
n 
−1(|B|−1)‖[b, Mα](χB)‖L
(B) (4.5)

≤ C |B|− α+β
n 
−1(|B|−1)‖χB‖L�

≤ C

which implies (3) since the ball B ⊂ R
n is arbitrary.

(3) ⇒ (1): From [14] we have,

1

|B|1+ β
n

∫
B

|b(x) − bB |dx ≤ 2

|B|1+ β
n

∫
B

|b(x) − |B|−α/nMα,B(b)(x)|dx .

it follows from Lemma 2.6 and (4.3) that

1

|B|1+ β
n

∫
B

|b(x) − bB |dx ≤ 4

|B| β
n


−1(|B|−1)‖b(·) − |B|−α/nMα,B(b)(·)‖L
(B) ≤ C.

Thus by Lemma 4.2 we get b ∈ �̇β(Rn). ��
If we take α = 0 at Theorem 4.13, we have the following result.

Corollary 4.14 Let 0 < β < 1 and b be a locally integrable non-negative function.

Suppose that �,
 be Young functions, � ∈ Y ∩ ∇2 and 
−1(t) ≈ �−1(t)t−
β
n . Then

the following statements are equivalent:
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1. b ∈ �̇β(Rn).
2. [b, M] is bounded from L�(Rn) to L
(Rn).
3. There exists a constant C > 0 such that

sup
B

|B|−β/n
−1(|B|−1)‖b(·) − MB(b)(·)‖L
(B) ≤ C.

If we take �(t) = t p and 
(t) = tq with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ at Theorem
4.13, we have the following result.

Corollary 4.15 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n, b ∈ L1
loc(R

n), b be a

locally integrable non-negative function, 1 < p < q ≤ ∞ and 1
p − 1

q = α+β
n . Then

the following statements are equivalent:

1. b ∈ �̇β(Rn).
2. [b, Mα] is bounded from L p(Rn) to Lq(Rn).
3. There exists a constant C > 0 such that

sup
B

1

|B|β/n

(
1

|B|
∫
B

|b(x) − |B|−α/nMα,B(b)(x)|qdx
)1/q

≤ C.

Remark 4.16 For α = 0, Corollary 4.15 was proved in [15].

Remark 4.17 From the proof of Theorem4.13 one can see that the assumption b ≥ 0 is
not used in (2) ⇒ (3) and (3) ⇒ (1). This means (2) and (3) are sufficient conditions
for b ∈ �̇β(Rn). But we don’t know if (2) and (3) are necessary for b ∈ �̇β(Rn).

Indeed, we have obtained the following result.

Corollary 4.18 Let 0 < β < 1, 0 ≤ α < n, 0 < α + β < n and b be a locally
integrable function. Suppose that�,
 be Young functions,� ∈ Y∩∇2 and
−1(t) ≈

�−1(t)t−
α+β
n . If one of the following statements is true, then b ∈ �̇β(Rn):

1. [b, Mα] is bounded from L�(Rn) to L
(Rn).
2. There exists a constant C > 0 such that

sup
B

|B|−β/n
−1(|B|−1)‖b(·) − |B|−α/nMα,B(b)(·)‖L
(B) ≤ C.

Theorem 4.19 Let b ≥ 0 be a locally integrable function, 0 < β < 1, 0 ≤ α < n,
0 < α + β < n and b ∈ �̇β(Rn). Suppose that �,
 be Young functions, � ∈ Y and
condition (4.1) holds. Then [b, Mα] is bounded from L�(Rn) to W L
(Rn).

Proof Obviously, it follows from (4.4) and Theorem 4.9. ��
If we take �(t) = t p and 
(t) = tq with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ at Theorem

4.19, we have the following result.

Corollary 4.20 Let b ≥ 0 be a locally integrable function, 0 < β < 1, 0 ≤ α < n,
0 < α + β < n, b ∈ �̇β(Rn), 1 ≤ p < q ≤ ∞ and 1

p − 1
q = α+β

n . Then [b, Mα] is
bounded from L p(Rn) to W Lq(Rn).

Remark 4.21 For α = 0, Corollary 4.20 was proved in [15].
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