Mediterranean Journal of Mathematics



# **On Medium \*-Clean Rings**

Huanyin Chen, Marjan Sheibani Abdolyousefi and Handan Kose

**Abstract.** A \*-ring R is called a medium \*-clean ring if every element in R is the sum or difference of an element in its Jacobson radical and a projection that commute. We prove that a ring R is medium \*-clean if and only if R is strongly \*-clean and R/J(R) is a Boolean ring,  $\mathbb{Z}_3$  or the product of such rings, if and only if R weakly J-\*-clean and  $a^2 \in R$  is uniquely \*-clean for all  $a \in R$ , if and only if every idempotent lifts modulo J(R), R is abelian and R/J(R) weakly \*-Boolean. A subclass of medium \*-clean rings with many nilpotents is thereby characterized.

Mathematics Subject Classification. Primary 16W10; Secondary 16E50. Keywords. Projection, Jacobson radical, homomorphic image, \*-clean ring.

# 1. Introduction

Throughout, all rings are associative with an identity. An involution of a ring R is an operation  $*: R \to R$  such that  $(x + y)^* = x^* + y^*$ ,  $(xy)^* = y^*x^*$  and  $(x^*)^* = x$  for all  $x, y \in R$ . A ring R with involution \* is called a \*-ring. For general \*-ring theory, we refer the reader [2]. An element e in a \*-ring R is called a projection if  $e = e^* = e^2$ . Recently, the concepts of clean rings are considered for any \*-ring. A \*-ring R is strongly \*-clean if every element in R is the sum of a unit and a projection [6,9] and [12]. A \*-ring R is weakly J-\*-clean if every element in R is the sum of difference of an element in its Jacobson radical and a projection. Such rings are the natural generalizations of weakly nil-clean rings (see [1,11]). The motivation of this paper is to explore the structure of certain weakly J-\*-clean rings and obtain the relations to other closed classes.

A \*-ring R is called a medium \*-clean ring if every element of R is the sum or difference of an element in its Jacobson radical and a projection that commute. Clearly, {strongly J-\*-clean rings}  $\subset$  {medium \*-clean rings}  $\subset$  {weakly J-\*-clean rings}. Here, a \*-ring R is strongly J-\*-clean if every element is the sum of a projection and a unit that commute. We shall prove that medium \*-clean rings and abelian weakly J-\*-clean rings coincide with each other. We show that a \*-ring R is medium \*-clean if and only if R is strongly \*-clean and R/J(R) is a Boolean ring,  $\mathbb{Z}_3$  or the product of such rings, if and only if R weakly J-\*-clean and  $a^2 \in R$  is uniquely \*-clean for all  $a \in R$ , if and only if every idempotent lifts modulo J(R), R is abelian and R/J(R) weakly \*-Boolean. A subclass of medium \*-clean rings with many nilpotents is characterized in terms of medium \*-cleanness. These completely determine the structure of \*-clean rings involving their Jacobson radicals.

We use N(R) to denote the set of all nilpotent elements in R and J(R) the Jacobson radical of R.  $\mathbb{N}$  stands for the set of all natural numbers.

## 2. Medium \*-Clean Rings

The main purpose of this section is to explore some elementary properties of medium \*-clean rings. Our starting point is the following.

Lemma 2.1. Every medium \*-clean rings is abelian.

Proof. Let R be a medium \*-clean ring, and let  $e \in R$  be an idempotent. Then, we can find a projection f and a  $w \in J(R)$  such that e = f + w or e = -f + w with fw = wf. If e = f + w, then  $e - f \in J(R)$ . As  $(e - f)^3 = e - f$ , we see that  $(e - f)(1 - (e - f)^2) = 0$ , and so e = f. If e = -f + w, then  $e + f \in J(R)$ . As (e - f)(e + f) = e - f, we see that (e - f)(1 - (e + f)) = 0. This implies that e = f. Therefore,  $e \in R$  is a projection. Therefore, R is abelian, in terms of [9, Lemma 2.1].

**Theorem 2.2.** Let R be a \*-ring. Then, the following are equivalent:

- (1) R is medium \*-clean.
- (2) R is abelian weakly J-\*-clean.
- (3) R is strongly \*-clean and weakly J-clean.

*Proof.* (1)  $\Rightarrow$  (3) Clearly, R is weakly J-clean. Let  $a \in R$ . Then, there exists a projection  $e \in R$  such that a = e + w or -e + w,  $w \in J(R)$  and ew = we. If a = -e+w, then a = (1-e)+(w-1),  $w-1 \in U(R)$ ,  $(1-e)^2 = 1-e = (1-e)^*$ , (1-e)(w-1) = (w-1)(1-e). So  $a \in R$  is strongly \*-clean. If a = e + w, then a = (1-e) + (2e-1)[1 + (2e-1)w]. Since  $w \in J(R)$ , we see that  $1 + (2e-1)w \in U(R)$  and  $(1-e)^2 = 1-e = (1-e)^*$ . So  $a \in R$  is strongly \*-clean, as desired.

 $(3) \Rightarrow (2)$  In light of [9, Theorem 2.2], R is abelian and every idempotent of R is a projection. Thus, R is weakly J-\*-clean. (2)  $\Rightarrow$  (1) This is obvious.

Example. Let  $R = \mathbb{Z}_2 \times \mathbb{Z}_2$ . Define  $\sigma : R \to R$  by  $\sigma(x, y) = (y, x)$ . Consider the ring  $T_2(R, \sigma) = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in R \right\}$  with the following operations:  $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} + \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ 0 & a + c \end{pmatrix}, \quad \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \cdot \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} ac & ad + b\sigma(c) \\ 0 & ac \end{pmatrix}$ . Define  $*: T_2(R, \sigma) \to T_2(R, \sigma)$  by  $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^* = \begin{pmatrix} a & \sigma(b) \\ 0 & a \end{pmatrix}$ . Then,  $T_2(R, \sigma)$  is weakly J-\*-clean, but it is not medium \*-clean. *Proof.* Let  $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in T_2(R, \sigma)$ . Then,  $E = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$  is a projection. Further,  $A - E = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in J(T_2(R, \sigma))$ . Therefore,  $T_2(R, \sigma)$  is weakly J-\*-clean.

Let  $A = \begin{pmatrix} (0,1) & (0,0) \\ (0,0) & (0,1) \end{pmatrix}$ . We check that  $A^2 = A \in T_2(R,\sigma)$  is not central, and so  $T_2(R,\sigma)$  is not abelian. Therefore, by Theorem 2.2 the ring  $T_2(R,\sigma)$  is not medium \*-clean.

**Theorem 2.3.** Let  $L = \prod_{i \in I} R_i$  be the direct product of \*-rings  $R_i$  and  $|I| \ge 2$ . Then, the following are equivalent:

- (1) L is medium \*-clean;
- (2) Each  $R_i$  is medium \*-clean and at most one is not strongly J-\*-clean.

*Proof.*  $\Longrightarrow$  Obviously, each  $R_i$  is medium \*-clean. Suppose  $R_{i_1}$  and  $R_{i_2}(i_1 \neq i_2)$  are not strongly J-\*-clean. Then, there exist some  $x_{i_j} \in R_{i_j}(j = 1, 2)$  such that  $x_{i_1} \in R_{i_1}$  and  $-x_{i_2} \in R_{i_2}$  are not strongly J-\*-clean. Choose  $x = (x_i)$  where  $x_i = 0$  whenever  $i \neq i_j (j = 1, 2)$ . Then, x and -x are both not strongly J-\*-clean. This gives a contradiction. Therefore, each  $R_i$  is a medium \*-clean and at most one is not strongly J-\*-clean.

 $\Leftarrow$  Suppose that  $R_{i_0}$  is medium \*-clean and all the others  $R_i$  are strongly J-\*-clean. Then,  $\prod_{i \neq i_0} R_i$  is strongly J-\*-clean (see [4]). We directly check that R is medium \*-clean.

**Corollary 2.4.** Let  $L = \prod_{i \in I} R_i$  be the direct product of \*-rings  $R_i \cong R$  and  $|I| \ge 2$ . Then, the following are equivalent:

- (1) L is medium \*-clean;
- (2) L is strongly J-\*-clean.
- (3) R is strongly J-\*-clean.

*Proof.* (1)  $\Rightarrow$  (3) Since L is medium \*-clean, it follows by Theorem 2.4 that R is strongly J-\*-clean.

 $(3) \Rightarrow (2)$  Straightforward.

 $(2) \Rightarrow (1)$  This is trivial.

We come now to record the strongly weak J-\*-cleanness for some related rings.

**Proposition 2.5.** Let R be medium \*-clean, and let  $e \in R$  be an idempotent. Then, eRe is medium \*-clean.

*Proof.* Let R be medium \*-clean ring, and let  $e \in R$  be an idempotent. In view of Theorem 2.2, R is strongly \*-clean. Thus, R is abelian and every idempotent of R is a projection from [9, Theorem 2.2]. Let  $eae \in eRe$ . Then, there exists a projection  $f \in R$  such that a = f + w or -f + w where  $w \in J(R)$  and fw = wf. Hence, eae = efe + ewe or -efe + ewe and  $ewe \in eJ(R)e = J(eRe)$ . Hence,  $(efe)^2 = efe = (efe)^*$ . This completes the proof.

**Proposition 2.6.** Let R be a \*-ring. Then, R is medium \*-clean if and only if so is R[[x]].

*Proof.* ⇒ In light of Theorem 2.2, R is strongly \*-clean. It follows by [9, Corollary 2.10] that R[[x]] is strongly \*-clean. Let  $f(x) \in R[[x]]$ . Then, there exists an idempotent  $e \in R$  such that f(0) - e or f(0) + e in J(R). Hence, f(x) - e or f(x) + e in J(R[[x]]). This implies that R[[x]] is weakly J-clean. Therefore, R[[x]] is medium \*-clean, by Theorem 2.2.

 $\leftarrow$  Let  $a \in R$ . There exists an idempotent  $f(x) \in R[[x]]$  such that a - f(x) or a + f(x) in J(R[[x]]) and af(x) = f(x)a. Set e = f(0). Then,  $a - f(0) \in J(R), af(0) = f(0)a$  and  $f(0) \in R$  is an idempotent and, hence, the result.

Let R be a \*-ring, and let T(R, R) be the trivial extension of R by R, i.e.,  $T(R, R) = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in R \}$ . Define  $*: T(R, R) \to T(R, R)$  given by  $(x, y) \to (x^*, y^*)$ . Then, T(R, R) is a \*-ring.

**Proposition 2.7.** Let R be a \*-ring. Then, T(R, R) is medium \*-clean if and only if so is R.

*Proof.*  $\implies$  Straightforward.

Let R be a \*-ring. Define  $*: T(R, R) \to T(R, R)$  given by  $(x, y) \to (x^*, -y^*)$ . Analogously, we prove that T(R, R) is medium \*-clean if and only if so is R.

## 3. Homomorphic Images

We say that an ideal I of a \*-ring R is a \*-ideal in case  $I^* \subseteq I$ . If I is a \*-ideal of a \*-ring, it is easy to check that R/I is also a \*-ring.

**Lemma 3.1.** Let R be a \*-ring, let  $I \subseteq J(R)$ , and let  $e \in R$  be an idempotent. If  $e - e^* \in I$ , then there exists a projection  $f \in R$  such that eR = fR and  $e - f \in I$ .

Proof. Let  $z = 1 + (e^* - e)^*(e^* - e)$ . Then  $z \in U(R)$  and  $z^* = z$ . Let  $t = z^{-1}$ . Then  $t^* = t$ . We check that  $ez = e(1 - e - e^* + ee^* + e^*e) = ee^*e = (1 - e - e^* + ee^* + e^*e)e = ze$ ; whence, et = te and  $e^*t = te^*$ . Let  $f = ee^*t$ . Then  $f^* = f$ , and  $f^2 = ee^*tee^*t = tee^*ee^*t = (ee^*e)te^*t = (ez)te^*t = ee^*t = f$ . Hence,  $f \in R$  is a projection. Obviously,  $fR \subseteq eR$ , and from  $fe = ee^*te = ee^*et = ezt = e$  one has  $eR \subseteq fR$ . Therefore, eR = fR. Further,  $e - f = e(ez - ee^*)t = e(ee^*e - ee^*)t = ee^*(e - e^*)t \in I$ , as asserted.

**Theorem 3.2.** Let I be a \*-ideal of a \*-ring R. If  $I \subseteq J(R)$ , then R is medium \*-clean if and only if

- (1) R is strongly \*-clean;
- (2) R/I is medium \*-clean.

*Proof.* One direction is obvious from Theorem 2.2. It will suffice to prove the converse. For any idempotent  $e \in R$ ,  $\overline{e} \in R/I$  is an idempotent. By (1), R/I is strongly \*-clean. In light of [9, Theorem 2.2],  $\overline{e} \in R/I$  is a projection. Thus,  $e - e^* \in I \subseteq J(R)$ . In view of Lemma 4, there exists a projection  $f \in R$  such that eR = fR. We infer that e = fe and f = ef. By (2), we get e = f. Therefore, every idempotent of R is a projection, and R is abelian. There we easily complete the proof.

As a consequence, we can derive

**Corollary 3.3.** A \*-ring R is medium \*-clean if and only if

- (1) R is strongly \*-clean;
- (2) R/J(R) is medium \*-clean.

*Proof.* This is obvious, by Theorem 3.2.

**Corollary 3.4.** A \*-ring R is medium \*-clean if and only if

- (1) R is strongly \*-clean;
- (2) R/6R is medium \*-clean and  $6 \in J(R)$ .

*Proof.* One direction is obvious by Theorem 3.2. Conversely, assume that R is medium \*-clean. Then, there exists a projection  $e \in R$  such that 2 = e + w or 2 = -e + w for a  $w \in J(R)$ . If 2 = e + w, then  $1 - e = w - 1 \in U(R)$ ; hence, e = 0. We infer that  $2 = w \in J(R)$ . If 2 = -e + w, then 4 = e + w' for some  $w' \in J(R)$ . This implies that  $6 = w + w' \in J(R)$ . In any case,  $6 \in J(R)$ . By virtue of Theorem 3.2, we complete the proof.

Recall that a ring R is weakly Boolean if for any  $a \in R$ , either a or -a is an idempotent.

**Lemma 3.5.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) R is strongly \*-clean;
- (2) R/J(R) is weakly Boolean.

*Proof.*  $\implies$  This is clear.

 $\Leftarrow$  Since *R* is strongly \*-clean, it follows by [9, Theorem 2.2] that *R* is an abelian ring in which every idempotent in *R* is a projection. In light of [9, Corollary 2.11], every idempotent lifts modulo J(R). So the lemma is true.

A ring R is a Yaqub ring if it is the subdirect product of  $\mathbb{Z}_3$ 's. We record

**Lemma 3.6** (see [5, Lemma 4.1]). Let R be a ring in which  $x = x^3$  for all  $x \in R$ . Then, R is a Boolean ring, a Yaqub ring or the product of such rings.

**Theorem 3.7.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

MJOM

- (1) R is strongly \*-clean;
- (2) R/J(R) is a Boolean ring,  $\mathbb{Z}_3$  or the product of such rings.

*Proof.*  $\Longrightarrow$  Clearly, R is strongly \*-clean. In view of Lemma 3.6, R/J(R) is a Boolean ring  $R_1$ , a Yaqub ring  $R_2$  or the product of such rings. As  $3 \in J(R)$ , we see that 3 = 0 in  $R_1$ , a contradiction. This implies that  $R/J(R) \cong R_2$  is a Yaqub ring. In light of Lemma 3.5, R/J(R) weakly Boolean. This forces  $R_2 \cong \mathbb{Z}_3$ , as desired.

 $\Leftarrow$  By hypothesis, R/J(R) is weakly Boolean. Therefore, the result follows by Lemma 3.5.

Corollary 3.8. Let R be a \*-ring. Then, R is strongly J-\*-clean if and only if

(1)  $2 \in J(R);$ 

(2) R is medium \*-clean.

*Proof.*  $\implies$  This is obvious.

 $\leftarrow$  In light of Theorem 3.7, R/J(R) is Boolean and R is strongly \*clean. Therefore, the result follows, by [4, Theorem 2.6].

**Corollary 3.9.** Let R be a \*-ring. Then,  $R/J(R) \cong \mathbb{Z}_3$  if and only if

(1)  $3 \in J(R);$ 

(2) R is medium \*-clean.

*Proof.*  $\Longrightarrow$  Clearly,  $3 \in J(R)$ . Let  $a \in R$ . Then,  $\overline{a} = \overline{0}, \overline{1}$  or  $-\overline{1}$  in R/J(R). Hence, a - 0, a - 1 or a + 1 in J(R). Therefore, R is medium \*-clean.

 $\leftarrow$  In view of Theorem 3.7, R/J(R) is a Boolean ring  $R_1, \mathbb{Z}_3$  or the product of such rings. As  $3 \in J(R)$ , we see that 3 = 0 in  $R_1$ , a contradiction. This implies that  $R/J(R) \cong \mathbb{Z}_3$ , as desired.

*Example.* Let  $R = \mathbb{Z}_{(3)}$  be the localization of the ring  $\mathbb{Z}$  of integers at (3), and  $* = 1_R$ , the identical automorphism of R. Then, R is medium \*-clean, but it is not a strongly J-\*-clean.

*Proof.* It is obvious that R is a local ring with J(R) = 3R. Then,  $\frac{2}{1} - (\frac{2}{1})^2$  is not in J(R). Hence, R/J(R) is not a Boolean ring. By [4, Theorem 2.6], R is not strongly J-\*-clean. Since  $R/J(R) \cong \mathbb{Z}_3$ , it follows by Theorem 3.7 that R is medium \*-clean.

**Corollary 3.10.** Let R be a local \*-ring. Then, the following are equivalent:

- (1) R is medium \*-clean.
- (2)  $R/J(R) \cong \mathbb{Z}_2$  or  $\mathbb{Z}_3$ .

*Proof.* (1)  $\Rightarrow$  (2) By virtue of Theorem 3.7, R/J(R) is a Boolean ring,  $\mathbb{Z}_3$  or the product of such rings. But every idempotent in R is trivial; hence,  $R/J(R) \cong \mathbb{Z}_2$  or  $\mathbb{Z}_3$ .

(2)  $\Rightarrow$  (1) Since R is a local \*-ring, it is strongly \*-clean. Thus, we complete the proof, by Theorem 3.7.

The Brown–McCoy radical of R can be defined as the intersection of the maximal two-sided ideals and denote it by BM(R).

**Theorem 3.11.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) R is strongly \*-clean;
- (2) For all maximal ideals M of R,  $R/M \cong \mathbb{Z}_2$  or at most one  $\mathbb{Z}_3$ .

*Proof.* ⇒ By virtue of Lemma 3.5, R is strongly \*-clean and R/J(R) is weakly Boolean. Let M be a maximal ideal of R. If  $J(R) \not\subseteq M$ , then J(R)+ M = R; hence, x + y = 1 for some  $x \in J(R), y \in M$ . This shows that  $y = 1 - x \in U(R)$ , a contradiction. Thus,  $J(R) \subseteq M$ . Clearly,  $R/M \cong \frac{R/J(R)}{M/J(R)}$ ; hence, R/M is weakly Boolean. Since R/M is simple and every idempotent in R/M is central, we see that  $R/M \cong \mathbb{Z}_2$  or  $\mathbb{Z}_3$ .

Assume that  $M_1, M_2$  are distinct maximal ideals of R such that  $R/M_1$ ,  $R/M_2 \cong \mathbb{Z}_3$ . Since  $R/(M_1 \bigcap M_2) \cong \frac{R/J(R)}{(M_1 \bigcap M_2)/J(R)}$ , we see that  $R/(M_1 \bigcap M_2)$ is weakly Boolean. As  $M_1 + M_2 = R$ , By Chinese Reminder Theorem, we have  $R/(M_1 \bigcap M_2) \cong R/M_1 \times R/M_2 \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ , which is not weakly Boolean. Hence, there is at most one maximal ideal M such that  $R/M \cong \mathbb{Z}_3$ , as desired.

 $\Leftarrow$  It is easy to check that R/BM(R) is isomorphic to a subring of  $\prod_{M \in Max(R)} R/M$  which is weakly Boolean. Hence, R/BM(R) is weakly Boolean.

For all maximal ideals M of R, as in the preceding discussion,  $J(R) \subseteq M$ , and so  $J(R) \subseteq BM(R)$ . Since R is strongly \*-clean, R is an abelian clean ring. In view of [13, Proposition 4.1], R is a right quasi-duo ring, i.e., every maximal right ideal is an ideal. Hence,  $BM(R) \subseteq J(R)$ , and so BM(R) = J(R). Thus, R/J(R) is weakly Boolean. This completes the proof, by Lemma 3.5.

#### 4. Uniqueness for Projections

The aim of this section is to determine medium \*-clean rings by means of the unique property of projections. The following observation is crucial.

**Theorem 4.1.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) R weakly J-\*-clean;
- (2) For any projections  $e, f \in R, e f \in J(R)$  implies e = f.

*Proof.*  $\implies$  Clearly, R weakly J-\*-clean. Let  $e, f \in R$  be projections. In light of Theorem 2.2, R is abelian. Thus, ef = fe; hence,  $(e - f)^3 = e - f$ , and so  $(e - f)(1 - (e - f)^2) = 0$ . Hence, e = f, as desired.

 $\xleftarrow{} \text{Let } e \in R \text{ be an idempotent. Then, there exists a projection } g \in R \\ \text{such that } e - g \in J(R) \text{ or } e + g \in J(R). \text{ If } e - g \in J(R), \text{ then } e^* - g \in J(R), \\ \text{and so } e - e^* = (e - g) - (e^* - g) \in J(R). \text{ If } e + g \in J(R), \text{ similarly, we have } \\ e - e^* \in J(R). \end{cases}$ 

Set  $z = 1 + (e - e^*)^*(e - e^*)$ . Write  $t = z^{-1}$ . Since  $z^* = z$ ,  $t^* = t$ . Also  $e^*z = e^*ee^* = ze^*$ , and so  $e^*t = te^*$ , and et = te. Set  $f = e^*et = te^*e$ . Then,  $f^* = f, f^2 = e^*ete^*et = e^*ee^*(tet) = e^*ztet = e^*et = f, fe = f$ and  $ef = ee^*et = ezt = e$ . Now e = f + (e - f) and  $e - f = e - e^*et$  $= ee^*et - e^*et = (e - e^*)e^*et \in J(R)$ . Here,  $f = f^* = f^2$ . In addition,  $f = e^*e(1 + (e^* - e)(e - e^*))^{-1}$ . Set  $z' = 1 + (e^* - e)^*(e^* - e)$ . Write  $t' = (z')^{-1}$ . Since  $(z')^* = z'$ ,  $(t')^* = t'$ . Also  $ez' = ee^*e = z'e$ . Set  $f' = ee^*t' = t'ee^*$ . As in the preceding proof, we see that  $f' = (f')^2 = (f')^*$  and ef' = f', f'e = e. In addition,

$$-f' = f'e - f' = t'ee^{*}(e - e^{*}) \in J(R),$$

where  $f' = (1 + (e - e^*)(e^* - e))^{-1}ee^*$ .

e

Thus,  $e - f, e - f' \in J(R)$ , f and f' are projections. Hence,  $f - f' = (e - f') - (e - f) \in J(R)$ . By hypothesis, f = f', and so

$$e^*e(1+(e^*-e)(e-e^*))^{-1} = (1+(e-e^*)(e^*-e))^{-1}ee^*.$$

It follows that

$$(1 + (e - e^*)(e^* - e))e^*e = ee^*(1 + (e^* - e)(e - e^*)).$$

Obviously,  $(e - e^*)(e^* - e)e^*e = -e^*e + e^*ee^*e$  and  $ee^*(e^* - e)(e - e^*) = -ee^* + ee^*ee^*$ . Consequently,  $e^*ee^*e = ee^*ee^*$ . One easily checks that

$$(e - e^*)^3 - (e - e^*) = -ee^*e + e^*ee^*;$$
  
$$((e - e^*)^3 - (e - e^*))(e + e^*) = (e - e^*)^3 - (e - e^*)$$

Thus  $(e - e^*)((e - e^*)^2 - 1)((e + e^*) - 1) = 0.$ 

As  $e - f \in J(R)$ , we see that  $e^* - f \in J(R)$ . Thus,  $(e + e^*) - 2f \in J(R)$ . This implies that  $(e + e^*) - 1 = (2f - 1) + ((e + e^*) - 2f) \in U(R)$ , as  $(2f - 1)^2 = 1$ . Since  $(e - e^*)^2 - 1$ ,  $(e + e^*) - 1 \in U(R)$ , we get  $e = e^*$ . Thus, every idempotent in R is a projection. In light of [9, Lemma 2.1], R is abelian. Therefore, R is medium \*-clean.

Projections e, f in R are said to be equivalent, write  $e \sim f$ , in case there exists  $w \in R$  such that  $w^*w = e$  and  $ww^* = f$  (see [2]).

Corollary 4.2. Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) R weakly J-\*-clean;
- (2) For any projections  $e, f \in R, e \sim f$  implies e = f.

Proof.  $\implies$  (1) is clear. In light of Lemma 3.5, R/J(R) is weakly Boolean; hence, it is strongly  $\pi$ -regular. By virtue of [3, Theorem 13.1.7], R has stable range 1. If  $e \sim f$  with projections  $e, f \in R$ , then  $eR \cong fR$ . It follows by [3, Lemma 1.4.6] that  $u^{-1}eu = f$ . In light of Theorem 2.2, R is abelian; hence, e = f. This proves (2).

 $\xleftarrow{} \text{Let } e, f \in R \text{ be projections such that } e - f \in J(R). \text{ Set } u = 1 - e - f. \\ \text{Then, } eu = -ef = uf. \text{ Clearly, } u = u^* = u^{-1} \in U(R). \text{ Set } w = fu^{-1}e. \text{ Then, } \\ f = u^{-1}eu = ww^* \text{ and } e = ufu^{-1} = w^*w. \text{ Hence, } e \sim f. \text{ By hypothesis, } \\ e = f. \text{ According to Theorem 4.1, } R \text{ is medium *-clean.}$ 

Let R be a \*-ring. An element  $a \in R$  is called a partial isometry provided that  $a = aa^*a$ . An element  $u \in R$  is called a unitary element provided that  $uu^* = u^*u = 1$  (see [2]).

**Corollary 4.3.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) R weakly J-\*-clean;
- (2) For any partial isometry  $a \in R$ , there exist a projection e and a unitary u such that a = eu = ue.

*Proof.*  $\Longrightarrow$  Clearly, R weakly J-\*-clean. Let  $w \in R$  be a partial isometry. Then,  $w = ww^*w$ . Hence,  $w^* = w^*ww^*$ ,  $ww^*$  and  $w^*w$  are projections with  $ww^*R \cong w^*wR$ . In light of Corollary 4.2,  $ww^* = w^*w$ . Let  $u = 1 - w^*w + w$ . Then,  $u^* = 1 - w^*w + w^*$  and  $uu^* = u^*u = 1$ , i.e.,  $u \in R$  is a unitary element. Let  $e = ww^*$ . Then,  $e \in R$  is a projection. Furthermore,  $w = ww^*(1 - ww^* + w) = eu$ . In virtue of Theorem 2.2, R is ableian. Hence, w = ue, as desired.

 $\Leftarrow$  Suppose  $e \sim f$  for projections  $e, f \in R$ . Write  $e = w^*w$  and  $f = ww^*$ . We may assume that  $w \in fRe$  and  $w^* \in eRf$ . Hence,  $ww^*w = we = w$ , i.e.,  $w \in R$  is a partial isometry. By hypothesis, there exist a projection g and a unitary u such that w = gu = ug. Accordingly,  $e = w^*w = (u^*g)(gu) = u^*gu = (u^*u)g = g$  and  $f = ww^* = (gu)(u^*g) = g(uu^*)g = g$ , and then e = f. In light of Corollary 4.2, the result follows.

Recall that an element a in a \*-ring R is uniquely \*-clean provided that there exists a unique projection e such that a - e is invertible. We have

**Theorem 4.4.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) R weakly J-\*-clean;
- (2)  $a^2 \in R$  is uniquely \*-clean for all  $a \in R$ .

*Proof.* ⇒ Let  $a \in R$ . Then, there exist a projection  $e \in R$  and a  $w \in J(R)$  such that a = e + w or a = -e + w with ae = ea. Hence,  $a^2 = e + w'$  where  $w' \in J(R)$ . This implies that  $a^2 = (1 - e) + ((2e - 1) + w')$ . Clearly,  $(2e-1)+w' = (2e-1)(1+(2e-1)w') \in U(R)$ . Thus,  $a^2 \in R$  is \*-clean. Assume that  $a^2 = f+v$  where  $f \in R$  is a projection and  $v \in U(R)$ . Then,  $e-f \in U(R)$ . As R is abelian, it follows from  $(e-f)^3 = e-f$  that  $(e-f)(1-(e-f)^2) = 0$ ; hence, 1 - e + 2ef - f = 0. Thus,  $f = (1 - 2e)^{-1}(1 - e) = 1 - e$ . Therefore,  $a^2 \in R$  is uniquely clean.

*Example.* Let  $\mathbb{Z}_3$  be the \*-ring with \* the identical automorphism. Then,  $\mathbb{Z}_3$  is medium \*-clean, but  $-1 \in \mathbb{Z}_3$  is not unique \*-clean, as -1 = 0 + (-1) = 1 + 1.

**Lemma 4.5.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) Every idempotent lifts modulo J(R);
- (2) For any projections  $e, f \in R, e f \in J(R)$  implies e = f;
- (3) R/J(R) weakly \*-Boolean.

*Proof.*  $\implies$  This is obvious.

 $\Leftarrow$  Let  $a \in R$ . By (3), we can find some  $e \in R$  such that  $e - e^2, e - e^* \in J(R)$  such that  $a - e \in J(R)$  or  $a + e \in J(R)$ . By (1), there exists an idempotent  $f \in R$  such that  $e - f \in J(R)$ . Hence,  $a - f \in J(R)$  or  $a + f \in J(R)$ . Additionally,  $f - f^* \in J(R)$ . In light of Lemma , we have a projection  $g \in R$  such that  $f - g \in J(R)$ . Therefore,  $a - g \in J(R)$  or  $a + g \in J(R)$ . Hence, R is weakly J-\*-clean. Therefore, R is medium \*-clean, by Theorem 4.1.

**Theorem 4.6.** Let R be a \*-ring. Then, R is medium \*-clean if and only if

- (1) Every idempotent lifts modulo J(R);
- (2) R is abelian;
- (3) R/J(R) weakly \*-Boolean.

*Proof.*  $\implies$  This is obvious, by Theorem 2.2 and Lemma 4.5.

## 5. Medium Nil-\*-clean Rings

In this section, we are concern on a subclass of medium \*-clean rings. A \*ring R is medium nil-\*-clean if for any  $a \in R$  there exists a projection  $e \in R$ such that a - e or a + e is nilpotent and ea = ae. We derive

**Theorem 5.1.** Let R be a \*-ring. Then, R is medium nil-\*-clean if and only if

- (1) R is medium \*-clean.
- (2) J(R) is nil.

*Proof.*  $\implies$  Clearly, R is strongly 2-nil-clean. In light of [5, Theorem 3.3 and Theorem 3..6], N(R) forms an ideal of R and J(R) is nil. Hence,  $N(R) \subseteq J(R)$ . Therefore, R is medium \*-clean.

 $\Leftarrow$  This is obvious.

A \*-ring R is called strongly nil \*-clean if every element of R is the sum of a projection and a nilpotent element that commute with each other.

**Corollary 5.2.** Let R be a \*-ring. Then, R is medium nil-\*-clean if and only if R is strongly nil-\*-clean, or  $R/J(R) \cong \mathbb{Z}_3$ , with J(R) is nil, or R is the direct product of two such rings.

*Proof.*  $\Leftarrow$  By virtue of Theorems 5.1 and 3.7, R/J(R) is a Boolean ring,  $\mathbb{Z}_3$  or the product of such rings. Suppose that R/J(R) is Boolean. Since J(R) is nil and every idempotent in R is a projection, we easily check that R is strongly nil-\*-clean, as desired.  $\Longrightarrow$  This is obvious by Theorems 3.7 and 5.1.

**Corollary 5.3.** Let R be medium nil-\*-clean, and let  $e \in R$  be an idempotent. Then, eRe is medium nil-\*-clean.

*Proof.* In view of Theorem 2.2, R is abelian. As J(eRe) = eJ(R)e, we complete the proof, by Theorem 5.1 and Proposition 2.6.

**Theorem 5.4.** Let R be a \*-ring. Then, R is medium nil-\*-clean if and only if

- (1) R is strongly \*-clean;
- (2) R is strongly weakly nil-clean.

*Proof.*  $\implies$  This is obvious.

 $\xleftarrow{} In light of [9, Theorem 2.2], every idempotent in R is a projection, the result follows. \square$ 

**Corollary 5.5.** Let R be a \*-ring. Then, R is medium nil-\*-clean if and only if

- (1) R is strongly \*-clean;
- (2) R is  $R_1, R_2$  or  $R_1 \times R_2$ , where  $R_1$  is strongly nil-clean and  $R_2/J(R_2) \cong \mathbb{Z}_3$  and  $J(R_2)$  is nil.

*Proof.*  $\implies$  In view of Theorem 2.2, R is strongly \*-clean, and hence proving (1). Clearly, R is strongly weakly nil-clean. Therefore we prove (2) by [8, Theorem 1].

Example. Let 
$$R = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \mid a, b, c \in \mathbb{Z}_3 \right\}$$
. Define  
 $\begin{pmatrix} a & b \\ c & a \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & a' \end{pmatrix} = \begin{pmatrix} a + a' & b + b' \\ c + c' & a + a' \end{pmatrix},$ 
 $\begin{pmatrix} a & b \\ c & a \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & a' \end{pmatrix} = \begin{pmatrix} aa' & ab' + ba' \\ ca' + ac' & aa' \end{pmatrix}$ 

and  $*: R \to R$ ,  $\begin{pmatrix} a & b \\ c & a \end{pmatrix} \mapsto \begin{pmatrix} a & c \\ b & a \end{pmatrix}$ . Then, R is medium \*-clean, but it is not strongly nil-\*-clean.

*Proof.* In view of [4, Example 2.2], R is strongly J-\*-clean, and so it is medium \*-clean. The projections in R are the zero and the identity matrix. Let  $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ . It is obvious that A can not be written as the sum of a projection and a nilpotent. Thus, R is not strongly weakly nil-\*-clean.

*Example.* Let 
$$R = \left\{ \begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z}_4 \right\}$$
, and let  
 $*: R \to R, \begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} c & -2b \\ 0 & a \end{pmatrix}.$ 

Then, R is strongly weakly nil clean, but it is not medium nil-\*-clean.

Proof. Let 
$$A = \begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix}$$
 be a projection in  $R$ . Then,  $\begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix}^2 = \begin{pmatrix} a^2 & 2ab + 2bc \\ 0 & c^2 \end{pmatrix} = \begin{pmatrix} c & -2b \\ 0 & a \end{pmatrix}$ . This implies that  $a = a^2, c = c^2, a = c$  and  $2ab + 2bc = -2b$ , and so  $(2a - 1)(2b) = 0$ . As  $(2a - 1)^2 = 1$ , we see that  $2b = 0$ , and so  $A = 0$  or  $I_2$ . Now let  $A = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \in R$ . It is obvious that  $A$  can not be written as the sum or difference of a projection and a nilpotent. Hence,  $R$  is not medium nil-\*-clean. However for  $anyA \in R, A - A^2 \in N(R)$ , then  $R$  is weakly strongly nil-clean ring, as desired.

#### Acknowledgements

The authors would like to thank the referee for his/her careful reading and valuable remarks that improved the presentation of our work. H. Chen was supported by the Natural Science Foundation of Zhejiang Province, China (no. LY17A010018).

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## References

- Breaz, S., Danchev, P., Zhou, Y.: Rings in which every element in either a sum or a difference of a nilpotent and an idempotent. J. Algebra Appl. 15, 1650148 (2016). https://doi.org/10.1142/S0219498816501486
- [2] Berberian, S.K.: Baer \*-Rings. Springer, Heidelberg (2011)
- [3] Chen, H.: Rings Related Stable Range Conditions, Series in Algebra 11. World Scientific, Hackensack (2011)
- [4] Chen, H., Harmanci, A., Özcan, A.C.: Strongly J-clean rings with involutions. Contemp Math 609, 33–44 (2014)
- [5] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings. J. Algebra Appl. 16, 1750178 (2017). https://doi.org/10.1142/S021949881750178X
- [6] Cui, J., Wang, Z.: A note on strongly \*-clean rings. J. Korean Math. Soc. 52, 839–851 (2015)
- [7] Hirano, Y., Tominaga, H.: Rings in which every element is a sum of two idempotents. Bull. Austral. Math. Soc. 37, 161–164 (1988)
- [8] Kosan, M.T., Zhou, Y.: On weakly nil-clean rings. Front. Math. China (2016). https://doi.org/10.1007/s11464-016-0555-6
- [9] Li, C., Zhou, Y.: On strongly \*-clean rings. J. Algebra Appl. 10, 1363–1370 (2011)
- [10] Li, Y., Parmenter, M.M., Yuan, P.: On \*-clean group rings. J. Algebra Appl. 14, 1550004 (2015). https://doi.org/10.1142/S0219498815500048
- [11] Stancu, A.: A note on commutative weakly nil clean rings. J. Algebra Appl. 15, 1620001 (2016). https://doi.org/10.1142/S0219498816200012
- [12] Vas, L.: \*-Clean rings; some clean and almost clean Baer \*-rings and von Neumann algebras. J. Algebra 324, 3388–3400 (2010)
- [13] Yu, H.P.: On quasi-duo rings. Glasg. Math. J. 37, 21–31 (1995)

MJOM

Huanyin Chen Department of Mathematics Hangzhou Normal University Hangzhou China e-mail: huanyinchen@aliyun.com

Marjan Sheibani Abdolyousefi Women's University of Semnan (Farzanegan) Semnan Iran e-mail: sheibani@fgusem.ac.ir

Handan Kose Department of Mathematics Ahi Evran University Kirsehir Turkey e-mail: handankose@gmail.com

Received: October 20, 2017. Revised: June 15, 2018. Accepted: December 26, 2018.