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Abstract. A *-ring R is called a medium *-clean ring if every element in
R is the sum or difference of an element in its Jacobson radical and a
projection that commute. We prove that a ring R is medium *-clean if
and only if R is strongly *-clean and R/J(R) is a Boolean ring, Z3 or
the product of such rings, if and only if R weakly J-*-clean and a2 ∈ R
is uniquely *-clean for all a ∈ R, if and only if every idempotent lifts
modulo J(R), R is abelian and R/J(R) weakly *-Boolean. A subclass
of medium *-clean rings with many nilpotents is thereby characterized.
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1. Introduction

Throughout, all rings are associative with an identity. An involution of a ring
R is an operation ∗ : R → R such that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗

and (x∗)∗ = x for all x, y ∈ R. A ring R with involution * is called a *-
ring. For general *-ring theory, we refer the reader [2]. An element e in a
*-ring R is called a projection if e = e∗ = e2. Recently, the concepts of clean
rings are considered for any *-ring. A *-ring R is strongly *-clean if every
element in R is the sum of a unit and a projection [6,9] and [12]. A *-ring
R is weakly J-*-clean if every element in R is the sum or difference of an
element in its Jacobson radical and a projection. Such rings are the natural
generalizations of weakly nil-clean rings (see [1,11]). The motivation of this
paper is to explore the structure of certain weakly J-*-clean rings and obtain
the relations to other closed classes.

A *-ring R is called a medium *-clean ring if every element of R is
the sum or difference of an element in its Jacobson radical and a projec-
tion that commute. Clearly, {strongly J-*-clean rings} ⊂ {medium *-clean
rings} ⊂ {weakly J-*-clean rings}. Here, a *-ring R is strongly J-*-clean if
every element is the sum of a projection and a unit that commute. We shall
prove that medium *-clean rings and abelian weakly J-*-clean rings coincide
with each other. We show that a *-ring R is medium *-clean if and only if R
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is strongly *-clean and R/J(R) is a Boolean ring, Z3 or the product of such
rings, if and only if R weakly J-*-clean and a2 ∈ R is uniquely *-clean for all
a ∈ R, if and only if every idempotent lifts modulo J(R), R is abelian and
R/J(R) weakly *-Boolean. A subclass of medium *-clean rings with many
nilpotents is characterized in terms of medium *-cleanness. These completely
determine the structure of *-clean rings involving their Jacobson radicals.

We use N(R) to denote the set of all nilpotent elements in R and J(R)
the Jacobson radical of R. N stands for the set of all natural numbers.

2. Medium *-Clean Rings

The main purpose of this section is to explore some elementary properties of
medium *-clean rings. Our starting point is the following.

Lemma 2.1. Every medium *-clean rings is abelian.

Proof. Let R be a medium *-clean ring, and let e ∈ R be an idempotent.
Then, we can find a projection f and a w ∈ J(R) such that e = f + w or
e = −f+w with fw = wf . If e = f+w, then e−f ∈ J(R). As (e−f)3 = e−f ,
we see that (e − f)(1 − (e − f)2) = 0, and so e = f . If e = −f + w, then
e + f ∈ J(R). As (e − f)(e + f) = e − f , we see that (e − f)(1 − (e + f)) = 0.
This implies that e = f . Therefore, e ∈ R is a projection. Therefore, R is
abelian, in terms of [9, Lemma 2.1]. �

Theorem 2.2. Let R be a *-ring. Then, the following are equivalent:

(1) R is medium *-clean.
(2) R is abelian weakly J-*-clean.
(3) R is strongly *-clean and weakly J-clean.

Proof. (1) ⇒ (3) Clearly, R is weakly J-clean. Let a ∈ R. Then, there exists
a projection e ∈ R such that a = e+w or −e+w, w ∈ J(R) and ew = we. If
a = −e+w, then a = (1−e)+(w−1), w−1 ∈ U(R), (1−e)2 = 1−e = (1−e)∗,
(1 − e)(w − 1) = (w − 1)(1 − e). So a ∈ R is strongly *-clean. If a = e + w,
then a = (1 − e) + (2e − 1)[1 + (2e − 1)w]. Since w ∈ J(R), we see that
1 + (2e − 1)w ∈ U(R) and (1 − e)2 = 1 − e = (1 − e)∗. So a ∈ R is strongly
*-clean, as desired.

(3) ⇒ (2) In light of [9, Theorem 2.2], R is abelian and every idempotent
of R is a projection. Thus, R is weakly J-*-clean.

(2) ⇒ (1) This is obvious. �

Example. Let R = Z2 × Z2. Define σ : R → R by σ(x, y) = (y, x). Consider

the ring T2(R, σ) =
{(

a b
0 a

)
| a, b ∈ R

}
with the following operations:(

a b
0 a

)
+

(
c d
0 c

)
=

(
a + c b + d

0 a + c

)
,

(
a b
0 a

)
.

(
c d
0 c

)
=

(
ac ad + bσ(c)
0 ac

)
.

Define ∗ : T2(R, σ) → T2(R, σ) by
(

a b
0 a

)∗
=

(
a σ(b)
0 a

)
. Then, T2(R, σ) is

weakly J-*-clean, but it is not medium *-clean.



MJOM On Medium *-Clean Rings Page 3 of 13 10

Proof. Let A =
(

a b
0 a

)
∈ T2(R, σ). Then, E =

(
a 0
0 a

)
is a projection.

Further, A − E =
(

0 b
0 0

)
∈ J(T2(R, σ)). Therefore, T2(R, σ) is weakly J-

*-clean.

Let A =
(

(0, 1) (0, 0)
(0, 0) (0, 1)

)
. We check that A2 = A ∈ T2(R, σ) is not

central, and so T2(R, σ) is not abelian. Therefore, by Theorem 2.2 the ring
T2(R, σ) is not medium *-clean. �

Theorem 2.3. Let L =
∏

i∈I Ri be the direct product of *-rings Ri and |I| ≥ 2.
Then, the following are equivalent:

(1) L is medium *-clean;
(2) Each Ri is medium *-clean and at most one is not strongly J-*-clean.

Proof. =⇒ Obviously, each Ri is medium *-clean. Suppose Ri1 and Ri2(i1 �=
i2) are not strongly J-*-clean. Then, there exist some xij ∈ Rij (j = 1, 2) such
that xi1 ∈ Ri1 and −xi2 ∈ Ri2 are not strongly J-*-clean. Choose x = (xi)
where xi = 0 whenever i �= ij(j = 1, 2). Then, x and −x are both not strongly
J-*-clean. This gives a contradiction. Therefore, each Ri is a medium *-clean
and at most one is not strongly J-*-clean.

⇐= Suppose that Ri0 is medium *-clean and all the others Ri are
strongly J-*-clean. Then,

∏
i�=i0

Ri is strongly J-*-clean (see [4]). We directly
check that R is medium *-clean. �

Corollary 2.4. Let L =
∏

i∈I Ri be the direct product of *-rings Ri
∼= R and

|I| ≥ 2. Then, the following are equivalent:

(1) L is medium *-clean;
(2) L is strongly J-*-clean.
(3) R is strongly J-*-clean.

Proof. (1) ⇒ (3) Since L is medium *-clean, it follows by Theorem 2.4 that
R is strongly J-*-clean.

(3) ⇒ (2) Straightforward.
(2) ⇒ (1) This is trivial. �

We come now to record the strongly weak J-*-cleanness for some related
rings.

Proposition 2.5. Let R be medium *-clean, and let e ∈ R be an idempotent.
Then, eRe is medium *-clean.

Proof. Let R be medium *-clean ring, and let e ∈ R be an idempotent. In
view of Theorem 2.2, R is strongly *-clean. Thus, R is abelian and every
idempotent of R is a projection from [9, Theorem 2.2]. Let eae ∈ eRe. Then,
there exists a projection f ∈ R such that a = f + w or −f + w where
w ∈ J(R) and fw = wf . Hence, eae = efe + ewe or −efe + ewe and
ewe ∈ eJ(R)e = J(eRe). Hence, (efe)2 = efe = (efe)∗. This completes the
proof. �
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Proposition 2.6. Let R be a *-ring. Then, R is medium *-clean if and only if
so is R[[x]].

Proof. =⇒ In light of Theorem 2.2, R is strongly ∗-clean. It follows by [9,
Corollary 2.10] that R[[x]] is strongly *-clean. Let f(x) ∈ R[[x]]. Then, there
exists an idempotent e ∈ R such that f(0) − e or f(0) + e in J(R). Hence,
f(x) − e or f(x) + e in J(R[[x]]). This implies that R[[x]] is weakly J-clean.
Therefore, R[[x]] is medium *-clean, by Theorem 2.2.

⇐= Let a ∈ R. There exists an idempotent f(x) ∈ R[[x]] such that
a − f(x) or a + f(x) in J(R[[x]]) and af(x) = f(x)a. Set e = f(0). Then,
a − f(0) ∈ J(R), af(0) = f(0)a and f(0) ∈ R is an idempotent and, hence,
the result. �

Let R be a *-ring, and let T (R,R) be the trivial extension of R by R,

i.e., T (R,R) = {
(

a b
0 a

)
| a, b ∈ R}. Define ∗ : T (R,R) → T (R,R) given by

(x, y) → (x∗, y∗). Then, T (R,R) is a *-ring.

Proposition 2.7. Let R be a *-ring. Then, T (R,R) is medium *-clean if and
only if so is R.

Proof. =⇒ Straightforward.
⇐= In view of Theorem 2.2, R is strongly *-clean and weakly J-clean.

Hence, T (R,R) is strongly *-clean, by [9, Example 2.4]. As J
(
T (R,R)

)
=

{
(

a b
0 a

)
| a ∈ J(R), b ∈ R}, one easily checks that T (R,R) is weakly J-

clean. This completes the proof by Theorem 2.2. �

Let R be a *-ring. Define ∗ : T (R,R) → T (R,R) given by (x, y) →
(x∗,−y∗). Analogously, we prove that T (R,R) is medium *-clean if and only
if so is R.

3. Homomorphic Images

We say that an ideal I of a *-ring R is a *-ideal in case I∗ ⊆ I. If I is a
*-ideal of a *-ring, it is easy to check that R/I is also a *-ring.

Lemma 3.1. Let R be a ∗-ring, let I ⊆ J(R), and let e ∈ R be an idempotent.
If e − e∗ ∈ I, then there exists a projection f ∈ R such that eR = fR and
e − f ∈ I.

Proof. Let z = 1 + (e∗ − e)∗(e∗ − e). Then z ∈ U(R) and z∗ = z. Let
t = z−1. Then t∗ = t. We check that ez = e(1 − e − e∗ + ee∗ + e∗e) =
ee∗e = (1 − e − e∗ + ee∗ + e∗e)e = ze; whence, et = te and e∗t = te∗.
Let f = ee∗t. Then f∗ = f , and f2 = ee∗tee∗t = tee∗ee∗t = (ee∗e)te∗t =
(ez)te∗t = ee∗t = f . Hence, f ∈ R is a projection. Obviously, fR ⊆ eR,
and from fe = ee∗te = ee∗et = ezt = e one has eR ⊆ fR. Therefore,
eR = fR. Further, e − f = e(ez − ee∗)t = e(ee∗e − ee∗)t = ee∗(e − e∗)t ∈ I,
as asserted. �
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Theorem 3.2. Let I be a *-ideal of a *-ring R. If I ⊆ J(R), then R is medium
*-clean if and only if

(1) R is strongly *-clean;
(2) R/I is medium *-clean.

Proof. One direction is obvious from Theorem 2.2. It will suffice to prove the
converse. For any idempotent e ∈ R, e ∈ R/I is an idempotent. By (1), R/I
is strongly *-clean. In light of [9, Theorem 2.2], e ∈ R/I is a projection. Thus,
e − e∗ ∈ I ⊆ J(R). In view of Lemma 4, there exists a projection f ∈ R such
that eR = fR. We infer that e = fe and f = ef . By (2), we get e = f .
Therefore, every idempotent of R is a projection, and R is abelian. There we
easily complete the proof. �

As a consequence, we can derive

Corollary 3.3. A *-ring R is medium *-clean if and only if

(1) R is strongly *-clean;
(2) R/J(R) is medium *-clean.

Proof. This is obvious, by Theorem 3.2. �
Corollary 3.4. A *-ring R is medium *-clean if and only if

(1) R is strongly *-clean;
(2) R/6R is medium *-clean and 6 ∈ J(R).

Proof. One direction is obvious by Theorem 3.2. Conversely, assume that R
is medium *-clean. Then, there exists a projection e ∈ R such that 2 = e+w
or 2 = −e + w for a w ∈ J(R). If 2 = e + w, then 1 − e = w − 1 ∈ U(R);
hence, e = 0. We infer that 2 = w ∈ J(R). If 2 = −e + w, then 4 = e + w′ for
some w′ ∈ J(R). This implies that 6 = w+w′ ∈ J(R). In any case, 6 ∈ J(R).
By virtue of Theorem 3.2, we complete the proof. �

Recall that a ring R is weakly Boolean if for any a ∈ R, either a or −a
is an idempotent.

Lemma 3.5. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) R is strongly *-clean;
(2) R/J(R) is weakly Boolean.

Proof. =⇒ This is clear.
⇐= Since R is strongly *-clean, it follows by [9, Theorem 2.2] that R

is an abelian ring in which every idempotent in R is a projection. In light
of [9, Corollary 2.11], every idempotent lifts modulo J(R). So the lemma is
true. �

A ring R is a Yaqub ring if it is the subdirect product of Z3’s. We record

Lemma 3.6 (see [5, Lemma 4.1]). Let R be a ring in which x = x3 for all
x ∈ R. Then, R is a Boolean ring, a Yaqub ring or the product of such rings.

Theorem 3.7. Let R be a *-ring. Then, R is medium *-clean if and only if
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(1) R is strongly *-clean;
(2) R/J(R) is a Boolean ring, Z3 or the product of such rings.

Proof. =⇒ Clearly, R is strongly *-clean. In view of Lemma 3.6, R/J(R) is a
Boolean ring R1, a Yaqub ring R2 or the product of such rings. As 3 ∈ J(R),
we see that 3 = 0 in R1, a contradiction. This implies that R/J(R) ∼= R2 is
a Yaqub ring. In light of Lemma 3.5, R/J(R) weakly Boolean. This forces
R2

∼= Z3, as desired.
⇐= By hypothesis, R/J(R) is weakly Boolean. Therefore, the result

follows by Lemma 3.5. �

Corollary 3.8. Let R be a *-ring. Then, R is strongly J-*-clean if and only if

(1) 2 ∈ J(R);
(2) R is medium *-clean.

Proof. =⇒ This is obvious.
⇐= In light of Theorem 3.7, R/J(R) is Boolean and R is strongly *-

clean. Therefore, the result follows, by [4, Theorem 2.6]. �

Corollary 3.9. Let R be a *-ring. Then, R/J(R) ∼= Z3 if and only if

(1) 3 ∈ J(R);
(2) R is medium *-clean.

Proof. =⇒ Clearly, 3 ∈ J(R). Let a ∈ R. Then, a = 0, 1 or −1 in R/J(R).
Hence, a − 0, a − 1 or a + 1 in J(R). Therefore, R is medium *-clean.

⇐= In view of Theorem 3.7, R/J(R) is a Boolean ring R1,Z3 or the
product of such rings. As 3 ∈ J(R), we see that 3 = 0 in R1, a contradiction.
This implies that R/J(R) ∼= Z3, as desired. �

Example. Let R = Z(3) be the localization of the ring Z of integers at (3),
and ∗ = 1R, the identical automorphism of R. Then, R is medium *-clean,
but it is not a strongly J-*-clean.

Proof. It is obvious that R is a local ring with J(R) = 3R. Then, 2
1 − ( 21 )2 is

not in J(R). Hence, R/J(R) is not a Boolean ring. By [4, Theorem 2.6], R
is not strongly J-*-clean. Since R/J(R) ∼= Z3, it follows by Theorem 3.7 that
R is medium *-clean. �

Corollary 3.10. Let R be a local *-ring. Then, the following are equivalent:

(1) R is medium *-clean.
(2) R/J(R) ∼= Z2 or Z3.

Proof. (1) ⇒ (2) By virtue of Theorem 3.7, R/J(R) is a Boolean ring, Z3

or the product of such rings. But every idempotent in R is trivial; hence,
R/J(R) ∼= Z2 or Z3.

(2) ⇒ (1) Since R is a local *-ring, it is strongly *-clean. Thus, we
complete the proof, by Theorem 3.7. �

The Brown–McCoy radical of R can be defined as the intersection of
the maximal two-sided ideals and denote it by BM(R).
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Theorem 3.11. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) R is strongly *-clean;
(2) For all maximal ideals M of R, R/M ∼= Z2 or at most one Z3.

Proof. =⇒ By virtue of Lemma 3.5, R is strongly *-clean and R/J(R) is
weakly Boolean. Let M be a maximal ideal of R. If J(R) �⊆ M , then J(R)
+ M = R; hence, x + y = 1 for some x ∈ J(R), y ∈ M . This shows that
y = 1−x ∈ U(R), a contradiction. Thus, J(R) ⊆ M . Clearly, R/M ∼= R/J(R)

M/J(R) ;
hence, R/M is weakly Boolean. Since R/M is simple and every idempotent
in R/M is central, we see that R/M ∼= Z2 or Z3.

Assume that M1,M2 are distinct maximal ideals of R such that R/M1,

R/M2
∼= Z3. Since R/(M1

⋂
M2) ∼= R/J(R)

(M1
⋂

M2)/J(R) , we see that R/(M1

⋂
M2)

is weakly Boolean. As M1 + M2 = R, By Chinese Reminder Theorem, we
have R/(M1

⋂
M2) ∼= R/M1×R/M2

∼= Z3×Z3, which is not weakly Boolean.
Hence, there is at most one maximal ideal M such that R/M ∼= Z3, as desired.

⇐= It is easy to check that R/BM(R) is isomorphic to a subring of∏
M∈Max(R) R/M which is weakly Boolean. Hence, R/BM(R) is weakly

Boolean.
For all maximal ideals M of R, as in the preceding discussion, J(R)

⊆ M , and so J(R) ⊆ BM(R). Since R is strongly *-clean, R is an abelian
clean ring. In view of [13, Proposition 4.1], R is a right quasi-duo ring,
i.e., every maximal right ideal is an ideal. Hence, BM(R) ⊆ J(R), and so
BM(R) = J(R). Thus, R/J(R) is weakly Boolean. This completes the proof,
by Lemma 3.5. �

4. Uniqueness for Projections

The aim of this section is to determine medium *-clean rings by means of the
unique property of projections. The following observation is crucial.

Theorem 4.1. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) R weakly J-*-clean;
(2) For any projections e, f ∈ R, e − f ∈ J(R) implies e = f .

Proof. =⇒ Clearly, R weakly J-*-clean. Let e, f ∈ R be projections. In light
of Theorem 2.2, R is abelian. Thus, ef = fe; hence, (e − f)3 = e − f , and so
(e − f)(1 − (e − f)2) = 0. Hence, e = f , as desired.

⇐= Let e ∈ R be an idempotent. Then, there exists a projection g ∈ R
such that e − g ∈ J(R) or e + g ∈ J(R). If e − g ∈ J(R), then e∗ − g ∈ J(R),
and so e − e∗ = (e − g) − (e∗ − g) ∈ J(R). If e + g ∈ J(R), similarly, we have
e − e∗ ∈ J(R).

Set z = 1 + (e − e∗)∗(e − e∗). Write t = z−1. Since z∗ = z, t∗ = t.
Also e∗z = e∗ee∗ = ze∗, and so e∗t = te∗, and et = te. Set f = e∗et = te∗e.
Then, f∗ = f, f2 = e∗ete∗et = e∗ee∗(tet) = e∗ztet = e∗et = f, fe = f
and ef = ee∗et = ezt = e. Now e = f + (e − f) and e − f = e − e∗et
= ee∗et − e∗et = (e − e∗)e∗et ∈ J(R). Here, f = f∗ = f2. In addition,
f = e∗e

(
1 + (e∗ − e)(e − e∗)

)−1.
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Set z′ = 1 + (e∗ − e)∗(e∗ − e). Write t′ = (z′)−1. Since (z′)∗ = z′,
(t′)∗ = t′. Also ez′ = ee∗e = z′e. Set f ′ = ee∗t′ = t′ee∗. As in the preceding
proof, we see that f ′ = (f ′)2 = (f ′)∗ and ef ′ = f ′, f ′e = e. In addition,

e − f ′ = f ′e − f ′ = t′ee∗(e − e∗) ∈ J(R),

where f ′ =
(
1 + (e − e∗)(e∗ − e)

)−1
ee∗.

Thus, e − f, e − f ′ ∈ J(R), f and f ′ are projections. Hence, f − f ′ =
(e − f ′) − (e − f) ∈ J(R). By hypothesis, f = f ′, and so

e∗e
(
1 + (e∗ − e)(e − e∗)

)−1 =
(
1 + (e − e∗)(e∗ − e)

)−1
ee∗.

It follows that(
1 + (e − e∗)(e∗ − e)

)
e∗e = ee∗(1 + (e∗ − e)(e − e∗)

)
.

Obviously, (e − e∗)(e∗ − e)e∗e = −e∗e + e∗ee∗e and ee∗(e∗ − e)(e − e∗) =
−ee∗ + ee∗ee∗. Consequently, e∗ee∗e = ee∗ee∗. One easily checks that

(e − e∗)3 − (e − e∗) = −ee∗e + e∗ee∗;(
(e − e∗)3 − (e − e∗)

)
(e + e∗) = (e − e∗)3 − (e − e∗).

Thus (e − e∗)
(
(e − e∗)2 − 1

)(
(e + e∗) − 1

)
= 0.

As e−f ∈ J(R), we see that e∗ −f ∈ J(R). Thus, (e+e∗)−2f ∈ J(R).
This implies that (e + e∗) − 1 = (2f − 1) +

(
(e + e∗) − 2f

) ∈ U(R), as
(2f − 1)2 = 1. Since (e − e∗)2 − 1, (e + e∗) − 1 ∈ U(R), we get e = e∗. Thus,
every idempotent in R is a projection. In light of [9, Lemma 2.1], R is abelian.
Therefore, R is medium *-clean. �

Projections e, f in R are said to be equivalent, write e ∼ f , in case there
exists w ∈ R such that w∗w = e and ww∗ = f (see [2]).

Corollary 4.2. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) R weakly J-*-clean;
(2) For any projections e, f ∈ R, e ∼ f implies e = f .

Proof. =⇒ (1) is clear. In light of Lemma 3.5, R/J(R) is weakly Boolean;
hence, it is strongly π-regular. By virtue of [3, Theorem 13.1.7], R has stable
range 1. If e ∼ f with projections e, f ∈ R, then eR ∼= fR. It follows by [3,
Lemma 1.4.6] that u−1eu = f . In light of Theorem 2.2, R is abelian; hence,
e = f . This proves (2).

⇐= Let e, f ∈ R be projections such that e−f ∈ J(R). Set u = 1−e−f .
Then, eu = −ef = uf . Clearly, u = u∗ = u−1 ∈ U(R). Set w = fu−1e. Then,
f = u−1eu = ww∗ and e = ufu−1 = w∗w. Hence, e ∼ f . By hypothesis,
e = f . According to Theorem 4.1, R is medium *-clean. �

Let R be a ∗-ring. An element a ∈ R is called a partial isometry provided
that a = aa∗a. An element u ∈ R is called a unitary element provided that
uu∗ = u∗u = 1 (see [2]).
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Corollary 4.3. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) R weakly J-*-clean;
(2) For any partial isometry a ∈ R, there exist a projection e and a unitary

u such that a = eu = ue.

Proof. =⇒ Clearly, R weakly J-*-clean. Let w ∈ R be a partial isometry.
Then, w = ww∗w. Hence, w∗ = w∗ww∗, ww∗ and w∗w are projections with
ww∗R ∼= w∗wR. In light of Corollary 4.2, ww∗ = w∗w. Let u = 1−w∗w +w.
Then, u∗ = 1 − w∗w + w∗ and uu∗ = u∗u = 1, i.e., u ∈ R is a uni-
tary element. Let e = ww∗. Then, e ∈ R is a projection. Furthermore,
w = ww∗(1 − ww∗ + w) = eu. In virtue of Theorem 2.2, R is ableian. Hence,
w = ue, as desired.

⇐= Suppose e ∼ f for projections e, f ∈R. Write e=w∗w and f =ww∗.
We may assume that w ∈fRe and w∗ ∈ eRf . Hence, ww∗w = we = w, i.e.,
w ∈ R is a partial isometry. By hypothesis, there exist a projection g and
a unitary u such that w = gu = ug. Accordingly, e = w∗w = (u∗g)(gu) =
u∗gu = (u∗u)g = g and f = ww∗ = (gu)(u∗g) = g(uu∗)g = g, and then
e = f . In light of Corollary 4.2, the result follows. �

Recall that an element a in a *-ring R is uniquely *-clean provided that
there exists a unique projection e such that a − e is invertible. We have

Theorem 4.4. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) R weakly J-*-clean;
(2) a2 ∈ R is uniquely *-clean for all a ∈ R.

Proof. =⇒ Let a ∈ R. Then, there exist a projection e ∈ R and a w ∈ J(R)
such that a = e + w or a = −e + w with ae = ea. Hence, a2 = e + w′

where w′ ∈ J(R). This implies that a2 = (1 − e) +
(
(2e − 1) + w′). Clearly,

(2e−1)+w′ = (2e−1)
(
1+(2e−1)w′) ∈ U(R). Thus, a2 ∈ R is *-clean. Assume

that a2 = f+v where f ∈ R is a projection and v ∈ U(R). Then, e−f ∈ U(R).
As R is abelian, it follows from (e−f)3 = e−f that (e−f)(1− (e−f)2) = 0;
hence, 1 − e + 2ef − f = 0. Thus, f = (1 − 2e)−1(1 − e) = 1 − e. Therefore,
a2 ∈ R is uniquely clean.

⇐= Clearly, R is weakly J-*-clean. Let e, f ∈ R be projections with
e−f ∈ J(R). By hypothesis, e2 is uniquely *-clean. Obviously, e2 = (1−e)+
(2e−1) = (1−f)+

(
(2f−1)+(e−f)

)
. We that 1−e, 1−f are both projections,

(2e − 1)2 = 1 and (2f − 1) + (e − f) = (2f − 1)
(
1 + (2f − 1)(e − f)

) ∈ U(R).
Thus, 1 − e = 1 − f ; hence, e = f . According to Theorem 4.1, R is medium
*-clean. �

Example. Let Z3 be the ∗-ring with ∗ the identical automorphism. Then, Z3 is
medium *-clean, but −1 ∈ Z3 is not unique *-clean, as −1 = 0+(−1) = 1+1.

Lemma 4.5. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) Every idempotent lifts modulo J(R);
(2) For any projections e, f ∈ R, e − f ∈ J(R) implies e = f ;
(3) R/J(R) weakly *-Boolean.
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Proof. =⇒ This is obvious.
⇐= Let a ∈ R. By (3), we can find some e ∈ R such that e − e2, e −

e∗ ∈ J(R) such that a − e ∈ J(R) or a + e ∈ J(R). By (1), there exists
an idempotent f ∈ R such that e − f ∈ J(R). Hence, a − f ∈ J(R) or
a + f ∈ J(R). Additionally, f − f∗ ∈ J(R). In light of Lemma , we have
a projection g ∈ R such that f − g ∈ J(R). Therefore, a − g ∈ J(R) or
a + g ∈ J(R). Hence, R is weakly J-*-clean. Therefore, R is medium *-clean,
by Theorem 4.1. �
Theorem 4.6. Let R be a *-ring. Then, R is medium *-clean if and only if

(1) Every idempotent lifts modulo J(R);
(2) R is abelian;
(3) R/J(R) weakly *-Boolean.

Proof. =⇒ This is obvious, by Theorem 2.2 and Lemma 4.5.
⇐= Suppose e−f ∈ J(R) with projections e, f ∈ R. Since R is abelian,

(e − f)3 = e − f ; hence, (e − f)
(
1 − (e − f)

)
= 0. We infer that e = f .

Therefore, we complete the proof, by Lemma 4.5. �

5. Medium Nil-*-clean Rings

In this section, we are concern on a subclass of medium *-clean rings. A *-
ring R is medium nil-*-clean if for any a ∈ R there exists a projection e ∈ R
such that a − e or a + e is nilpotent and ea = ae. We derive

Theorem 5.1. Let R be a *-ring. Then, R is medium nil-*-clean if and only
if

(1) R is medium *-clean.
(2) J(R) is nil.

Proof. =⇒ Clearly, R is strongly 2-nil-clean. In light of [5, Theorem 3.3 and
Theorem 3..6], N(R) forms an ideal of R and J(R) is nil. Hence, N(R) ⊆
J(R). Therefore, R is medium *-clean.

⇐= This is obvious. �
A ∗-ring R is called strongly nil ∗-clean if every element of R is the sum

of a projection and a nilpotent element that commute with each other.

Corollary 5.2. Let R be a *-ring. Then, R is medium nil-*-clean if and only
if R is strongly nil-*-clean, or R/J(R) ∼= Z3, with J(R) is nil, or R is the
direct product of two such rings.

Proof. ⇐= By virtue of Theorems 5.1 and 3.7, R/J(R) is a Boolean ring,
Z3 or the product of such rings. Suppose that R/J(R) is Boolean. Since
J(R) is nil and every idempotent in R is a projection, we easily check that
R is strongly nil-*-clean, as desired. =⇒ This is obvious by Theorems 3.7
and 5.1. �
Corollary 5.3. Let R be medium nil-*-clean, and let e ∈ R be an idempotent.
Then, eRe is medium nil-*-clean.
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Proof. In view of Theorem 2.2, R is abelian. As J(eRe) = eJ(R)e, we com-
plete the proof, by Theorem 5.1 and Proposition 2.6. �

Theorem 5.4. Let R be a *-ring. Then, R is medium nil-*-clean if and only
if

(1) R is strongly *-clean;
(2) R is strongly weakly nil-clean.

Proof. =⇒ This is obvious.
⇐= In light of [9, Theorem 2.2], every idempotent in R is a projection,

the result follows. �

Corollary 5.5. Let R be a *-ring. Then, R is medium nil-*-clean if and
only if

(1) R is strongly *-clean;
(2) R is R1, R2 or R1×R2, where R1 is strongly nil-clean and R2/J(R2) ∼=

Z3 and J(R2) is nil.

Proof. =⇒ In view of Theorem 2.2, R is strongly *-clean, and hence proving
(1). Clearly, R is strongly weakly nil-clean. Therefore we prove (2) by [8,
Theorem 1].

⇐= In light of [8, Theorem 1], R is strongly weakly nil-clean. Thus, we
complete the proof, by Theorem 5.4. �

Example. Let R =
{(

a b
c a

)
| a, b, c ∈ Z3

}
. Define

(
a b
c a

)
+

(
a′ b′

c′ a′

)
=

(
a + a′ b + b′

c + c′ a + a′

)
,

(
a b
c a

)(
a′ b′

c′ a′

)
=

(
aa′ ab′ + ba′

ca′ + ac′ aa′

)

and ∗ : R → R,

(
a b
c a

)
�→

(
a c
b a

)
. Then, R is medium *-clean, but it is not

strongly nil-*-clean.

Proof. In view of [4, Example 2.2], R is strongly J-*-clean, and so it is medium
*-clean. The projections in R are the zero and the identity matrix. Let A =(

2 0
0 2

)
. It is obvious that A can not be written as the sum of a projection

and a nilpotent. Thus, R is not strongly weakly nil-*-clean. �

Example. Let R =
{ (

a 2b
0 c

)
| a, b, c ∈ Z4

}
, and let

∗ : R → R,

(
a 2b
0 c

)
�→

(
c −2b
0 a

)
.

Then, R is strongly weakly nil clean, but it is not medium nil-*-clean.
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Proof. Let A =
(

a 2b
0 c

)
be a projection in R. Then,

(
a 2b
0 c

)2

=(
a2 2ab + 2bc
0 c2

)
=

(
c −2b
0 a

)
. This implies that a = a2, c = c2, a = c and

2ab + 2bc = −2b, and so (2a − 1)(2b) = 0. As (2a − 1)2 = 1, we see that

2b = 0, and so A = 0 or I2. Now let A =
(

2 2
0 1

)
∈ R. It is obvious that A

can not be written as the sum or difference of a projection and a nilpotent.
Hence, R is not medium nil-*-clean. However for anyA ∈ R, A−A2 ∈ N(R),
then R is weakly strongly nil-clean ring, as desired. �
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