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Abstract. In the present paper, we have extended the result of Sulaiman [10] dealing with W > Pn
series to the |A, p,|, summability method.
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, summability factors of Fourier

Introduction

Let }’ a, be a given infinite series with partial sums (s,). By # and ¢ we denote the nth Cesaro means of order a,
with @ > —1, of the sequence (s,) and (na,), respectively, that is (see [2])

1 © 1 v

a _ a—1 @ _ a—1

Uy = 2 E ArT)s, and f, = Y E A,Z va,, 1)
my=0 noy=0

where

(a@+ D(a+2)...(ax+n)
- n!

AY =0n"), A?,=0 for n>0. 2)

The series ) a, is said to be summable |C, a|;, k > 1, if (see [S],[8])

[e] o

1
DA - =y Il < oo. 3)

n=1 n=1

If we take a = 1, then |C, |, summability reduces to |C, 1|, summability.
Let (p,) be a sequence of positive real numbers such that

Py=) p,—ow as n—ooo, (Py=p;=0, i1 @)
v=0

The sequence-to-sequence transformation

1 n
I, = P_n Z(;vaV (5)

defines the sequence (t,) of the Riesz mean or simply the (N, p,) mean of the sequence (s,) generated by the sequence
of coeflicients (p,) (see [6]).
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The series ), a, is said to be summable |N, Pnl,, k= 1,if (see [1])

e

00 k—1
P,
Z(—) |t = 11 < . ©)
n=1 Dn
In the special case when p, = 1 for all values of n (resp. k = 1), |N, 1’"|k summability is the same as |C, 1]

(resp. | N, p, |) summability.

Let the formal expansion of a function f, periodic with period 2x, and integrable in the sense of Lebesgue over
[—m, 7], in a Fourier trigonometric series be given by

1 (o] ) [ee)
f(x) ~ an + ;(a,,cosnx + b, sinnx) = nz:(; Cn(x),

We write
du) = f(x+u) + fx—u) = 2f(x),
ﬂg:f@%mh 1) = [ lp(wldu, 0<s<n,
Un = (Hf;} logvn) (log‘n)'*¢, log‘ng >0, €>0,
where

log'n = log(log"™'n), ..., log*n = loglogn.

The Known Results

Theorem 2.1 (Chow [4], 1941) If {4,} is a convex sequence and the series Snla, convergent, then the series
>, Cu(x)4, is |C, 1| summable for almost all values of x.
Theorem 2.2 (Cheng [3], 1948) If

O =0(r), as t—0,

then the series
D Ca/llogm'™, € >0,
n=2

is summable |C, al, @ > 1.
Theorem 2.3 (Hsiang [7], 1970) If

o) =0(@), as t— +0,

then the series

S oot
n=0

is summable |C, 1|, a > 0.
Theorem 2.4 (Pandey [9], 1978) If

o(0) = O{log' (1 /0)"} as 1 +0,

then the series

S G

n=0
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is summable |C, 1| for 0 < < e.

Sulaiman has proved the more general theorem dealing with |N, p,|;, summability in the following form, which in-
cludes the theorems of Chow and Pandey as special cases, and hence all the previous results.

Theorem 2.5[10] Let {|4,|} be non-increasing sequence of constants such that |A4,| = O (M,_:I) Let P, = O(np,) and
| ACZ) |= O(2).

(A It

P Ml < oo, ™)

then the series Y, C,(x)1, is summable [N, p,li, 1 < k < 2, for almost all values of x.
(B) If {n,} is a sequence of positive constants such that n™'n,, — 0 as n — oo, for some y, 0 <y < 1, and if

o) =0{nan}, t—0 @
D puP A < o0, ©)

then the series 3, C,(x)A, is summable [N, p,li, 1 <k < co.

The Main Results

Given a normal matrix A = (a,,), i.e., a lower triangular matrix of nonzero diagonal entries. We associate two lower
semimatrices A = (a,,) and A = (a,,) as follows:

n
=) @y, mv=01,.. Aay=an-a,1,v aip=0 (10)
i=y
and
&OO = doo = Ao, &nv = A‘_znv = Qyy — (_ln—l,v’ n= 1’ 2, (11)

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series transformations,
respectively. Then, we have

A,(s) = Z$=0 ApySy = ZC:O Qpy@y (12)
and
AAn(s) = Z;l:o Qpy@y . (13)

Let A = (a,,) be a normal matrix. Then A defines the sequence-to-sequence transformation, mapping the sequence
s = (5,) to As = (A, (s)), where

n

A(s) = Zams‘, n=0,1,.. (14)
v=0

The series Y a, is said to be summable |A, p,|;, k > 1, if (see [11])

0 Pn k-1 B
Z(p—) A4, ()| < oo, (15)
n=1 n
where
AAn(s) = Z&nvsv- (16)
v=0
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Note that in the special case when A is the matrix of weighted mean, i.e.,

L 0<v<n
ayy = Pn
0, n>v,

then the summability |A, p,|, reduces to the summability | N, p, ;> and if we take a,, = 1’77 and p, = 1 for all values
of n reduces to the summability |C, 1]. Also, if we take p,, = 1 for all values of n reduces to the summability |A[; (see
[12]). For any sequence (4,) we write that A2Q, = A, — Al and A, = A, — Auer. A sequence (4,) is said to
be convex if A2, = Ad, — Ad,s > 0.

The aim of this paper is to generalize Theorem 2.5 for |A, p,|r summability method. Moreover some new results
will be obtained and extended by the author. Many papers have been made about this method (see [13]-[21]).
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