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sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

Abstract. In the present paper, we have extended the result of Sulaiman [10] dealing with
∣∣∣N̄, pn

∣∣∣
k

summability factors of Fourier
series to the |A, pn|k summability method.
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Introduction

Let
∑

an be a given infinite series with partial sums (sn). By uαn and tαn we denote the nth Cesàro means of order α,
with α > −1, of the sequence (sn) and (nan), respectively, that is (see [2])

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−v sv and tαn =

1
Aα

n

n∑
v=0

Aα−1
n−v vav, (1)

where

Aα
n =

(α + 1)(α + 2)...(α + n)
n!

= O(nα), Aα
−n = 0 for n > 0. (2)

The series
∑

an is said to be summable |C, α|k, k ≥ 1, if (see [5],[8])

∞∑
n=1

nk−1|uαn − uαn−1|
k =

∞∑
n=1

1
n
|tαn |

k < ∞. (3)

If we take α = 1, then |C, α|k summability reduces to |C, 1|k summability.
Let (pn) be a sequence of positive real numbers such that

Pn =

n∑
v=0

pv → ∞ as n→ ∞, (P−i = p−i = 0, i ≥ 1). (4)

The sequence-to-sequence transformation

tn =
1
Pn

n∑
v=0

pvsv (5)

defines the sequence (tn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn) generated by the sequence
of coefficients (pn) (see [6]).
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The series
∑

an is said to be summable
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1, if (see [1])

∞∑
n=1

(
Pn

pn

)k−1

| tn − tn−1 |
k< ∞. (6)

In the special case when pn = 1 for all values of n (resp. k = 1),
∣∣∣N̄, pn

∣∣∣
k summability is the same as |C, 1|k

(resp. | N̄, pn |) summability.

Let the formal expansion of a function f , periodic with period 2π, and integrable in the sense of Lebesgue over
[−π, π], in a Fourier trigonometric series be given by

f (x) ∼
1
2

a0 +

∞∑
n=1

(ancosnx + bnsinnx) =

∞∑
n=0

Cn(x),

We write

φ(u) = f (x + u) + f (x − u) − 2 f (x),

ϕ(t) =
∫ δ

t
|φ(u)|

u du, Φ(t) =
∫ t

0 |φ(u)|du, 0 < δ ≤ π,

µn =
(∏`−1

v=1 logvn
)

(log`n)1+ε , log`n0 > 0, ε > 0,

where

log`n = log(log`−1n), ..., log2n = loglogn.

The Known Results

Theorem 2.1 (Chow [4], 1941) If {λn} is a convex sequence and the series
∑

n−1λn convergent, then the series∑
Cn(x)λn is |C, 1| summable for almost all values of x.

Theorem 2.2 (Cheng [3], 1948) If

Φ(t) = 0(t), as t → 0,

then the series
∞∑

n=2

Cn(x)/(logn)1+ε , ε > 0,

is summable |C, α|, α > 1.
Theorem 2.3 (Hsiang [7], 1970) If

Φ(t) = 0(t), as t → +0,

then the series
∞∑

n=0

Cn(x)/nα

is summable |C, 1|, α > 0.
Theorem 2.4 (Pandey [9], 1978) If

ϕ(t) = O
{
(log`(1/t))η

}
as t → +0,

then the series
∞∑

n=0

Cn(x)/µn
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is summable |C, 1| for 0 < η < ε.
Sulaiman has proved the more general theorem dealing with |N̄, pn|k summability in the following form, which in-
cludes the theorems of Chow and Pandey as special cases, and hence all the previous results.
Theorem 2.5[10] Let {|λn|} be non-increasing sequence of constants such that |∆λn| = O

(
|λn |

n

)
. Let Pn = O(npn) and

| ∆( pn
Pn

) |= O( pn
nPn

).
(A) If ∑

pnP−1
n |λn|

k < ∞, (7)

then the series
∑

Cn(x)λn is summable |N̄, pn|k, 1 ≤ k < 2, for almost all values of x.
(B) If {ηn} is a sequence of positive constants such that n−γηn → 0 as n→ ∞, for some γ, 0 < γ < 1, and if

ϕ(t) = O
{
η(1/t)

}
, t → 0 (8)∑

pnP−1
n |λn|

kηk
n < ∞, (9)

then the series
∑

Cn(x)λn is summable |N̄, pn|k, 1 ≤ k < ∞.

The Main Results

Given a normal matrix A = (anv), i.e., a lower triangular matrix of nonzero diagonal entries. We associate two lower
semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1, v a−1,0 = 0 (10)

and

â00 = ā00 = a00, ânv = ∆̄ānv = ānv − ān−1,v, n = 1, 2, ... (11)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series transformations,
respectively. Then, we have

An(s) =
∑n

v=0 anvsv =
∑n

v=0 ānvav (12)

and

∆̄An(s) =
∑n

v=0 ânvav. (13)

Let A = (anv) be a normal matrix. Then A defines the sequence-to-sequence transformation, mapping the sequence
s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv n = 0, 1, ... (14)

The series
∑

an is said to be summable |A, pn|k, k ≥ 1, if (see [11])

∞∑
n=1

(
Pn

pn

)k−1 ∣∣∣∆̄An(s)
∣∣∣k < ∞, (15)

where

∆̄An(s) =

n∑
v=0

ânvsv. (16)
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Note that in the special case when A is the matrix of weighted mean, i.e.,

anv =

{ pv
Pn
, 0 ≤ v ≤ n

0, n > v,

then the summability |A, pn|k reduces to the summability | N̄, pn |k, and if we take anv =
pv
Pn

and pn = 1 for all values
of n reduces to the summability |C, 1|k. Also, if we take pn = 1 for all values of n reduces to the summability |A|k (see
[12]). For any sequence (λn) we write that ∆2λn = ∆λn − ∆λn+1 and ∆λn = λn − λn+1. A sequence (λn) is said to
be convex if ∆2λn = ∆λn − ∆λn+1 ≥ 0.

The aim of this paper is to generalize Theorem 2.5 for |A, pn|k summability method. Moreover some new results
will be obtained and extended by the author. Many papers have been made about this method (see [13]-[21]).
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