New result on matrix summability factors of infinite series and Fourier series

Cite as: AIP Conference Proceedings **2086**, 030046 (2019); https://doi.org/10.1063/1.5095131 Published Online: 02 April 2019

Şebnem Yıldız

ARTICLES YOU MAY BE INTERESTED IN

A new result on weighted arithmetic mean summability factors of infinite series involving almost increasing sequences

AIP Conference Proceedings 2086, 030044 (2019); https://doi.org/10.1063/1.5095129

Variations on lacunary statistical quasi Cauchy sequences AIP Conference Proceedings **2086**, 030045 (2019); https://doi.org/10.1063/1.5095130

Serum levels of lead, cadmium and silver in patients with breast cancer compared with healthy females in Iraq

AIP Conference Proceedings 2086, 030048 (2019); https://doi.org/10.1063/1.5095133

AIP Conference Proceedings 2086, 030046 (2019); https://doi.org/10.1063/1.5095131

2086, 030046

Online

© 2019 Author(s).

New Result on Matrix Summability Factors of Infinite Series and Fourier Series

Şebnem Yıldız

¹Kırşehir Ahi Evran University, Department of Mathematics, Arts and Sciences Faculty. Kırşehir- Turkey

sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

Abstract. In the present paper, we have extended the result of Sulaiman [10] dealing with $|\bar{N}, p_n|_k$ summability factors of Fourier series to the $|A, p_n|_k$ summability method.

Keywords: Summability factors, absolute matrix summability, infinite series, Fourier series, Hölder inequality, Minkowski inequality, sequence space.

PACS: 02.30.Lt, 02.30.Sa

Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . By u_n^{α} and t_n^{α} we denote the nth Cesàro means of order α , with $\alpha > -1$, of the sequence (s_n) and (na_n) , respectively, that is (see [2])

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} s_{\nu} \quad \text{and} \quad t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} v a_{\nu}, \tag{1}$$

where

$$A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)...(\alpha+n)}{n!} = O(n^{\alpha}), \quad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0.$$
⁽²⁾

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \ge 1$, if (see [5],[8])

$$\sum_{n=1}^{\infty} n^{k-1} |u_n^{\alpha} - u_{n-1}^{\alpha}|^k = \sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}|^k < \infty.$$
(3)

If we take $\alpha = 1$, then $|C, \alpha|_k$ summability reduces to $|C, 1|_k$ summability. Let (p_n) be a sequence of positive real numbers such that

$$P_{n} = \sum_{\nu=0}^{n} p_{\nu} \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$
(4)

The sequence-to-sequence transformation

$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}$$
(5)

defines the sequence (t_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) (see [6]).

International Conference of Mathematical Sciences (ICMS 2018) AIP Conf. Proc. 2086, 030046-1–030046-4; https://doi.org/10.1063/1.5095131 Published by AIP Publishing, 978-0-7354-1816-5/\$30.00

030046-1

The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \ge 1$, if (see [1])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty.$$
(6)

In the special case when $p_n = 1$ for all values of *n* (resp. k = 1), $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (resp. $|\bar{N}, p_n|$) summability.

Let the formal expansion of a function f, periodic with period 2π , and integrable in the sense of Lebesgue over $[-\pi, \pi]$, in a Fourier trigonometric series be given by

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n cosnx + b_n sinnx) = \sum_{n=0}^{\infty} C_n(x),$$

We write

$$\begin{split} \phi(u) &= f(x+u) + f(x-u) - 2f(x), \\ \varphi(t) &= \int_t^{\delta} \frac{|\phi(u)|}{u} du, \quad \Phi(t) = \int_0^t |\phi(u)| du, \quad 0 < \delta \le \pi, \\ \mu_n &= \left(\prod_{\nu=1}^{\ell-1} \log^{\nu} n \right) (\log^{\ell} n)^{1+\epsilon}, \quad \log^{\ell} n_0 > 0, \quad \epsilon > 0, \end{split}$$

where

$$log^{\ell}n = log(log^{\ell-1}n), ..., log^2n = loglogn.$$

The Known Results

Theorem 2.1 (Chow [4], 1941) If $\{\lambda_n\}$ is a convex sequence and the series $\sum n^{-1}\lambda_n$ convergent, then the series $\sum C_n(x)\lambda_n$ is |C, 1| summable for almost all values of *x*. **Theorem 2.2** (Cheng [3], 1948) If

$$\Phi(t)=0(t),\quad as\quad t\to 0,$$

then the series

$$\sum_{n=2}^{\infty} C_n(x)/(logn)^{1+\epsilon}, \quad \epsilon > 0,$$

is summable $|C, \alpha|, \alpha > 1$. **Theorem 2.3** (Hsiang [7], 1970) If

$$\Phi(t) = 0(t), \quad as \quad t \to +0,$$

then the series

$$\sum_{n=0}^{\infty} C_n(x)/n^{\alpha}$$

is summable $|C, 1|, \alpha > 0$. **Theorem 2.4** (Pandey [9], 1978) If

$$\varphi(t) = O\left\{ (log^{\ell}(1/t))^{\eta} \right\} \quad as \quad t \to +0,$$

then the series

$$\sum_{n=0}^{\infty} C_n(x)/\mu_n$$

is summable |C, 1| for $0 < \eta < \epsilon$.

Sulaiman has proved the more general theorem dealing with $|\bar{N}, p_n|_k$ summability in the following form, which includes the theorems of Chow and Pandey as special cases, and hence all the previous results.

Theorem 2.5[10] Let $\{|\lambda_n|\}$ be non-increasing sequence of constants such that $|\Delta\lambda_n| = O(\frac{|\lambda_n|}{n})$. Let $P_n = O(np_n)$ and $\begin{array}{l} |\Delta(\frac{p_n}{P_n})| = O(\frac{p_n}{nP_n}). \\ (A) \text{ If } \end{array}$

$$\sum p_n P_n^{-1} |\lambda_n|^k < \infty, \tag{7}$$

then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k$, $1 \le k < 2$, for almost all values of x. (B) If $\{\eta_n\}$ is a sequence of positive constants such that $n^{-\gamma}\eta_n \to 0$ as $n \to \infty$, for some γ , $0 < \gamma < 1$, and if

$$\varphi(t) = O\left\{\eta_{(1/t)}\right\}, \quad t \to 0 \tag{8}$$

$$\sum p_n P_n^{-1} |\lambda_n|^k \eta_n^k < \infty, \tag{9}$$

then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k$, $1 \le k < \infty$.

The Main Results

Given a normal matrix $A = (a_{nv})$, i.e., a lower triangular matrix of nonzero diagonal entries. We associate two lower semimatrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots \quad \bar{\Delta}a_{nv} = a_{nv} - a_{n-1}, v \quad a_{-1,0} = 0$$
(10)

and

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{\Delta}\bar{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \dots$$
 (11)

It may be noted that \overline{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$A_{n}(s) = \sum_{\nu=0}^{n} a_{n\nu} s_{\nu} = \sum_{\nu=0}^{n} \bar{a}_{n\nu} a_{\nu}$$
(12)

and

$$\bar{\Delta}A_n(s) = \sum_{\nu=0}^n \hat{a}_{n\nu} a_{\nu}.$$
(13)

Let $A = (a_n)$ be a normal matrix. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{\nu=0}^n a_{n\nu} s_{\nu} \quad n = 0, 1, \dots$$
(14)

The series $\sum a_n$ is said to be summable $|A, p_n|_k, k \ge 1$, if (see [11])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\bar{\Delta}A_n(s)\right|^k < \infty,\tag{15}$$

where

$$\bar{\Delta}A_n(s) = \sum_{\nu=0}^n \hat{a}_{n\nu} s_{\nu}.$$
(16)

Note that in the special case when A is the matrix of weighted mean, i.e.,

$$a_{nv} = \begin{cases} \frac{p_v}{P_n}, & 0 \le v \le n\\ 0, & n > v, \end{cases}$$

then the summability $|A, p_n|_k$ reduces to the summability $|\bar{N}, p_n|_k$, and if we take $a_{nv} = \frac{p_v}{p_n}$ and $p_n = 1$ for all values of *n* reduces to the summability $|C, 1|_k$. Also, if we take $p_n = 1$ for all values of *n* reduces to the summability $|A|_k$ (see [12]). For any sequence (λ_n) we write that $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. A sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1} \ge 0$.

The aim of this paper is to generalize Theorem 2.5 for $|A, p_n|_k$ summability method. Moreover some new results will be obtained and extended by the author. Many papers have been made about this method (see [13]-[21]).

Acknowledgment

The author acknowledges that the full paper of this extended abstract was submitted to Eurasian Mathematical Journal.

REFERENCES

- [1] H. Bor, On two summability methods, Math. Proc. Camb. Soc. 97 (1985), 147–149.
- [2] E. Cesàro, *Sur la multiplication des sèries*, Bull. Sci. Math. **14** (1890), 114–120.
- [3] M.T. Cheng, *Summability factors of Fourier series*, Duke Math. J. **15** (1948), 17–27.
- [4] H.C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 165 (1941), 215–226.
- [5] T. M. Flett, *On an extension of absolute summability and some theorems of Littlewood and Paley*, Proc. Lond. Math. Soc. 7 (1957), 113–141.
- [6] G. H. Hardy, *Divergent Series*, Oxford Univ. Press, Oxford (1949).
- [7] F.C. Hasiang, On |C, 1| summability factors of Fourier series at a given point, Pacific J. Math. 33 (1970), 139–147.
- [8] E. Kogbetliantz, *Sur lès series absolument sommables par la methode des moyennes arithmetiques*, Bull. Sci. Math. **49** (1925), 234–256.
- [9] G.S. Pandey, *Multipliers for* |*C*, 1| *summability of Fourier series*, Pacific J. Math. **79** (1978), 177–182.
- [10] W. T. Sulaiman, $On |\bar{N}, p_n|_k$ summability factors of Fourier series, Portugaliae Math. 45 2 (1988), 115–124.
- W. T. Sulaiman, *Inclusion theorems for absolute matrix summability methods of an infinite series*, IV. Indian J. Pure Appl. Math. 34 11 (2003), 1547–1557.
- [12] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser III, 14 (34) (1979), 87–97.
- [13] S. Yıldız, On Riesz summability factors of Fourier series, Trans. A. Razmadze Math. Inst. **171** (2017), 328–331.
- S. Yıldız, A new generalization on absolute matrix summability factors of Fourier series, J. Inequal. Spec. Funct.8 (2) (2017), 65–73.
- S. Yıldız, On Absolute Matrix Summability Factors of infinite Series and Fourier Series, Gazi Univ. J. Sci. 30 (1) (2017), 363–370.
- [16] S. Yıldız, A new theorem on absolute matrix summability of Fourier series, Pub. Inst. Math. (N.S.) 102 (116) (2017), 107-113.
- [17] S. Yıldız, On Application of Matrix Summability to Fourier Series, Math. Methods Appl. Sci. **41** (2) (2018), 664-670.
- [18] S. Yıldız, On the Absolute Matrix Summability Factors of Fourier Series, Mathematical Notes, **103** (1-2) (2018), 297-303.
- [19] S. Yıldız, A New Note on General Matrix Application of Quasi-monotone Sequences, Filomat, **32** (10) (2018), 3709-3715.
- [20] S. Yıldız, A matrix application on absolute weighted arithmetic mean summability factors of infinite series, Tbilisi Mathematical Journal, **11** (2) (2018), 59-65.
- [21] S. Yıldız, Absolute Matrix Summability Factors of Fourier Series with Quasi-f-Power Increasing Sequences, Electronic Notes in Discrete Mathematics 67 (2018), 37-41.