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1 Introduction

It is well known that under different assumptions, for various optimal control problems
described by Bianchi equations and the equations of mathematical physics, a number
of necessary and sufficient conditions of optimality were obtained. Development of
optimal control theory led to its application to various problems, such as mathematical
modeling of a controlled objects, optimization of dynamical systems and others.Many
of these optimal control problems are described by Bianchi equations, and there are
numerous works devoted to solutions of these equations.

The Pontryagin’s maximum principle is a fundamental result of the theory of nec-
essary optimality conditions of the first order, which initially was proved (in the linear
case by Gamkrelidze, in the nonlinear case by Boltyanskii [1]) for optimal control
problems described by ordinary differential equations. Later works were dedicated
for obtaining necessary conditions for optimality in more complex control problems
with concentrated and distributed parameters. Optimal control problems described
by hyperbolic equations under Goursat conditions, originate in [2]. Further various
aspects of the problem of optimal control processes described by Goursat-Darboux
systems, were investigated in [3–7] and others. Many of the processes occurring in
the theory of filtration of fluids in fractured media were described by pseudoparabolic
(hyperbolic) and parabolic equations with discontinuous coefficients. Note that some
properties of the solutions of the Dirichlet problem for a parabolic equation with
discontinuous coefficients in Sobolev-type spaces were investigated in [8] and, etc.

Well-defined solvability of the Goursat boundary value problem plays an important
role in qualitative theory of optimal processes. The Goursat problem for hyperbolic
equations with discontinuous coefficients under the nonclassical boundary conditions
were studied in [9–12] and others. In the monograph of Mordukhovich [13], effective
methods for solving complex optimization and control problems with a nonsmooth
and nonconvex structure, based on simple problems of constructive approximations,
were investigated. The present work is devoted for obtaining a necessary and suffi-
cient condition such as the Pontryagin’s maximum principle for an optimal control
problem with distributed parameters described by a third-order Bianchi equation with
coefficients in variable exponent Lebesgue spaces. Recently, the optimal control prob-
lem in the processes described by the Goursat problem for a hyperbolic equation in
variable exponent Sobolev spaces with dominating mixed derivatives was studied in
[14]. To study the optimal control problem, the Hardy operator appears in Lebesgue
spaces. Therefore, investigation of the Hardy operator in different function spaces
plays an important role, see, for example [15]. At the turn of the millennium, various
developments lead to the start of a period of systematic intense study of variable expo-
nent spaces. First, the connection was made between variable exponent spaces and
variational integrals with nonstandard growth and coercivity conditions. It was also
observed that these nonstandard variational problems are related to modeling of so-
called electrorheological fluids. Moreover, progress in physics and engineering over
the past ten year has made the study of fluid mechanical properties of these fluids an
important issue, see [16].

In this paper, the optimal control problem for the third-order Bianchi equation
with coefficients in variable exponent Lebesgue spaces with nonclassical Goursat
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boundary value problem is investigated. The statement of optimal control problem
is studied by using a new version of the increment method that essentially uses the
concept of an adjoint equation of the integral form. The method also includes the case
where the coefficients of the equation are nonsmooth functions from variable exponent
Lebesgue spaces. In this paper, it is shown that such an optimal control problem can
be investigated with the help of a new concept of the adjoint equation, which can be
regarded as an auxiliary equation for determination of Lagrange multipliers. In the
future, we can consider a variety of classes of optimal control problem described by
loaded integro-differential equations for various nonlocal boundary conditions. These
optimal control problems actually describe more complex control processes that are
very important in the theory of optimal processes. The results can be used in the theory
of optimal processes for distribution Pontryagin’s maximum principle for various
controlled processes described by third-order Bianchi equation with discontinuous
coefficients in variable exponent Sobolev spaces with dominant mixed derivatives.

The paper is organized as follows. Section 2 contains some preliminaries alongwith
the standard ingredients used in the proofs. In Sect. 3, we give the problem statement,
and in Sect. 4, we show the construction of an adjoint equation of the considered
optimal control problem. In Sect. 5, we give the proof of the main result.

2 Preliminaries and Bianchi Equation in Variable Exponent Sobolev
Spaces

Now we reduce an illustrative example demonstrating appearance of the variable
exponent Sobolev space. Let G0 = G0

1 ×G0
2 ×G0

3 = (0, h1)× (0, h2)× (0, h3) be a
rectangle in R3, and hi (i = 1, 2, 3) be fixed real numbers. We consider the following
linear 3D Goursat boundary value problem

D1D2D3u(x) + a1,1,0(x)D1D2u(x)

+ a0,1,1(x)D2D3u(x) + a1,0,1(x)D1D3u(x) = f (x), x ∈ G0

u|x1=0 = F1
(
x2, x3

) ∈ SW (1,1)
(p2(x2),p3(x3))

(
G0

2 × G0
3

)
,

u|x2=0 = F2
(
x1, x3

) ∈ SW (1,1)
(p1(x1),p3(x3))

(
G0

1 × G0
3

)
,

u|x3=0 = F3
(
x1, x2

) ∈ SW (1,1)
(p1(x1),p2(x2))

(
G0

1 × G0
2

)
,

with agreement conditions

F1
(
x2, x3

)∣∣
x3=0 = F3

(
x1, x2

)∣∣
x1=0 ,

F1
(
x2, x3

)∣∣
x2=0 = F2

(
x1, x3

)∣∣
x1=0 ,

F2
(
x1, x3

)∣∣
x3=0 = F3

(
x1, x2

)∣∣
x2=0 .

Suppose f ∈ L p(x)(G0). For example, let p(x) =
3∑

i=1
piχG0

i
(x), where χG0

i
(x) is

the characteristic function of the set G0
i . Then, the function f (x) = x

− 1
2

1 x
p2−3
p2

2 x
− 1

3
3

belongs to L(p1,p2,p3)(G0) if p1 < 2, p2 > 2 and p3 < 3. This example shows that
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there is no a constant that characterizes the belonging of this function to the space
L p(G0). A more complicated situation appears, when p is not a simple function on
G0. In such cases, a variable exponent Sobolev spaces appear.

Let R3 be the three-dimensional Euclidean space of points x = (
x1, x2, x3

)
,

|x | = (∑3
i=1 x

2
i

)1/2 and let G = G1 × G2 × G3 = (
x01 , h1

) × (
x02 , h2

) × (
x03 , h3

)

be a rectangle in R
3, x0 = (

x01 , x
0
2 , x

0
3

)
and hi (i = 1, 2, 3) be fixed real num-

bers.
By P(G), we denote the set of Lebesgue measurable functions such that p : G �→
[1,∞) . The functions p ∈ P(G) are called variable exponents on G. We define
p= essinf

x∈G p(x) and p = esssup
x∈G

p(x). We denote

r1(x1) = lim
x3→x03+0
x2→x02+0

p(x1, x2, x3), r2(x2) = lim
x3→x03+0
x1→x01+0

p(x1, x2, x3)

and

r3
(
x3

) = lim
x2→x02+0
x1→x01+0

p(x1, x2, x3).

Letq(x)be the conjugate variable exponent functionof p definedby
1

p(x)
+ 1

q(x)
= 1.

Assume
1

r1(x1)
+ 1

s1(x1)
= 1 and

1

r2(x2)
+ 1

s2(x2)
= 1,

1

r3(x3)
+ 1

s3(x3)
= 1,where

x ∈ G. Obviously, esssup
x∈G

q(x) = q = p

p − 1
and essinf

x∈G q(x) = q = p

p − 1
.

Definition 2.1 [16,17] Let p ∈ P(G).By L p(x)(G), we denote the space of Lebesgue
measurable functions f on G such that for some λ0 > 0

∫

G

( | f (x)|
λ0

)p(x)

dx < ∞.

Note that the functional

‖ f ‖L p(x)(G) = ‖ f ‖p(·) = inf

{

λ > 0 :
∫

G

( | f (x)|
λ

)p(x)

dx ≤ 1

}

defines the norm in L p(x)(G) and L p(x)(G) is a Banach function space (see, [16,17]).

Definition 2.2 Let p ∈ P(G). By SW (1,1,1)
p(x) (G), we define the variable exponent

Sobolev spaces of function with dominating mixed derivatives as
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SW (1,1,1)
p(x) (G)

:=
{
u ∈ L loc

1 (G) : Di1
1 Di2

2 Di3
3 u(x) ∈ L p(x)(G), ik = 0, 1, k = 1, 2, 3

}
.

Obviously, the expression

‖u‖
SW (1,1,1)

p(·) (G)
=

1∑

i1,i2,i3=0

∥∥
∥Di1

1 Di2
2 Di3

3 u
∥∥
∥
L p(·)(G)

< ∞

defines the norm in SW (1,1,1)
p(x) (G).

Lemma 2.1 Let p ∈ P(G) and 1 < p ≤ p < ∞. Then, the space SW (1,1,1)
p(x) (G) is

complete.

Proof Let {un}∞n=1 be a Cauchy sequence in SW (1,1,1)
p(x) (G). Then,

{
Di1
1 Di2

2 Di3
3 un

}
is

a Cauchy sequence in L p(x)(G) for all 0 ≤ i1, i2, i3 ≤ 1. By the completeness of
L p(x)(G) (see [17]), there exists gi1,i2,i3 ∈ L p(x)(G) such that

∥∥∥Di1
1 Di2

2 Di3
3 un − gi1,i2,i3

∥∥∥
L p(x)(G)

→ 0 as n → ∞

and for all 0 ≤ i1, i2, i3 ≤ 1. Applying the Hölder inequality in variable exponent
Lebesgue spaces (see [16,17]), for ϕ ∈ C∞

c (G) we get
∫

G

(
Di1
1 Di2

2 Di3
3 un(x) − gi1,i2,i3(x)

)
Di1
1 Di2

2 Di3
3 ϕ(x) dx

≤
(
1

p
+ 1

p

)∥∥∥Di1
1 Di2

2 Di3
3 un − gi1,i2,i3

∥∥∥
L p(x)(G)

∥∥∥Di1
1 Di2

2 Di3
3 ϕ

∥∥∥
Lq(x)(G)

.

Since
∥∥
∥Di1

1 Di2
2 Di3

3 un − gi1,i2,i3

∥∥
∥
L p(x)(G)

→ 0 and Di1
1 Di2

2 Di3
3 ϕ(x) are bounded for

any ϕ ∈ C∞
c (G), by the Lebesgue dominated convergence theorem in variable

Lebesgue spaces (see [17]), we have

lim
n→∞

∫

G
un(x) D

i1
1 Di2

2 Di3
3 ϕ(x) dx =

∫

G
gi1,i2,i3(x) D

i1
1 Di2

2 Di3
3 ϕ(x) dx .

Therefore, for all ϕ ∈ C∞
c (G), we have

∫

G
u(x)Di1

1 Di2
2 Di3

3 ϕ(x) dx = lim
n→∞

∫

G
un(x)D

i1
1 Di2

2 Di3
3 ϕ(x) dx

= (−1)i1+i2+i3 lim
n→∞

∫

G
Di1
1 Di2

2 Di3
3 un(x)ϕ(x) dx

= (−1)i1+i2+i3

∫

G
gi1,i2,i3(x)ϕ(x) dx .
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This shows that Di1
1 Di2

2 Di3
3 u exists weakly and gi1,i2,i3 = Di1

1 Di2
2 Di3

3 u. Thus, u ∈
SW (1,1,1)

p(x) (G) and un → u as n → ∞, that completes the proof. �	

3 Problem Statement

By L(p1(x1),p2(x2),p3(x3))(G), we denote the variable Lebesgue spaces of the mixed
norm defined as

‖ f ‖L(p1(x1),p2(x2),p3(x3))(G) = ∥∥∥∥‖ f ‖L p1(x1)(G1)

∥∥
L p2(x2)(G2)

∥∥
L p3(x3)(G3)

< ∞.

Let the controlled object be described by the Bianchi equation

(
V1,1,1u

)
(x) ≡ D1D2D3u(x) +

1∑

i1,i2,i3=0
0≤i1+i2+i3≤2

ai1,i2,i3(x)D
i1
1 Di2

2 Di3
3 u(x)

= ϕ(x, ν(x)), (1)

and the following nonclassical Goursat conditions (see [9])

V0,0,0u ≡ u
(
x0

) = ϕ0,0,0,(
V1,0,0u

)(
x1

) ≡ D1u
(
x1, x02 , x

0
3

) = ϕ1,0,0
(
x1

)
,(

V0,1,0u
)(
x2

) ≡ D2u
(
x01 , x2, x

0
3

) = ϕ0,1,0
(
x2

)
,(

V0,0,1u
)(
x3

) ≡ D3u
(
x01 , x

0
2 , x3

) = ϕ0,0,1
(
x3

)
,(

V1,1,0u
)(
x1, x2

) ≡ D1D2u
(
x1, x2, x03

) = ϕ1,1,0
(
x1, x2

)
,(

V0,1,1u
)(
x2, x3

) ≡ D2D3u
(
x01 , x2, x3

) = ϕ0,1,1
(
x2, x3

)
,(

V1,0,1u
)(
x1, x3

) ≡ D1D3u
(
x1, x02 , x3

) = ϕ1,0,1
(
x1, x3

)
,

(2)

where a0,0,0(x) ∈ L p(x)(G), a1,0,0(x) ∈ L(∞,r2(x2),r3(x3))(G),

a0,1,0(x) ∈ L(r1(x1),∞,r3(x3))(G), a0,0,1(x) ∈ L(r1(x1),r2(x2),∞)(G),

a1,1,0(x) ∈ L(∞,∞,r3(x3))(G), a0,1,1(x) ∈ L(r1(x1),∞,∞)(G),

a1,0,1(x) ∈ L(∞,r2(x2),∞)(G), ϕ0,0,0 ∈ R, ϕ1,0,0(x1) ∈ Lr1(x1)(G1),

ϕ0,1,0
(
x2

) ∈ L
r2
(
x2

)(G2), ϕ0,0,1(x3) ∈ Lr3(x3)(G3),

ϕ1,1,0(x1, x2) ∈ L(r1(x1),r2(x2))(G1 × G2),

ϕ0,1,1 (x2, x3) ∈ L(r2(x2),r3(x3))(G2 × G3),

ϕ1,0,1(x1, x3) ∈ L(r1(x1),r3(x3))(G1 × G3) and Dk = ∂

∂xk
(k = 1, 2, 3) is the gener-

alized differential operator in the weak sense. Let ν(x) = (ν1(x), . . . , νm(x)) be a
m-dimensional control vector function and ϕ (x, ν(x)) be a given function defined on
G × R

m and satisfying Caratheodory condition on G × R
m :

(1) ϕ(x, ν) is measurable by x in G for all ν ∈ R
m;

(2) ϕ(x, ν) is continuous by ν in Rm for almost all x ∈ G;
(3) for any δ > 0 there exists ϕ0

δ (x) ∈ L p(x)(G) such that |ϕ(x, ν)| ≤ ϕ0
δ (x) for

almost all x ∈ G and ‖ν‖ =
m∑

i=1
|νi | ≤ δ.
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Since the coefficients of the Bianchi equation (1) are nonsmooth, wemean the solution
of the problem (1)–(2) in the weak sense. Let the vector function ν(x) be measurable
and bounded on G and for almost every x ∈ G it takes its value from the given set
Ω ⊂ R

m . Then, the vector function is called an admissible control. The set of all
admissible controls is denoted by Ω∂.

Nowconsider the following 3Doptimal control problem: Find an admissible control
ν(x) from Ω∂, for which the solution of the problem (1)–(2) u ∈ SW (1,1,1)

p(x) (G) that
minimize of the multi-point functional

F(ν) =
N∑

k=1

[
α

(1,0,0)
k u

(
x (k)
1 , h2, h3

) + α
(0,1,0)
k u

(
h1, x

(k)
2 , h3

)

+ α
(0,0,1)
k u

(
h1, h2, x

(k)
3

) + α
(1,1,0)
k u

(
x (k)
1 , x (k)

2 , h3
) + α

(0,1,1)
k u

(
h1, x

(k)
2 , x (k)

3

)

+ α
(1,0,1)
k u

(
x (k)
1 , h2, x

(k)
3

) + α
(1,1,1)
k u

(
x (k)
1 , x (k)

2 , x (k)
3

)] → min, (3)

where
(
x (k)
1 , x (k)

2 , x (k)
3

) ∈ G are the given fixed points, α
(i1,i2,i3)
k are the given real

numbers and N is a positive integer, i j = 0, 1, j = 1, 2, 3 and 1 ≤ i1 + i2 + i3 ≤ 3.

4 The Construction of Adjoint Equation for the Optimal Control
Problem (1)–(3)

To obtain the necessary and sufficient conditions for optimality first we find the incre-
ment of the functional (3). Let ν(x) and ν(x)+Δν(x) be different admissible controls,
and u(x) and u(x)+Δu(x) solutions of the problem (1)–(2) in the space SW (1,1,1)

p(x) (G).

Then, the increment of the functional (3) is of the form

ΔF(ν) =
N∑

k=1

[
α

(1,0,0)
k Δu

(
x (k)
1 , h2, h3

) + α
(0,1,0)
k Δu

(
h1, x

(k)
2 , h3

)

+ α
(0,0,1)
k Δu

(
h1, h2, x

(k)
3

) + α
(1,1,0)
k Δu

(
x (k)
1 , x (k)

2 , h3
)

+ α
(0,1,1)
k Δu

(
h1, x

(k)
2 , x (k)

3

) + α
(1,0,1)
k Δu

(
x (k)
1 , h2, x

(k)
3

)

+ α
(1,1,1)
k Δu

(
x (k)
1 , x (k)

2 , x (k)
3

) ]
. (4)

Obviously, in this case, the functionΔu ∈ SW (1,1,1)
p(x) (G) is the solution of the equation

V1,1,1Δu(x) = Δϕ(x), (5)

satisfying the trivial conditions

123



310 J Optim Theory Appl (2019) 180:303–320

V0,0,0Δu = 0,(
V1,0,0Δu

) (
x1

) = 0,(
V0,1,0Δu

) (
x2

) = 0,(
V0,0,1Δu

) (
x3

) = 0,(
V1,1,0Δu

) (
x1, x2

) = 0,(
V0,1,1Δu

) (
x2, x3

) = 0,(
V1,0,1Δu

) (
x1, x3

) = 0,

(6)

where Δϕ(x) = ϕ (x, ν(x) + Δν(x)) − ϕ (x, ν(x)) . Let us denote

V = (
V1,1,1, V0,0,0, V1,0,0, V0,1,0, V0,0,1, V1,1,0, V0,1,1, V1,0,1

)

and

Ep(x)(G) ≡ L p(x)(G) × R × Lr1(x1) (G1) × Lr2(x2) (G2)

× Lr3(x3) (G3) × L(r1(x1),r2(x2)) (G1 × G2)

× L(r2(x2),r3(x3)) (G2 × G3) × L(r1(x1),r3(x3)) (G1 × G3) .

Let B(G) denote the set of variable exponents p(x) such that V is bounded from
SW (1,1,1)

p(x) (G) to Ep(x)(G). Then, the operator V : SW (1,1,1)
p(x) (G) �→ Ep(x)(G) gener-

ated by the problem (1)–(2) is bounded by the above-mentioned assumptions.
The integral representation of the functions in the space SW (1,1,1)

p(x) (G)

u(x) = u
(
x01 , x

0
2 , x

0
3

)
+

∫ x1

x01

uα1

(
α1, x

0
2 , x

0
3

)
dα1 +

∫ x2

x02

uα2

(
x01 , α2, x

0
3

)
dα2

+
∫ x3

x03

uα3

(
x01 , x

0
2 , α3

)
dα3 +

∫ x1

x01

∫ x2

x02

uα1α2

(
α1, α2, x

0
3

)
dα1dα2

+
∫ x2

x02

∫ x3

x03

uα2α3

(
x01 , α2, α3

)
dα2dα3 +

∫ x1

x01

∫ x3

x03

uα1α3

(
α1, x

0
2 , α3

)
dα1dα3

+
∫ x1

x01

∫ x2

x02

∫ x3

x03

uα1α2α3 (α1, α2, α3) dα1dα2dα3 (7)

holds. It is obvious that the weak derivatives have the form

D1u(x) = ux1(x1, x
0
2 , x

0
3 ) +

∫ x2

x02

ux1α2(x1, α2, x
0
3 )dα2

+
∫ x3

x03

ux1α3(x1, x
0
2 , α3)dα3 +

∫ x2

x02

∫ x3

x03

ux1α2α3(x1, α2, α3)dα2dα3,

D2u(x) = ux2(x
0
1 , x2, x

0
3 ) +

∫ x1

x01

uα1x2(α1, x2, x
0
3 )dα1

+
∫ x3

x03

ux2α3(x
0
1 , x2, α3)dα3 +

∫ x1

x01

∫ x3

x03

uα1x2α3(α1, x2, α3)dα1dα3,
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D3u(x) = ux3(x
0
1 , x

0
2 , x3) +

∫ x2

x02

uα2x3(x
0
1 , α2, x3)dα2

+
∫ x1

x01

uα1x3(α1, x
0
2 , x3)dα1 +

∫ x1

x01

∫ x2

x02

uα1α2x3(α1, α2, x3)dα1dα2,

D1D2u(x) = ux1x2(x1, x2, x
0
3 ) +

∫ x3

x03

ux1x2α3(x1, x2, α3)dα3,

D2D3u(x) = ux2x3(x
0
1 , x2, x3) +

∫ x1

x01

uα1x2x3(α1, x2, x3)dα1

and

D1D3u(x) = ux1x3(x1, x
0
2 , x3) +

∫ x2

x02

ux1α2x3(x1, α2, x3)dα2.

Remark 4.1 Note that in the case p(x) = p = const the integral representation (7)
was obtained in [18]. The proof of integral representation (7) in the variable exponent
case is similar to the constant exponent case.

Next, we show that the operator V has an adjoint operator V � = (
ω1,1,1, ω0,0,0,

ω1,0,0, ω0,1,0, ω0,0,1, ω1,1,0, ω0,1,1, ω1,0,1
)
, which boundedly acts in the spaces

Eq(x)(G) ≡ Lq(x)(G) × R × Ls1(x1) (G1) × Ls2(x2) (G2) × Ls3(x3) (G3)

× L(s1(x1),s2(x2)) (G1 × G2) × L(s2(x2),s3(x3)) (G2 × G3)

× L(s1(x1),s3(x3)) (G1 × G3)

and satisfies conditions (5) and (6). Let

f =(
f1,1,1(x), f0,0,0, f1,0,0(x1), f0,1,0(x2), f0,0,1(x3), f1,1,0(x1, x2),

f0,1,1(x2, x3), f1,0,1(x1, x3)
) ∈ Eq(x)(G)

be an arbitrary linear bounded functional on Ep(x)(G), u ∈ SW (1,1,1)
p(x) (G) and 1

p(x) +
1

q(x) = 1. Then, by the general form of linear functional in Ep(x)(G), we have

f (Vu) =
∫

G
f1,1,1(x)(V1,1,1u)(x)dx + f0,0,0V0,0,0u

+
∫

G1

f1,0,0(x1)(V1,0,0u)(x1)dx1 +
∫

G2

f0,1,0(x2)(V0,1,0u)(x2)dx2

+
∫

G3

f0,0,1(x3)(V0,0,1u)(x3)dx3

+
∫

G1×G2

f1,1,0(x1, x2)(V1,1,0u)(x1, x2)dx1dx2
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+
∫

G2×G3

f0,1,1(x2, x3)(V0,1,1u)(x2, x3)dx2dx3

+
∫

G1×G3

f1,0,1(x1, x3)(V1,0,1u)(x1, x3)dx1dx3.

By (2), we get

f (Vu) =
∫

G3

f0,0,1(x3)D3u(x01 , x
0
2 , x3)dx3 + f0,0,0u(x0)

+
∫

G
f1,1,1(x)

[
D1D2D3u(x) +

1∑

i1,i2,i3=0
0≤i1+i2+i3≤2

ai1,i2,i3(x)D
i1
1 Di2

2 Di3
3 u(x)

]
dx

+
∫

G1

f1,0,0(x1)D1u(x1, x
0
2 , x

0
3 )dx1 +

∫

G2

f0,1,0(x2)D2u(x01 , x2, x
0
3 )dx2

+
∫

G1

∫

G2

f1,1,0(x1, x2)D1D2u(x1, x2, x
0
3 )dx1dx2

+
∫

G2

∫

G3

f0,1,1(x2, x3)D2D3u(x01 , x2, x3)dx2dx3

+
∫

G1

∫

G3

f1,0,1(x1, x3)D1D3u(x1, x
0
2 , x3)dx1dx3. (8)

By substituting expressions for the weak derivatives and (7) in (8), we get

f (Vu) =
∫

G
f1,1,1(x)

{
D1D2D3u(x) + a1,1,0(x)

[
ux1x2u(x1, x2, x

0
3 )

+
∫ x3

x03

ux1x2α3(x1, x2, α3)dα3

]

+a0,1,1(x)

[
ux2x3u(x01 , x2, x3) +

∫ x1

x01

uα1x2x3(α1, x2, x3)dα1

]

+a1,0,1(x)

[
ux1x3u(x1, x

0
2 , x3) +

∫ x2

x02

ux1α2x3(x1, α2, x3)dα2

]

+a1,0,0(x)

[
ux1(x1, x

0
2 , x03 ) +

∫ x2

x02

ux1α2 (x1, α2, x
0
3 )dα2

+
∫ x3

x03

ux1α3 (x1, x
0
2 , α3)dα3 +

∫ x2

x02

∫ x3

x03

ux1α2α3(x1, α2, α3)dα2dα3

]

+a0,1,0(x)

[
ux2u(x01 , x2, x

0
3 ) +

∫ x1

x01

uα1x2 (α1, x2, x
0
3 )dα1

+
∫ x3

x03

ux2α3(x
0
1 , x2, α3)dα3 +

∫ x1

x01

∫ x3

x03

uα1x2α3 (α1, x2, α3)dα1dα3

]
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+ a0,0,1(x)

[
ux3u(x01 , x

0
2 , x3) +

∫ x2

x02

uα2x3(x
0
1 , α2, x3)dα2

+
∫ x1

x01

uα1x3(α1, x
0
2 , x3)dα1 +

∫ x1

x01

∫ x2

x02

uα1α2x3(α1, α2, x3)dα1dα2

]

+ a0,0,0(x)
[
u(x01 , x

0
2 , x

0
3 ) +

∫ x1

x01

uα1(α1, x
0
2 , x

0
3 )dα1

+
∫ x2

x02

uα2(x
0
1 , α2, x

0
3 )dα2 +

∫ x3

x03

uα3(x
0
1 , x

0
2 , α3)dα3

+
∫ x1

x01

∫ x2

x02

uα1α2(α1, α2, x
0
3 )dα1dα2 +

∫ x2

x02

∫ x3

x03

uα2α3(x
0
1 , α2, α3)dα2dα3

+
∫ x1

x01

∫ x3

x03

uα1α3(α1, x
0
2 , α3)dα1dα3 + f0,0,0u(x01 , x

0
2 , x

0
3 )

+
∫ x1

x01

∫ x2

x02

∫ x3

x03

uα1α2α3(α1, α2, α3)dα1dα2dα3

]}
dx

+
∫

G1

f1,0,0(x1)D1u(x1, x
0
2 , x

0
3 )dx1 +

∫

G2

f0,1,0(x2)D2u(x01 , x2, x
0
3 )dx2

+
∫

G3

f0,0,1(x3)D3u(x01 , x
0
2 , x3)dx3

+
∫

G1

∫

G2

f1,1,0(x1, x2)D1D2u(x1, x2, x
0
3 )dx1dx2

+
∫

G2

∫

G3

f0,1,1(x2, x3)D2D3u(x01 , x2, x3)dx2dx3

+
∫

G1

∫

G3

f1,0,1(x1, x3)D1D3u(x1, x
0
2 , x3)dx1dx3.

We denote

ω0,0,0 f ≡
∫

G
f1,1,1(x)a0,0,0(x)dx + f0,0,0,

(ω1,0,0 f )(x1) ≡
∫ h1

x1

∫ h2

x02

∫ h3

x03

f1,1,1(α1, x2, x3)a0,0,0(α1, x2, x3)dα1dx2dx3

+
∫ h2

x02

∫ h3

x03

f1,1,1(x)a1,0,0(x)dx2dx3 + f1,0,0(x1),

(ω0,1,0 f )(x2) ≡
∫ h1

x01

∫ h2

x2

∫ h3

x03

f1,1,1(x1, α2, x3)a0,0,0(x1, α2, x3)dx1dα2dx3

+
∫ h1

x01

∫ h3

x03

f1,1,1(x)a0,1,0(x)dx1dx3 + f0,1,0(x2),
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(ω0,0,1 f )(x3) ≡
∫ h1

x01

∫ h2

x02

∫ h3

x3
f1,1,1(x1, x2, α3)a0,0,0(x1, x2, α3)dx1dx2dα3

+
∫ h1

x01

∫ h2

x02

f1,1,1(x)a0,0,1(x)dx1dx2 + f0,0,1(x3),

(ω1,1,0 f )(x1, x2) ≡
∫ h1

x1

∫ h2

x2

∫ h3

x03

f1,1,1(α1, α2, x3)a0,0,0(α1, α2, x3)dα1dα2dx3

+
∫ h2

x2

∫ h3

x03

f1,1,1(x1, α2, x3)a1,0,0(x1, α2, x3)dα2dx3 + f1,1,0(x1, x2)

+
∫ h1

x1

∫ h3

x03

f1,1,1(α1, x2, x3)a0,1,0(α1, x2, x3)dα1dx3

+
∫ h3

x03

f1,1,1(x)a1,1,0(x)dx3,

(ω0,1,1 f )(x2, x3) ≡
∫ h1

x01

∫ h2

x2

∫ h3

x3
f1,1,1(x1, α2, α3)a0,0,0(x1, α2, α3)dx1dα2dα3

+
∫ h1

x01

∫ h3

x3
f1,1,1(x1, x2, α3)a0,1,0(x1, x2, α3)dx1dα3 + f0,1,1(x2, x3)

+
∫ h1

x01

∫ h2

x2
f1,1,1(x1, α2, x3)a0,0,1(x1, α2, x3)dx1dα2

+
∫ h1

x01

f1,1,1(x)a0,1,1(x)dx1,

(ω1,0,1 f )(x1, x3) ≡
∫ h1

x1

∫ h2

x02

∫ h3

x3
f1,1,1(α1, x2, α3)a0,0,0(α1, x2, α3)dα1dx2dα3

+
∫ h2

x02

∫ h3

x3
f1,1,1(x1, x2, α3)a1,0,0(x1, x2, α3)dx2dα3 + f1,0,1(x1, x3)

+
∫ h1

x1

∫ h2

x02

f1,1,1(α1, x2, x3)a0,0,1(α1, x2, x3)dα1dx2

+
∫ h2

x02

f1,1,1(x)a1,0,1(x)dx2

and

(ω1,1,1 f )(x) ≡
∫ h1

x1

∫ h2

x2

∫ h3

x3
f1,1,1(α1, α2, α3)a0,0,0(α1, α2, α3)dα1dα2dα3

+ f1,1,1(x) +
∫ h2

x2

∫ h3

x3
f1,1,1(x1, α2, α3)a1,0,0(x1, α2, α3)dα2dα3

+
∫ h1

x1

∫ h3

x3
f1,1,1(α1, x2, α3)a0,1,0(α1, x2, α3)dα1dα3

+
∫ h1

x1

∫ h2

x2
f1,1,1(α1, α2, x3)a0,0,1(α1, α2, x3)dα1dα2
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+
∫ h3

x3
f1,1,1(x1, x2, α3)a1,1,0(x1, x2, α3)dα3

+
∫ h1

x1
f1,1,1(α1, x2, x3)a0,1,1(α1, x2, x3)dα1

+
∫ h2

x2
f1,1,1(x1, α2, x3)a1,0,1(x1, α2, x3)dα2.

Finally, we have

f (Vu) = u(x01 , x02 , x03 )ω0,0,0 f +
∫

G1

(ω1,0,0 f )(x1)D1u(x1, x
0
2 , x03 )dG1

+
∫

G2

(ω0,1,0 f )(x2)D2u(x01 , x2, x
0
3 )dx2

+
∫

G3

(ω0,0,1 f )(x3)D3u(x01 , x02 , x3)dx3

+
∫

G1

∫

G2

(ω1,1,0 f )(x1, x2)D1D2u(x1, x2, x
0
3 )dx1dx2

+
∫

G2

∫

G3

(ω0,1,1 f )(x2, x3)D2D3u(x01 , x2, x3)dx2dx3

+
∫

G1

∫

G3

(ω1,0,1 f )(x1, x3)D1D3u(x1, x
0
2 , x3)dx1dx3

+
∫

G
(ω1,1,1 f )(x)D1D2D3u(x)dx ≡ (V ∗ f )(u). (9)

Thus, (V ∗ f )(u) is a finite sum of the Hardy-type operators. It is well known that, if
variable exponent p(x) satisfies Dini-Lipschitz condition, then Hardy-type operators are
bounded on variable Lebesgue spaces Lq(x)(G) (see [16,17]).

Thus, we proved the following lemma.

Lemma 4.1 Let p ∈ B(G)
⋂P(G) and 1 < p ≤ p < ∞. Then, the operator

V : SW (1,1,1)
p(x) (G) �→ Ep(x)(G)

has an adjoint operator V �, which acts boundedly in the spaces Eq(x)(G).

Also, we need the following lemma.

Lemma 4.2 Let f ∈ Eq(x)(G). Then, the increment of the functional (3) has the integral
form

ΔF(ν) = −
∫

G
f1,1,1(x)Δϕ(x) dx .

Proof Now in (9) instead of u(x), we substitute the solution of the problem (5)–(6), i.e.,
replace a function u(x) by Δu(x). Then, the equality

f (VΔu) =
∫

G
f1,1,1(x)Δϕ(x)dx
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=
∫

G

(
ω1,1,1 f

)
(x)D1D2D3Δu(x)dx ≡ (

V � f
)
(Δu)

holds for all f ∈ Eq(x)(G). In other words,

−
∫

G
f1,1,1(x)Δϕ(x)dx +

∫

G

(
ω1,1,1 f

)
(x)D1D2D3Δu(x)dx = 0. (10)

Therefore, the functionΔu(x) as an element of SW (1,1,1)
p(x) (G) satisfies condition (6). Using

the integral representation (7), we have

α
(1,0,0)
k Δu

(
x (k)
1 , h2, h3

) + α
(0,1,0)
k Δu

(
h1, x

(k)
2 , h3

) + α
(0,0,1)
k Δu

(
h1, h2, x

(k)
3

)

+ α
(1,1,0)
k Δu

(
x (k)
1 , x (k)

2 , h3
) + α

(0,1,1)
k Δu

(
h1, x

(k)
2 , x (k)

3

)

+ α
(1,0,1)
k Δu

(
x (k)
1 , h2, x

(k)
3

) + α
(1,1,1)
k Δu

(
x (k)
1 , x (k)

2 , x (k)
3

)

=
∫

G
Bk(x)D1D2D3Δu(x)dx,

where

Bk(x) = α
(1,0,0)
k θ

(
x (k)
1 − x1

) + α
(1,0,1)
k θ

(
x (k)
1 − x1

)
θ
(
x (k)
3 − x3

)

+ α
(0,1,0)
k θ

(
x (k)
2 − x2

) + α
(1,1,0)
k θ

(
x (k)
1 − x1

)
θ
(
x (k)
2

+ α
(0,0,1)
k θ

(
x (k)
3 − x3

) − x2
) + α

(0,1,1)
k θ

(
x (k)
2 − x2

)
θ
(
x (k)
3 − x3

)

+ α
(1,1,1)
k θ

(
x (k)
1 − x1

)
θ
(
x (k)
2 − x2

)
θ
(
x (k)
3 − x3

)

and θ(t) :=
{
1, t > 0
0, t ≤ 0

}
is the Heaviside function. Therefore, the increment (4) of the

functional (3) can be represented as

ΔF(ν) =
∫

G

N∑

k=1

Bk(x)D1D2D3Δu(x)dx,

or
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ΔF(ν) =
∫

G
B(x)D1D2D3Δu(x)dx, (11)

and

B(x) =
N∑

k=1

Bk(x).

By (10), the increment (11) can be represented in the form

ΔF(ν) =
∫

G

[
B(x) + (

ω1,1,1 f
)
(x)

]
D1D2D3Δu(x)dx

−
∫

G
f1,1,1(x)Δϕ(x) dx . (12)

Since ω1,1,1 depends only on f, equality (12) holds for all f1,1,1 ∈ Lq(x)(G). For the
integro-differential expression (12), we consider the equation

(
ω1,1,1 f

)
(x) + B(x) = 0, x ∈ G (13)

that is said to be an adjoint equation for the optimal control problem (1)–(3). As the function
f1,1,1(x) we take the solution of equation (13) in Lq(x)(G). Then, equality (12) has the
integral form

ΔF(ν) = −
∫

G
f1,1,1(x)Δϕ(x) dx .

This completes the proof. �	

5 Main Result

Now, for a fixed (τ1, τ2, τ3) ∈ G, we consider the following needle variation of the admis-
sible control ν(x) :

Δνε(x) =
{

ν̂ − ν(x), x ∈ Gε

0, x ∈ G \ Gε,

where ν̂ ∈ Ω∂, ε > 0 is a sufficiently small parameter, and Gε = (
τ1 − ε

2 , τ1 + ε
2

)

× (
τ2 − ε

2 , τ2 + ε
2

) × (
τ3 − ε

2 , τ3 + ε
2

) ⊂ G. A control νε(x) defined by the equality
νε(x) = ν(x) + Δνε(x) is an admissible control for all sufficiently small ε > 0 and all
ν̂ ∈ Ω∂ called a needle perturbation given by control ν(x), where (τ1, τ2, τ3) ∈ G is some
fixed point. Obviously,

F (νε) − F(ν) = −
∫

Gε

f1,1,1(x) [ϕ (x, ν(x) + Δνε(x)) − ϕ (x, ν(x))] dx

= −
∫

Gε

f1,1,1(x) [ϕ (x, ν̂(x)) − ϕ (x, ν(x))] dx . (14)

Since the optimal control problem is linear, the following theorem follows from (14).
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Theorem 5.1 Let f1,1,1 ∈ Lq(x)(G) be a solution of the adjoint equation (13). Then, for
the optimality of the admissible control ν(x), it is necessary and sufficient that for almost
all x ∈ G the Pontryagin’s maximum condition

max
ν̂∈Ω∂

H
(
x, f1,1,1(x), ν̂

) = H
(
x, f1,1,1(x), ν

)

be satisfied, where H
(
x, f1,1,1(x), ν

) = f1,1,1(x) · ϕ(x, ν) is the Hamilton-Pontryagin
function.

Proof Suppose that a control ν
(
x1, x2, x3

) ∈ Ω∂ gives theminimumvalue of the functional
(3). Then by (14), we have

−
∫

Gε

[
H

(
x1, x2, x3, f1,1,1

(
x1, x2, x3

)
, ν̂

)

− H
(
x1, x2, x3, f1,1,1

(
x1, x2, x3

)
, ν

(
x1, x2, x3

))]
dx1dx2dx3 ≥ 0. (15)

Dividing the both sides of (15) by ε3 and passing to the limit as ε → +0, for almost all
(τ1, τ2, τ3) ∈ G and using analog of the Lebesgue differentiation theorem in L p(x) (see
[17]) for all ν ∈ Ω∂, we get

H
(
τ1, τ2, τ3, f1,1,1

(
τ1, τ2, τ3

)
, ν

(
τ1, τ2, τ3

))

− H
(
τ1, τ2, τ3, f1,1,1

(
τ1, τ2, τ3

)
, ν̂

) ≥ 0. (16)

Thus, for optimal control of ν
(
x1, x2, x3

) ∈ Ω∂ , it is necessary to satisfy condition (16).
Besides, the equality

ΔF(ν) = −
∫

G
ΔH

(
x1, x2, x3, f1,1,1

(
x1, x2, x3

)
, ν

(
x1, x2, x3

))
dx1dx2dx3

shows that this condition is also sufficient for optimal control ν
(
x1, x2, x3

)
, where

ΔH
(
x1, x2, x3, f1,1,1, ν

) = H
(
x1, x2, x3, f1,1,1, ν + Δν

) − H
(
x1, x2, x3, f1,1,1, ν

)
.

This completes the proof. �	

Remark 5.1 Theorem 5.1 shows that the solution to the optimal control problem (1)–(3),
it is sufficient to find a solution f1,1,1(x) ∈ Lq(x)(G) of the integral equation (13). Then,
the optimal control ν(x) can be found as an element of Ω∂, which gives the maximum
value to the functional H

(
x, f1,1,1(x), ν(x)

)
in Ω∂ with respect to the function ν.

Remark 5.2 In [13, p. 198] a theorem in the form of the Pontryagin’s maximum principle is
proved for control systems with a nonsmooth right-hand side. In this paper, an admissible
control is taken as a nonsmooth function that belongs to the class L∞. In addition, in the
present article, the control function enters the right-hand side of the equation in a nonlinear
form. More exactly, to obtain necessary and sufficient optimality conditions in the form
of the Pontryagin’s maximum principle in the 3D nonsmooth optimal control problem,
needle variation is used.
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Example 5.1 Obviously, Equation (1) generalizes the three-dimensional analog of vibrat-
ing string equation and the three-dimensional telegraph equation. Indeed, if we take
a0,0,0(x) = −k, k = const ≥ 0 and ai1,i2,i3(x) ≡ 0, 0 < i1 + i2 + i3 ≤ 2 in the
right-hand side of the Bianchi equation (1), we get

D1D2D3u(x) − k u(x) = ϕ(x, ν(x)). (17)

It is well known that (17) is a controlled process described by the three-dimensional
telegraph equation. The 3D telegraph equation arises in 3D mathematical modeling of
filtering and telecommunication. Let k = 0. Then, the adjoint equation (13) for 3D optimal
control problem (1)–(3) takes a simpler form

f1,1,1(x) + B(x) = 0, x ∈ G.

6 Conclusions

In this paper, a new approach to the Pontryagin’s maximum principle for an optimal control
problem with distributed parameters, is given by the third-order Bianchi equation with
coefficients from variable exponent Lebesgue spaces. The statement of an optimal control
problem is studied by using a new version of the increment method, that essentially uses
the concept of the adjoint equation of the integral form.
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