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Abstract—In the present paper, we give necessary and sufficient conditions for the boundedness
of commutators of fractional maximal operator on Orlicz spaces. The main advance in comparison
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1. INTRODUCTION

Let 0 < α < n. The fractional maximal operator Mα and the Riesz potential operator Iα are defined
by

Mαf(x) = sup
t>0

|B(x, t)|−1+α/n

ˆ
B(x,t)

|f(y)| dy, Iαf(x) =

ˆ
Rn

f(y)

|x− y|n−α
dy.

Hereafter, B(x, r) is the ball of radius r centered at x in R
n and |B(x, r)| = vnr

n, where vn is the
volume of the unit ball in R

n, is its Lebesgue measure. If α = 0, then M ≡ M0 is the well-known
Hardy–Littlewood maximal operator. Recall that, for 0 < α < n, we have

Mαf(x) ≤ vα/n−1
n Iα(|f |)(x).

The commutators generated by an appropriate function b and by the operators Mα and Iα are formally
defined by

[b,Mα]f = Mα(bf)− bMα(f), [b, Iα]f = Iα(bf)− bIα(f),

respectively.
Given a measurable function b, the operators Mb,α and |b, Iα| are defined by

Mb,α(f)(x) = sup
t>0

|B(x, t)|−1+α/n

ˆ
B(x,t)

|b(x)− b(y)||f(y)| dy,
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|b, Iα|f(x) =
ˆ
Rn

|b(x)− b(y)|
|x− y|n−α

f(y) dy,

respectively. If α = 0, then Mb,0 ≡ Mb is called the maximal commutator. Recall that, for 0 < α < n,
we have

Mb,α(f)(x) ≤ vα/n−1
n |b, Iα|(|f |)(x), (1.1)

|[b, Iα]f(x)| ≤ |b, Iα|(|f |)(x).

For a function b defined on R
n, we set

b−(x) =

{
0 if b(x) ≥ 0,

|b(x)| if b(x) < 0,

and b+(x) = |b(x)| − b−(x). Obviously, b+(x)− b−(x) = b(x).

The following relations between [b,Mα] and Mb,α are valid. Let b be any nonnegative locally
integrable function. Then

|[b,Mα]f(x)| ≤ Mb,α(f)(x), x ∈ R
n,

for all f ∈ L1
loc(R

n).

If b is any locally integrable function on R
n, then

|[b,Mα]f(x)| ≤ Mb,α(f)(x) + 2b−(x)Mαf(x), x ∈ R
n, (1.2)

for all f ∈ L1
loc(R

n) (see, e.g., [1]).

Suppose that f ∈ L1
loc(R

n). Then f is said to belong to the class BMO(Rn) if the seminorm given
by

‖f‖∗ = sup
x∈Rn, r>0

1

|B(x, r)|

ˆ
B(x,r)

|f(y)− fB(x,r)| dy

is finite.
The following theorem is valid.

Theorem 1.1 ([2], [3]). Suppose given 0 < α < n, 1 < p < n/α, and 1/q = 1/p − α/n. Then Mb,α,
[b, Iα] and |b, Iα| are bounded operators from Lp(Rn) to Lq(Rn) if and only if b ∈ BMO(Rn).

Remark. The proof of the theorem for [b, Iα] was given in [2] and for Mb,α and |b, Iα|, in [3]. The
boundedness of the operator Mb on the Lp spaces was proved by Garcia-Cuerva, Harboure, Segovia,
and Torrea in [4]. In 2000, Bastero, Milman, and Ruiz [5] studied a necessary and sufficient condition for
the boundedness of [b,M ] on the Lp spaces. In 2009, Zhang and Lu [6] considered the same problem for
[b,Mα].

The main purpose of this paper is to characterize the boundedness of commutators of fractional
maximal operator on Orlicz spaces.

By A � B we mean that A ≤ CB with some positive constant C independent of the quantities
involved. If A � B and B � A, then we write A ≈ B and say that A and B are equivalent.

2. PRELIMINARIES

The Orlicz spaces were first introduced by Orlicz in [7], [8] as a generalization of the Lebesgue
spaces Lp. Since then, these spaces have been an important functional frame in mathematical analysis,
especially in real and harmonic analysis. Orlicz spaces are also an appropriate substitute for L1 when
the latter does not work.

First, we recall the definition of Young functions.
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Definition 2.1. A function Φ: [0,∞) → [0,∞] is called a Young function if Φ is convex left-continuous
and

lim
r→+0

Φ(r) = Φ(0) = 0, lim
r→∞

Φ(r) = ∞.

Convexity and the condition Φ(0) = 0 imply that any Young function is increasing. If there exists an
s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young functions such that

0 < Φ(r) < ∞ for 0 < r < ∞
will be denoted by Y . If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in [0,∞) and
bijectively maps [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, we set

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ.
It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞),

∞, r = ∞.

A Young function Φ is said to satisfy the Δ2-condition (we write Φ ∈ Δ2 in this case) if

Φ(2r) ≤ CΦ(r), r > 0,

for some C > 1. If Φ ∈ Δ2, then Φ ∈ Y . A Young function Φ is said to satisfy the ∇2-condition (we
write Φ ∈ ∇2 in this case) if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0,

for some C > 1.

Definition 2.2. For a Young function Φ, the set

LΦ(Rn) =

{
f ∈ L1

loc(R
n) :

ˆ
Rn

Φ(k|f(x)|) dx < ∞ for some k > 0

}

is called an Orlicz space. The space LΦ
loc(R

n) is defined as the set of all functions f such that
fχ

B
∈ LΦ(Rn) for all balls B ⊂ R

n.

The space LΦ(Rn) is Banach with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

ˆ
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

We note that ˆ
Rn

Φ

(
|f(x)|
‖f‖LΦ

)
dx ≤ 1. (2.2)

If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn) = Lp(Rn). If Φ(r) = 0, 0 ≤ r ≤ 1, and Φ(r) = ∞, r > 1,
then LΦ(Rn) = L∞(Rn).

The following analog of Hölder’s inequality is well known (see, e.g., [9]).
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Theorem 2.3. Let Ω ⊂ R
n be a measurable set, and let f and g be measurable functions on Ω. For

a Young function Φ and its complementary function Φ̃, the following inequality is valid:ˆ
Ω
|f(x)g(x)| dx ≤ 2‖f‖LΦ(Ω)‖g‖L˜Φ(Ω)

.

Elementary calculations yield the following property.

Lemma 2.4. Let Φ be a Young function, and let B be a set in R
n with finite Lebesgue measure.

Then

‖χ
B
‖LΦ = ‖χ

B
‖WLΦ =

1

Φ−1(|B|−1)
.

Using Theorem 2.3, Lemma 2.4, and (2.1) we obtain the following estimate.

Lemma 2.5. For a Young function Φ and B = B(x, r), the following inequality is valid:ˆ
B
|f(y)| dy ≤ 2|B|Φ−1(|B|−1)‖f‖LΦ(B). (2.3)

3. COMMUTATORS OF FRACTIONAL MAXIMAL FUNCTION IN ORLICZ SPACES

In this section, we find necessary and sufficient conditions for the boundedness of the commutators
of fractional maximal operators on Orlicz spaces.

To prove our theorems, we need the following lemmas and theorem.

Lemma 3.1 ([10]). Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

|bB(x,r) − bB(x,t)| ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t (3.1)

and C is independent of b, x, r, and t.

Lemma 3.2 ([11]). Let f ∈ BMO(Rn), and let Φ be a Young function such that Φ ∈ Δ2. Then

‖f‖∗ ≈ sup
x∈Rn, r>0

Φ−1(|B(x, r)|−1)‖f( · ) − fB(x,r)‖LΦ(B(x,r)). (3.2)

Theorem 3.3 ([12], [13]). Let b ∈ BMO(Rn), and let Φ be a Young function. Then the condition
Φ ∈ ∇2 is necessary and sufficient for the boundedness of the operator Mb on LΦ(Rn), i.e., for the
inequality

‖Mbf‖LΦ ≤ C0‖b‖∗‖f‖LΦ (3.3)

to hold with a constant C0 independent of f .

Remark 3.4. The sufficiency part of Theorem 3.3 was proved in [12], and the necessity part was proved
in [13].

The following lemma is an analog of Hedberg’s trick for [b, Iα].

Lemma 3.5 ([13]). If 0 < α < n and f, b ∈ L1
loc(R

n), thenˆ
B(x,r)

|f(y)|
|x− y|n−α

|b(x)− b(y)| dy � rαMbf(x)

for all x ∈ R
n and r > 0.

The following theorem completely characterizes the boundedness of Mα on Orlicz spaces.
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Theorem 3.6 ([14]). Let α, 0 < α < n, be given. Let Φ and Ψ be Young functions such that
Φ ∈ Y ∩ ∇2. Then the condition

r−α/nΦ−1(r) ≤ CΨ−1(r) (3.4)

for all r > 0, where C > 0 does not depend on r, is necessary and sufficient for the boundedness
of Mα as an operator from LΦ(Rn) to LΨ(Rn).

To prove our main theorems, we need the following estimate.

Lemma 3.7. If b ∈ L1
loc(R

n) and B0 := B(x0, r0), then

rα0 |b(x)− bB0 | ≤ CMb,αχB0(x) for every x ∈ B0.

Proof. It is well known that

Mb,αf(x) ≤ 2n−αMb,αf(x), (3.5)

where

Mb,α(f)(x) = sup
B�x

|B|−1+α/n

ˆ
B
|b(x)− b(y)||f(y)| dy.

Now let x ∈ B0. Using (3.5), we obtain

Mb,αχB0(x) ≥ CMb,αf(x) = C sup
B�x

|B|−1+α/n

ˆ
B
|b(x)− b(y)|χB0 dy

= C sup
B�x

|B|−1+α/n

ˆ
B∩B0

|b(x)− b(y)| dy

≥ C|B0|−1+α/n

ˆ
B0∩B0

|b(x)− b(y)| dy

≥
∣∣∣∣C|B0|−1+α/n

ˆ
B0

(b(x)− b(y)) dy

∣∣∣∣ = Crα0 |b(x)− bB0 |.

The following theorem gives necessary and sufficient conditions for the boundedness of Mb,α as an
operator from LΦ(Rn) to LΨ(Rn).

Theorem 3.8. Let α, 0 < α < n, and b ∈ BMO(Rn) be given. Let Φ and Ψ be Young functions such
that Φ ∈ Y .

(1) If Φ ∈ ∇2 and Ψ ∈ Δ2, then the condition

rαΦ−1(r−n) + sup
r<t<∞

(
1 + ln

t

r

)
Φ−1(t−n)tα ≤ CΨ−1(r−n) (3.6)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of Mb,α as an
operator from LΦ(Rn) to LΨ(Rn).

(2) If Ψ ∈ Δ2, then condition (3.4) is necessary for the boundedness of Mb,α as an operator
from LΦ(Rn) to LΨ(Rn).

(3) If Φ ∈ ∇2, Ψ ∈ Δ2, and the condition

sup
r<t<∞

(
1 + ln

t

r

)
Φ−1(t−n)tα ≤ CrαΦ−1(r−n) (3.7)

holds for all r > 0, where C > 0 does not depend on r, then condition (3.4) is necessary and
sufficient for the boundedness of Mb,α as an operator from LΦ(Rn) to LΨ(Rn).
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Proof. (1) Given any x0 ∈ R
n, consider the ballB = B(x0, r) of radius r centered at x0 and the function

f = f1 + f2, where f1 = fχ
2B

and f2 = fχ�(2B)
.

Let x be any point in B. If B(x, t) ∩ {�(2B)} = ∅, then t > r. Indeed, if y ∈ B(x, t) ∩ {�(2B)}, then

t > |x− y| ≥ |x0 − y| − |x0 − x| > 2r − r = r.

On the other hand, B(x, t) ∩ {�(2B)} ⊂ B(x0, 2t). Indeed, if y ∈ B(x, t) ∩ {�(2B)}, then we have

|x0 − y| ≤ |x− y|+ |x0 − x| < t+ r < 2t.

Hence

Mb,α(f2)(x) = sup
t>0

1

|B(x, t)|1−α/n

ˆ
B(x,t)∩�(2B)

|b(y)− b(x)||f(y)| dy

≤ 2n−α sup
t>r

1

|B(x0, 2t)|1−α/n

ˆ
B(x0,2t)

|b(y)− b(x)||f(y)| dy

= 2n−α sup
t>2r

1

|B(x0, t)|1−α/n

ˆ
B(x0,t)

|b(y)− b(x)||f(y)| dy.

Therefore, for all x ∈ B, we have

Mb,α(f2)(x) � sup
t>2r

tα−n

ˆ
B(x0,t)

|b(y)− b(x)||f(y)| dy

� sup
t>2r

tα−n

ˆ
B(x0,t)

|b(y)− bB(x0,t)||f(y)| dy

+ sup
t>2r

tα−n

ˆ
B(x0,t)

|bB(x0,t) − bB ||f(y)| dy

+ sup
t>2r

tα−n

ˆ
B(x0,t)

|bB − b(x)||f(y)| dy

= J1 + J2 + J3.

Applying Hölder’s inequality and using (2.1), (3.1), (3.2), and (2.3), we obtain

J1 + J2 � sup
t>2r

tα−n

ˆ
B(x0,t)

|b(y)− bB(x0,t)||f(y)| dy

+ sup
t>2r

tα−n|bB(x0,r) − bB(x0,t)|
ˆ
B(x0,t)

|f(y)| dy

� sup
t>2r

tα−n‖b( · ) − bB(x0,t)‖L˜Φ(B(x0,t))
‖f‖LΦ(B(x0,t))

+ sup
t>2r

tα−n|bB(x0,r) − bB(x0,t)|tnΦ−1(|B(x0, t)|−1)‖f‖LΦ(B(x0,t))

� ‖b‖∗ sup
t>2r

Φ−1(|B(x0, t)|−1)tα
(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t))

� ‖b‖∗‖f‖LΦ sup
t>2r

(
1 + ln

t

r

)
tαΦ−1(t−n).

From geometric considerations, 2B ⊂ B(x, 3r) for all x ∈ B. Using Lemma 3.5, we obtain

J0(x) := Mb,α(f1)(x) � |b, Iα|(|f1|)(x) =
ˆ
2B

|b(y)− b(x)|
|x− y|n−α

|f(y)| dy

�
ˆ
B(x,3r)

|b(y)− b(x)|
|x− y|n−α

|f(y)| dy � rαMbf(x).
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Consequently, for all x ∈ B, we have

J0(x) + J1 + J2 � ‖b‖∗rαMbf(x) + ‖b‖∗‖f‖LΦ sup
t>2r

(
1 + ln

t

r

)
tαΦ−1(t−n).

Thus, (3.6) implies

J0(x) + J1 + J2 � ‖b‖∗
(
Mbf(x)

Ψ−1(r−n)

Φ−1(r−n)
+ Ψ−1(r−n)‖f‖LΦ

)
.

Choose r > 0 so that Φ−1(r−n) = Mbf(x)/(C0‖b‖∗‖f‖LΦ). Then

Ψ−1(r−n)

Φ−1(r−n)
=

(Ψ−1 ◦ Φ)(Mbf(x)/(C0‖b‖∗‖f‖LΦ))

Mbf(x)/(C0‖b‖∗‖f‖LΦ)
.

Therefore, we obtain

J0(x) + J1 + J2 ≤ C1‖b‖∗‖f‖LΦ(Ψ−1 ◦ Φ)
(

Mbf(x)

C0‖b‖∗‖f‖LΦ

)
.

Let C0 be as in (3.3). Theorem 3.3 and (2.2) giveˆ
B
Ψ

(
J0(x) + J1 + J2
C1‖b‖∗‖f‖LΦ

)
dx ≤

ˆ
B
Φ

(
Mbf(x)

C0‖b‖∗‖f‖LΦ

)
dx ≤

ˆ
Rn

Φ

(
Mbf(x)

‖Mbf‖LΦ

)
dx ≤ 1,

i.e.,

‖J0( · ) + J1 + J2‖LΨ(B) � ‖b‖∗‖f‖LΦ . (3.8)

Using relations (3.2) and (2.3), and condition (3.6), we also obtain

‖J3‖LΨ(B) =

∥∥∥∥ sup
t>2r

1

|B(x0, t)|1−α/n

ˆ
B(x0,t)

|b( · ) − bB||f(y)| dy
∥∥∥∥
LΨ(B)

≈ ‖b( · ) − bB‖LΨ(B) sup
t>2r

tα−n

ˆ
B(x0,t)

|f(y)| dy

� ‖b‖∗
1

Ψ−1(|B|−1)
sup
t>2r

Φ−1(|B(x0, t)|−1)tα‖f‖LΦ(B(x0,t))

� ‖b‖∗
1

Ψ−1(|B|−1)
‖f‖LΦ sup

t>2r
tαΦ−1(|B(x0, t)|−1)

� ‖b‖∗‖f‖LΦ .

Consequently, we have

‖J3‖LΨ(B) � ‖b‖∗‖f‖LΦ . (3.9)

Combining (3.8) and (3.9), we obtain

‖Mb,αf‖LΨ(B) � ‖b‖∗‖f‖LΦ . (3.10)

Taking the supremum over B in (3.10), we see that

‖Mb,αf‖LΨ � ‖b‖∗‖f‖LΦ ,

since the constants in (3.10) do not depend on x0 and r.

(2) Let us prove the second part. Consider B0 = B(x0, r0) and take x ∈ B0. By Lemma 3.7, we have

rα0 |b(x)− bB0 | ≤ CMb,αχB0(x).

Therefore, by Lemmas 3.2 and 2.4,

rα0 �
‖Mb,αχB0‖LΨ(B0)

‖b( · ) − bB0‖LΨ(B0)

� Ψ−1(|B0|−1)‖Mb,αχB0‖LΨ(B0)
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� Ψ−1(|B0|−1)‖Mb,αχB0‖LΨ � Ψ−1(|B0|−1)‖χB0‖LΦ � Ψ−1(r−n
0 )

Φ−1(r−n
0 )

.

Since this is true for every r0 > 0, we are done.

(3) The third assertion of the theorem follows from the first and second ones.

Setting Φ(t) = tp and Ψ(t) = tq in Theorem 3.8, we obtain the following corollary.

Corollary 3.9. Suppose given 1 < p < ∞, 0 < α < n/p, and b ∈ BMO(Rn). Then Mb,α is bounded
as an operator from Lp(Rn) to Lq(Rn) if and only if 1/q = 1/p − α/n.

Inequality (1.2) and Theorems 3.8 and 3.6 imply the following corollary.

Corollary 3.10. Suppose given 0 < α < n, b ∈ BMO(Rn), and b− ∈ L∞(Rn). Let Φ and Ψ be Young
functions such that Φ ∈ ∇2 ∩ Y and Ψ ∈ Δ2. Suppose also that condition (3.6) is satisfied. Then
[b,Mα] is bounded as an operator from LΦ(Rn) to LΨ(Rn).

The following theorem is valid.

Theorem 3.11. Suppose given 0 < α < n and b ∈ L1
loc(R

n). Let Φ and Ψ be Young functions such
that Φ ∈ Y .

(1) If Φ ∈ ∇2, Ψ ∈ Δ2, and condition (3.6) holds, then the condition b ∈ BMO(Rn) is sufficient
for the boundedness of Mb,α as an operator from LΦ(Rn) to LΨ(Rn).

(2) If Ψ−1(t) � Φ−1(t)t−α/n, then the condition b ∈ BMO(Rn) is necessary for the boundedness
of Mb,α as an operator from LΦ(Rn) to LΨ(Rn).

(3) If Φ ∈ ∇2, Ψ ∈ Δ2, Ψ−1(t) ≈ Φ−1(t)t−α/n, and condition (3.7) holds, then the condition
b ∈ BMO(Rn) is necessary and sufficient for the boundedness of Mb,α as an operator from LΦ(Rn)

to LΨ(Rn).

Proof. (1) The first assertion of the theorem follows from the first assertion of Theorem 3.8.

(2) Let us prove the second assertion. Suppose that Mb,α is bounded as an operator from LΦ(Rn)

to LΨ(Rn). Consider any ball B = B(x, r) in R
n; by (2.1), we have

1

|B|

ˆ
B
|b(y)− bB| dy =

1

|B|

ˆ
B

∣∣∣∣ 1

|B|

ˆ
B
(b(y)− b(z)) dz

∣∣∣∣ dy
≤ 1

|B|2
ˆ
B

ˆ
B
|b(y)− b(z)| dz dy

=
1

|B|1+α/n

ˆ
B

1

|B|1−α/n

ˆ
B
|b(y)− b(z)|χB (z) dz dy

≤ 1

|B|1+α/n

ˆ
B
Mb,α(χB

)(y) dy ≤ 2

|B|1+α/n
‖Mb,α(χB

)‖LΨ(B)‖1‖L˜Ψ(B)

≤ C

|B|α/n
Ψ−1(|B|−1)

Φ−1(|B|−1)
≤ C.

Thus, b ∈ BMO(Rn).

(3) The third assertion of the theorem follows from the first and second ones.

Remark 3.12. Note that, in the case where Φ(t) = tp and Ψ(t) = tq, Theorem 3.11 implies Theorem 1.1
for the operator Mb,α.

For comparison, we formulate the following theorem, which was proved in [13], and make a remark.
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Theorem 3.13. Suppose given 0 < α < n and b ∈ BMO(Rn). Let Φ and Ψ be Young functions such
that Φ ∈ Y .

(1) If Φ ∈ ∇2 and Ψ ∈ Δ2, then the condition

rαΦ−1(r−n) +

ˆ ∞

r

(
1 + ln

t

r

)
Φ−1(t−n)tα

dt

t
≤ CΨ−1(r−n) (3.11)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of [b, Iα] as an
operator from LΦ(Rn) to LΨ(Rn).

(2) If Ψ ∈ Δ2, then condition (3.4) is necessary for the boundedness of |b, Iα| as an operator
from LΦ(Rn) to LΨ(Rn).

(3) If Φ ∈ ∇2, Ψ ∈ Δ2, and the conditionˆ ∞

r

(
1 + ln

t

r

)
Φ−1(t−n)tα

dt

t
≤ CrαΦ−1(r−n) (3.12)

holds for all r > 0, where C > 0 does not depend on r, then condition (3.4) is necessary and
sufficient for the boundedness of |b, Iα| as an operator from LΦ(Rn) to LΨ(Rn).

Remark 3.14. Although the operator Mb,α is pointwise dominated by |b, Iα| (see formula (1.1)) and,
consequently, the results for the former could be derived from those for the latter, we consider these
operators separately, because we can study the boundedness of Mb,α under weaker assumptions than
those required for the operator |b, Iα|. To be more precise, the integral condition (3.12) implies the
supremum condition (3.7). Indeed, (2.1) and the monotonicity of Φ̃−1(s) imply

Φ−1(s−n) ≈ Φ−1(s−n)sn
ˆ ∞

s

dt

tn+1
≈

1

Φ̃−1(s−n)

ˆ ∞

s

dt

tn+1

�
ˆ ∞

s

1

Φ̃−1(t−n)tn

dt

t
≈

ˆ ∞

s
Φ−1(t−n)

dt

t
.

This follows from the inequality

rαΦ−1(r−n) �
ˆ ∞

r

(
1 + ln

t

r

)
tαΦ−1(t−n)

dt

t
�
ˆ ∞

s

(
1 + ln

t

r

)
tαΦ−1(t−n)

dt

t

�
(
1 + ln

s

r

)
sα

ˆ ∞

s
Φ−1(t−n)

dt

t
�

(
1 + ln

s

r

)
sαΦ−1(s−n),

where s ∈ (r,∞) is arbitrary, so that

sup
s>r

(
1 + ln

s

r

)
Φ−1(s−n)sα � rαΦ−1(r−n).

On the other hand, the Young function Φ whose inverse is given by

Φ−1(t) =
tα/n

1− (ln t)/n− ln r
for 0 < α < n, t ≥ r,

satisfies condition (3.7), but does not satisfy condition (3.12).

ACKNOWLEDGMENTS

We thank the anonymous referee for comments, which have improved the final version of this paper.
The research of V. S. Guliyev was supported in part by the Presidium of the Azerbaijan National

Academy of Science 2015 and by the Ministry of Education and Science of the Russian Federation
(project mo. 02.a03.21.0008).

The research of F. Deringoz was supported in part by the Ahi Evran University Scientific Research
(grant no. FEF. A4.17.009).

MATHEMATICAL NOTES Vol. 104 No. 4 2018



COMMUTATORS OF FRACTIONAL MAXIMAL OPERATOR 507

REFERENCES
1. P. Zhang and J. Wu, “Commutators of the fractional maximal function on variable exponent Lebesgue

spaces,” Czechoslovak Math. J. 64 (139) (1), 183–197 (2014).
2. S. Chanillo, “A note on commutators,” Indiana Univ. Math. J. 31 (1), 7–16 (1982).
3. F. Deringoz, V. S. Guliyev, and S. Samko, “Vanishing generalized Orlicz–Morrey spaces and fractional

maximal operator,” Publ. Math. Debrecen 90 (1-2), 125–147 (2017).
4. J. Garcia-Cuerva, E. Harboure, C. Segovia, and J. L. Torrea, “Weighted norm inequalities for commutators

of strongly singular integrals,” Indiana Univ. Math. J. 40 (4), 1397–1420 (1991).
5. J. Bastero, M. Milman and F. J. Ruiz, “Commutators for the maximal and sharp functions,” Proc. Amer.

Math. Soc. 128 (11), 3329–3334 (2000).
6. P. Zhang and J. L. Wu, “Commutators of the fractional maximal functions,” Acta Math. Sinica (Chin. Ser.)

52 (6), 1235–1238 (2009).
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