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FRACTIONAL INTEGRAL ASSOCIATED WITH SCHRODINGER
OPERATOR ON VANISHING GENERALIZED MORREY SPACES

ALI AKBULUT, RAMIN V. GULIYEV, SULEYMAN CELIK
AND MEHRIBAN N. OMAROVA

(Communicated by R. Oinarov)

Abstract. Let L= —/A+V be a Schrodinger operator, where the non-negative potential V be-
longs to the reverse Holder class RH,, />, let b belong to a new BMOg(p) space, and let JﬁL be
the fractional integral operator associated with L. In this paper, we study the boundedness of the
operator /BL and its commutators [b,.7, L} with b € BMOg(p) on generalized Morrey spaces

associated with Schrodinger operator MY, D, q, and vanishing generalized Morrey spaces associ-
ated with Schrédinger operator Vijq, . We find the sufficient condmons on the pair (q)l, )
which ensures the boundedness of the operator ﬂﬁL from MM‘,/l to M % and from VM,, o o
VM,WZ, 1/p—1/q=B/n. When b belongs to BMOg(p) and (¢, ¢2) satisfies some condl—
tions, we also show that the commutator operator [b, JﬁL] is bounded from M, (1\711 to M % and

from VM,,(},/l to VMq(Pz’ 1/p—1/g=p/n.

1. Introduction and results
Let us consider the Schrodinger operator
L=—-A+V on R", n>3,

where V' is a non-negative, V # 0, and belongs to the reverse Holder class RH, for
some g >n/2,i.e., there exists a constant C > 0 such that the reverse Holder inequality

) e[y
|B(x7r)| B(x,r) |B(x7r)| B(x,r)

holds for every x € R” and 0 < r < oo, where B(x,r) denotes the ball centered at x

with radius r. In particular, if V is a nonnegative polynomial, then V € RH...
Obviously, RH,;, C RHy, , if g» > q;. The most important property of the class

RH, is its self-improvement, that is, if V € RH,, then V € RH; . for some £ > 0.
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As in [18], for a given potential V € RH, with g > n/2, we define the auxiliary
function

1 1
= =3 : Viydy<1y;.
p) op{rics [ Vo<t

my (x> >0

It is well-known that that 0 < p(x) < oo for any x € R".
According to [4], the new BMO space BMOg(p) with 6 > 0 is defined as a set
of all locally integrable functions b such that

: r [}
m /B(“) |b(y) — bpldy < C(l + m)

forall x € R" and r > 0, where bp = ‘7%' Jpb(y)dy. Anormfor b € BMOg(p), denoted

by [blg, is given by the infimum of the constants in the inequalities above. Clearly,
BMO C BMOg(p).

We now present the definition of generalized Morrey spaces (including weak ver-
sion) related to potential, which introduced by Guliyev in [12].

DEFINITION 1. Let ¢(x,r) be a positive measurable function on R" x (0,c0),
1<p<eo, 020,and V € RHy, g = 1. We denote by M5y = M5 (R") the gen-
eralized Morrey space associated with Schrodinger operator, the space of all functions
feLl (R") with finite quasinorm

loc

_ r @ —1..—n/p
gy = s (1+575) @)™ o

Also WMI‘i ;X = WMI?”(:,/ (R™) we denote the weak generalized Morrey space associated
with Schrodinger operator,the space of all functions f € WL (R") with

loc

Uy = sup (14 =) 000 ™2 fl a0y < o=
WMI’:‘P XER™ >0 p(x) ’ I’( (X,I’))

REMARK 1. (i) When oc=0, and @(x,r) = rA=/p, ngg (R") is the classical
Morrey space L, ; (R") introduced by Morrey in [13];

(ii) When @(x,r) = rA=1/p, Mﬁi}},/ (R™) is the Morrey space associated with
Schrodinger operator LZ”X (R™) studied by Tang and Dong in [21];

(iii) When a =0, Mﬁi}},/ (R") is the generalized Morrey space M), ,(R") intro-
duced by Mizuhara and Nakai in [14, 15].

(iv) The generalized Morrey space associated with Schrédinger operator Mg’(‘; (R™)
was introduced by Guliyev in [12].

The classical Morrey spaces L, ; (R") was introduced by Morrey in [13] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers
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to [7, 8, 9, 13]. The generalized Morrey spaces are defined with +* replaced by a
general non-negative function @(x,r) satisfying some assumptions (see, for example,
[10, 14, 15, 19] and etc).

For brevity, in the sequel we use the notations

r\% _, _
A (fi5,7) = <1+@> r P () Nl )

and
r

Ay (frx,r) = (1+ e

o —n/ -1
) o) w0
DEFINITION 2. The vanishing generalized Morrey space associated with Schro-

dinger operator VMZ’J,/ (R") is defined as the spaces of functions f € Mg’g (R™) such
that

lim sup A%y (f3x,7) = 0. (1)

r—0 XERN

The vanishing weak generalized Morrey space associated with Schrodinger oper-
ator VWMX}X (R™) is defined as the spaces of functions f € WMX},‘,/ (R™) such that

lim sup 257" (f3x,7) = 0.
r—=0xern

The vanishing spaces VM, }X (R") and VWM, }X (R™) are Banach spaces with re-
spect to the norm

_ _ oV,
7y = Wfllygy = e 265 (Fixr).

1%
1 lywagey = 1 lyppey = sup - A, o (Fix,r),
VWM, WM,y R r>0 W.p.¢

respectively.

In the case oo = 0, and @(x,r) = rA=2/p VMI?i}},/ (R™) is the vanishing Morrey
space VM, 5 introduced in [22], where applications to PDE were considered.

We refer to [1, 6, 16, 17] for some properties of vanishing generalized Morrey
spaces.

DEFINITION 3. Let L =—A+V with V € RH, ;. The fractional integral asso-
ciated with L is defined by

) = LB (x) = / e () ) B ar

0

for 0 < B < n. The commutator of fﬁL is defined by

[b, I51f (x) = b(x).I5 f(x) — 75 (bf)(x).
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In this paper, we consider the boundedness of the fractional integral operator Jé‘
on the generalized Morrey spaces M;i }X (R") and the vanishing generalized Morrey
spaces VM;;,‘,/(R"). When b belongs to the new BMO space BMOg(p), we also
show that [b,.#§] is bounded from My (R") to Mg, (R") and from VMg (R") to
VM, (RY).

Our main results are as follows.

THEOREM 1. Let VERH, /5, >0, 1 <p<n/B, 1/q=1/p—B/n and ¢ €
Qg’v, ¢ € QY V' satisfies the condition

o ess inf @y (x, s)s% dt
[ == <amnn), @)
r ra t
where co does not depend on x and r. Then the operator fﬁL is bounded on Mg}gl to

o,V o,V o,V
Mg, for p>1 and from Ml’q,1 to WM#WZ. Moreover, for p > 1

j o, < C ]/ oLV
and for p =1

L
||jﬁ f||WM°‘~"1/ < C”fHM‘XV y
p 92 Loy

where C does not depend on f.

THEOREM 2. Let VERH, /5, >0, 1 <p<n/B, 1/q=1/p—B/n and ¢, €
Qg’v, ¢, e Qg v satisfies the condition

oo ess inf @ (x s)s%
t o ’ dt
/‘O+mﬂﬁf—————7<m@@ﬁ, 3)
.

n
r ta

where co does not depend on x and r. If b € BMOg(p), then the operator [b, flﬂ is
bounded from Mﬁi },Yl to M;f ¢‘>/z and

b, IE1f Il .av <Clb v,
b, 5]fHMqﬁ¢v2 [hallfHMp;qyl

where C does not depend on f.
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THEOREM 3. Let VERH, /5, >0, 1 <p<n/B, 1/g=1/p—P/nand ¢, €

Qg Y , P € QZ}V satisfies the conditions

—/ sup<p1xt—<°o

xeR”

for every 6 >0, and

= dt
[ o753 <Coparr), @

where Co does not depend on x € R" and r > 0. Then the operator fﬁL is bounded

Jfrom VM p 901 to VMq » for p > 1 and from VM to vwM% (pz
n— ﬁ’

THEOREM 4. Let V € RH, ), b € BMOgy(p), 1 <p <n/B, 1/q=1/p—P/n,
and ¢ € Qg_’r , (€ Q;xlv satisfies the conditions

/rm(H—ln )(pl(xt)tdtl3 co®2(x,r), (5)

where ¢y does not depend on x and r,

1

im0 _g ©)
r—0 inf @(x,r)
xeR?
and
dt
cs —/ 1+\1nt| sup(pl(xt) Tp < (7)
xeR?

for every 6 > 0. Then the operator [b,fﬁL] is bounded from Vng‘,/1 to VMa v

REMARK 2. Note that, Theorems | and 2 in the case of V =0 was provedin [11,
Corollary 5.5 and 7.5] and in the case of @(x,r) = r*=")/P in [21, Theorems 1.3 and
1.4].

REMARK 3. Note that, in [2] the Nikolskii-Morrey type spaces were introduced
and the authors studied some embedding theorems. In the next paper, we shall in-
troduce the generalized Nikolskii-Morrey spaces associated with Schrodinger operator
and will study some embedding theorems. We will also investigate the boundedness of
fractional integral associated with Schrodinger operator on the generalized Nikolskii-
Morrey spaces associated with Schrédinger operator.

In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A< CB. A~ B
means that A < B and B SA.
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2. Some preliminaries
We would like to recall the important properties concerning the critical function.

LEMMA 1. [18] Let V € RH, ;. For the associated function p there exist C and
ko > 1 such that

clpto(1+ |),;(_x§>_k0 <p() <Cp(x)(1+ |’;(_x§ ) & 8)

forall x,y € R".

LEMMA 2. [3] Suppose x € B(xo,r). Then for k € N we have

! < 1 |
T

We give some inequalities about the new BMO space BMOgy(p).

LEMMA 3. [4] Let 1 < s <eo. If b€ BMOgy(p), then

(0 o) —palr)"” < Bla(1+75)"

forall B=B(x,r), with x € R" and r >0, where 6’ = (ko+1)0 and ko is the constant
appearing in (8).

LEMMA 4. [4] Let 1 < s <o, b€ BMOg(p), and B= B(x,r). Then

o o [b() = bpl*dy < ok 120"
[2B| Jot p )

forall k€ N, with 0" as in Lemma 3.

Let Kp be the kernel of fﬁL. The following result give the estimate on the kernel
Kp(x,y).

LEMMA 5. [5] If V € RH, ), then for every N, there exists a constant C such
that

c 1
[Kp (x,y)| < - )
(1+2) e =[P
p(x)

Finally, we recall a relationship between essential supremum and essential infi-
mum.
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LEMMA 6. [23] Let f be a real-valued nonnegative function and measurable on
E. Then

-1
<eisalgnff(x)> —es)?ezupf( 7

LEMMA 7. [3] Let ¢(x,r) be a positive measurable function on R" x (0,e0),
1<p<o, xa>0,andV €RH,, g > 1.

(i) If sup <l + ) = oo for some t > 0 and for all x € R", then
t<r<°° p(x)/  @(xr)
rg (R") = 9
(ii) If sup (1—1— ) @(x,r)~! = oo for some T >0 and for all x € R", then
0<r<t p(x)
My (R") =©.

REMARK 4. We denote by Qg’v the sets of all positive measurable functions ¢
on R” x (0,e0) such that forall 7 >0,

sup
xeR?

<o, and sup

< oo,
Leo (t7°°) xeR?

Lo (0,1)

(5) s (1 5) ot

respectively. In what follows, keeping in mind Lemma 7, we always assume that ¢ €
Qy’

REMARK 5. We denote by Qz’Y the sets of all positive measurable functions ¢
on R x (0,e) such that

in inf (1 n %) ““0(x,r) >0, for some & >0, (10)
and
/p
tim (1+ L)a'm— =
r—0 p(x)/ @(x,r)

For the non-triviality of the space VM, (R") we always assume that @ € Qa V,

3. Proof of Theorem 1
We first prove the following conclusions

THEOREM 5. Let V € RH, . If 1 <p <n/B, 1/q=1/p—B/n then the in-
equality

= | f L, B dr

L n
178 (DL, Bror)) ST /2r r: ;
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holds for any f € L} (R"). Moreover, for p =1 the inequality

= 1l (o)) dt

< r"il3
2r B t

”j/}L(f)”WL%ﬁ(B(xo,r)) N
holds for any f € L} (R").

Proof. For arbitrary xo € R", set B= B(x¢,r) and AB = B(xp,Ar) forany A > 0.
We write f as f = fi + f, where fi(y) = f(y)xB(XO%ZV) (y), and X denotes the
characteristic function of B(xg,2r). Then

125 )y B0y < 175 Dy 3o + 175 ()l Ly (8o -

Since fi € L,(R") and from the boundedness of JﬁL from L,(R") to Ly(R") (see
[20]) it follows that

125 (P |y By S I IlLpBro.20)

n < dt
f,”Hf||L,,(B(x0,2r))/2r F
X dt
< / ||fHLp:3 0.)) . an
2r ta t

To estimate ||fle(f2) 12, (B(x.r)) » ObVerse that x € B, y € (2B)¢ implies |x —y[~ |xo —
¥|. Then by (9) we have

sup |75 (1) ()1 < sup [ 1K (5, )l

S/ )] Sdy

)< |xo —y|""

<3 @k £ )ldy.
=1 2k+1p

By Holder’s inequality we get

- n 2k+lr
sup| 75 (f2) ()| S D ||fHL,,(2k+nB)(ZkHr)’l’F“} "~ a
x€B =1 ok

oo k+1
< /2+ r Hf”Lp:?xo,t)) dt
=172

ta !
||J HL (B(x0,1)) dl
P

7 (12)
2r ta t

N
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Then

175 ()| Ly By S 77 /2r f”i%it (13)
holds for 1 < p < n/B. Therefore, by (11) and (13) we get

1IE ()l (8o ) S 74 /:Wﬂ? (14)

holds for 1 < p<n/fB.
When p = 1, by the boundedness of fé‘ from L;(R") to WL%ﬁ (R"), we get

g (= IfllL B dt
Hf,f(fnum%ﬁ@(w)) Sl gy S P | mBlon) &

2r tn_ﬁ t
By (13) we have
L _ Hf”L X0,f dt
1Bl otso) < ITF e o) S 77 | =B
Then
L ||fHL X0, dt
15w wisorn S7°7° [, =g e O

Proof of Theorem 1.  From Lemma 6, we have

1 1
—————————— =esssup——.
essinf@)(x,s)sr  1<s<eo @y (x,s)sP
1<s<oo

Note the fact that || f{|z,(B(x.)) is @ nondecresing function of 7, and f € M, <>)/1 ,
then

o
(14 55) 1y (1+5 180
<esssup
?isgg}of(pl (.X(),S)Sp 1<s<oo [0} (X )
(14 525) 1y o
Ly(
< sup B0y
0<s<oo (pl(x )
<

Since o > 0, and (¢, @) satisfies the condition (2), then

I8 11l B dt s (14 5y ) 1Ly o000y €55 inf (0. )57
2r 2r

n n o pn
td N ess inf @ (xg, s)s? ¢ 1
ess inf @1 (xo, 5) <l+p(xo)> 14
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1<s<oo
t ® n 7
r q
(1+P(XO)> f
« €ss inf @y (xo, 5)s?

ro\"® dt
<N e (1 n ) / psce T AT
S ey o), T p

Sl (14 555) " oatosn). (1s)

/w ess inf @) (xg, s ) dt
2

S Iy

Then by Theorem 5 we get

r o 1 —n
15 A lyy S sup (14 =) 0200, "N IEF) |, )

%2 xo€RM r>0

o * X dt
< sup (1+ - )%(xo,r)fl/ 7Hf||Lp(f(0J))—
2r t

x0ER",r>0 ta

<
Sl

Let g = # , similar to the estimates of (15) we have

ANy (Bxo.)) dt N
7’ < o 1+ — ,r).
/2r l‘niﬁ o~ ”fHMlq:/l < + P(XO)> (p2(x0 I")

Thus by Theorem 5 we get

o
IE(f a, < su - xo,r) B A (F W (Blxo.r
175 )HWMan - XoeRn€>0< p(xo)> ¢2(x0,7) 175 (F)llwe 2 (Blo)
r o Hf”L X dl
,S Su 1—|— X ,r / $_
xoeR"F,)r>0< P(xo)> P2(x0,r) 2r =B t

SIflyer - O
1

4. Proof of Theorem 2

As the proof of Theorem 1, it suffices to prove the following result.

THEOREM 6. Let V € RH,j», b€ BMOg(p). If 1 <p<n/B. 1/qg=1/p—B/n
then the inequality

no [ ”fHL (B(x dt
11,25 (P Ly Bxory) S [Blore /2r <1+ )piotT (16)

ta

holds for any f € L? (R").

loc
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Proof. We write f as f = fi + f», where fi(y) = f(y)xB(XO‘Zr)(y). Then

116, 251 )y 8oy < B> TN Ly B0 + 116 ZEN ) Ly B0

By the boundedness of [b, fﬁL] on L,(R") to Ly(R") (see [21]) and (11) we get

116, 21y 830,01 S [B611f 12, (830,20

1/ 1|z, (B(xo.0)) dt
ot [ Wl
2r ta 1

[blors /: (141 —)]0”4707’ 17

ta

A

A

We now turn to deal with the term ||[b, fﬁL] (2)Ilz,(B(xo.r)) - For any given x € B(xo, r)
we have

|[b, 751 2(x)| < |b(x) = bag| [T (f2) (%) |+ |25 (b — bag) f2) (x)]-
Then by (12), Lemma 3, and taking N > (ko + 1)6 we get

0 2r \O-N/(kot1) 1= || fllL,(B(xou)) dt
_ L < = N NLp (Blxo,1)) 41
10x) = 28) T )l oty S Blor (1525 |

g[b]grg/:( +1n )M?f (18)

ta

ta !

Finally, let us estimate ||JL((b b28)2)||L,(B(xo.r)) - BY (9), Lemma 2 and (12)
we have

sup | AE((b — baw) £2) ()] S sup L0 —bsllf Ol ,,

cB epJepr (1, ko\V o—y P
' ’ (1 + p(x))
- 1
XEB j— ky\n— &)
Lk (14 22

1
b(y) = bag||f (y)|dy.
T o
k=1 (Qkpyn—B (1 i pz(/;;)> (kot+1) Jor+1p

v Loy ) =Dl )l




800 A. AKBULUT, R. V. GULIYEYV, S. CELIK AND M. N. OMAROVA
Note that
< pl 1/1’,
Lo 160) =aallr0lay < ([, 156)=aal) " WAl 20010

2k \ O 2
S Blok(1+ =) N7 11, 3 20010

p(xo)
Then
- k(2kr) 0P
sup| (b —bap) £)(x)| S [lo 3, = e M e )
e = (1 + p2(x£))

(Zkr)_g’ Hf“L,,(B(xo,zkHr))

Ms

A

[ble

T
L

k/2k+1r 1|z, (Bxo.)) dt
2k t'él r

N
=
>
Ms

T
L

Since 287 <1 < 2¥"!r, then k~InL. Thus

2 fllz Blo.)) dt
sup|-Z5 (b — bap) f2) (x Zk/ o Ot))t

xeB
2/2"“ tHf||L,, ANz 8o dr
’1
2k t

S[b]e/ (1+1mn )7”fHLP_ ai) &,
2r t

ra

Then

no [ ”fHL B(xo,t)) dt
5 (b= b))y S Bor [ (141 2) =20 19)

ta
Combining (17), (18) and (19), the proof of Theorem 6 is completed. [J

Proof of Theorem 2. Since f € M pfm and (@1, ) satisfies the condition (3), by
(15) we have

/°° (1 n ) Hf”L,,fxo, ) dt
2r ta l
ess inf @ (xo, s)s%

o (14 555) 1l ot : di
ess nf o 1.5) (1+7t) 7
ess inf @y (xo,5)s7

“ [\ 1<s<e
Sl [, (1+07) =< T
» r

(l—i—m) ta




FRACTIONAL INTEGRAL ASSOCIATED WITH SCHRODINGER OPERATOR 801

>_a/m<1+lnt>fggssgf<pl(xo, 5)s? di
r r

< ‘ (1 T ]
Wl —

,
P (x0)
Sy (14 505) @2l 0)

Then from Theorem 6 and by (20) we get

116 71 e

T \* ~1,-n L
S sw (100 ) 000 IF ) ey ot

xp€R"r>0

ro\* 1|z, (B(xos)) dt
<ly sup (1+—— x,r*/ 14102 M Ee(Blon) 4
| ]exoeR"I,)DO( P(XO)> P2(x0.7) 2r ( ) ta !

< Blollfllygy - O

5. Proof of Theorem 3

The statement is derived from the estimate (14). The estimation of the norm of
the operator, that is, the boundedness in the non-vanishing space, immediately follows
from by Theorem 1. So we only have to prove that

hmsulepq,l(fxr) 0 = hmsule (fﬁ(f) r)=0 21

r—0 cRrn —0eRrn

and

lim sup Qlav(f x,r)=0 = limsup 2 /aV %(JﬁL(f);x,r) =0. (22

r—0 ycRrn r—0 ycRrn (

r o —1,.—n L
To show that xseuﬂg (1 + W) o (x,r) "' /1’||Jl3 (P, B < € for small r, we
split the right-hand side of (14):

(14 555) e I D iy wier) < Clr) I, @

where & > 0 (we may take &y > 1), and

o
Is (6.r) = M/&)zglfn dt
8\ . (pz(x,r) g Lp(B(x,t))

and

Al (b dt
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and it is supposed that r < &. We use the fact that f € VM, },Yl (R") and choose any
fixed & > 0 such that

€

4 o —1,—n/
sup <1 + m) @1(x,1)"t pr”L,,(B(x,z)) < 20C,"

xeR”

where C and C; are constants from (4) and (23). This allows to estimate the first term
uniformly in r € (0,0) :

sup Cls, (x,7) < 7, 0<r < .

€
xe Rn 2 ’

The estimation of the second term now my be made already by the choice of r suffi-
ciently small. Indeed, thanks to the condition (10) we have

(1455)°

J < oV,
50()C, r) Coy 0 (x,r) Hf”VMp,k‘;l

where cg, is the constant from (1). Then, by (10) it suffices to choose r small enough

such that
(1+5)”
+ L)
sup 10 < &

xR (Pz(x, r) h ZCUOHfHVMﬁ};/I

)

which completes the proof of (21).
The proof of (22) is similar to the proof of (21).

6. Proof of Theorem 4

The norm inequality having already been provided by Theorem 2, we only have to
prove the implication

. r « - —n
lim sup (l + m) o1 (x,r) L, /pr”L,,(B(x,r)) =0

r—0 yeRrn

. ro\¢ 1 —n
= timsup (175 ) 020 b, T oty = 0

r—0 yeRrn

To check that

T\ —1,-n L
sup (1405 ) 02(60) ™ P [b, F (o < & for smal

xeRn
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we use the estimate (16):

—1,-n/p L < [blo /°° t 1L, (Bxo)) dt
O (x,r) "' r H[bajﬁ(f)]”Lq(B(x,r))N(pz(x7r) i (1 +In >7t3 -

We take r < &, where & will be chosen small enough and split the integration:
r o -1 .—n/p L
(1+ p(x)) o2(x,r) P 1By T (I 8y < Clley (6,7) + 5, ()], (24)

where

1+-293)% 5 .
I () i i<xr)> [*(1+m) 1 ey a1000)

ta N

and

(1“‘@)& * ||fHL,, (x0.0)) dt
Jgo(x,r).zi)/éo (1+1 r>T7

We choose a fixed & > 0 such that

ro\¢ €
1 —> ) ! —n/p < PR g )
sup < + o) 10 r) PN L, B e, )
where C and Cy are constants from (24) and (5), which yields the estimate of the first

term uniform in € (0,8p) : sup Clg, (x,r) < §, 0<r < .
xeRn
For the second term, writing 1 +1nt; <1+4|ln¢|+1In %, we obtain

(N -I—C50 Inl

< A o
Taeer) < =2 S g

where cg, is the constant from (7) with § = & and c?o is a similar constant with
omitted logarithmic factor in the integrand. Then, by (6) we can choose small r such
that sup, gn Jg, (x,7) < §, which completes the proof.

7. Conclusions

In this paper, we study the boundedness of the of the fractional integral opera-
tor fﬁL associated with Schrodinger operator and its commutators [b, .7, L} with b €

BMOg(p) on generalized Morrey spaces M q, associated with Schrédinger operator

and vanishing generalized Morrey spaces VM, i v associated with Schrodinger operator.
We find the sufficient conditions on the pair (o1,02) which ensures the boundedness

of the operator fﬁL from Mp o 1O M sz and from VM 901 to VMg(XZ, I/p—1/g=

B/n. When b belongs to BMOy(p) and (¢, ;) satisfies some conditions, we also



804 A. AKBULUT, R. V. GULIYEV, S. CELIK AND M. N. OMAROVA

show that the commutator operator [b, 7] is bounded from Mg to MYy, and from
v v
VMg to VMg . 1/p—1/q=B/n.
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