DE GRUYTER Georgian Math, |. 2017; 722(2?2): 1-5

Research Article

Emre Tas* and Tugba Yurdakadim

The Arzela—Ascoli theorem by means of ideal
convergence

https://doi.org/10.1515/gmj-2017-0052
Received April 7, 2016; revised December 29, 2016; accepted June 26, 2017

Abstract: In this paper, using the concept of ideal convergence, which extends the idea of ordinary conver-
gence and statistical convergence, we are concerned with the I-uniform convergence and the I-pointwise
convergence of sequences of functions defined on a set of real numbers 2. We present the Arzela-Ascoli the-
orem by means of ideal convergence and also the relationship between [-equicontinuity and [-continuity for
2 family of functions.
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1 Introduction

Pointwise and uniform convergence of sequences of functions have different applications in functional anal-
ysis. One of the most important applications is the Arzela-Ascoli theorem. There are some generalizations
of this theorem in summability theory. Recently, it has been shown that non-matrix summability methods
have significant importance for the convergence of sequences of functions (see 1, 2,7, 14, 15, 19]). Instead
of pointwise convergence and uniform convergence, using the concepts of I-pointwise and I-uniform con-
vergence gives certain advantages, since these convergences are more general than the ordinary ones. These
types of convergence methods are quite effective, especially when the classical limit does not exist. The con-
cept of ideal convergence is a generalization of statistical convergence and it is based on the notation of the
ideal of subsets of N, the set of positive integers. In the present paper, using the concept of ideal convergence,
we present an ideal convergence version of the Arzela—-Ascoli theorem by following the proof in [3, 18]. It is
also benefical to note that Green and Valentine [12] gave an alternative proof of the Arzela—Ascoli theorem.

We first recall some notation and basic definitions to be used in the paper.

If K is a sct of positive integers, |K| will denote the cardinality of K. The natural density of K is given by

5(K) = lim (Cixi)n = nlir)g)%]{k <n:keK}

ifit exists, where C1 is the Cesaro mean of order one and yk is the characteristic function of the set K (see (17D

The number sequence x = (xy) is statistically convergent to L provided that, for every € >0, the se
Kr=1lkeN:|xx—L|ze&}has natural density zero (see [4, 8]). In that case we write st-lim x = L. This notior
has been studied in detail in various directions (see 4, 5,9-11, 13, 16]).

Recent studies demonstrate that the concept of statistical convergence provides an important contri
bution to the improvement of classical analysis. Duman and Orhan [7] have extended the concept of or
dinary uniform convergence (or pointwise)using p-statistical uniform (or pointwise)convergence and gav
some related results. Also, I-convergence versions of the above notions were examined in [1, 14]. Recall tha
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a family I ¢ P(IN) of subsets of N is said to be an ideal in N if I is closed under subsets and finite unions, i.e.,
for each A, B € I, we have A U B € I and for each A € I and each B ¢ A, we have B € [. The ideal I is said to
be a proper ideal in INif N ¢ I. A proper ideal is said to be admissible if {n} € I for each n € N. One can easily
see that an admissible ideal includes all finite subsets of N. Let I ¢ P(N) be a proper ideal in N. A sequence
x = (x3) of real numbers is said to be I-convergentto L ¢ R if foreache >0

Ke)={keN:|xy—Llze}el
If x = (xi) is I-convergent to L, then we write I-lim x = L (see [15]).

Example 1.1. (a) Let I = If be the class of all finite subsets of N. Then [ is an admissible ideal in N, and
[-convergence reduces to ordinary convergence.

(b) LetI=15={A < N:58(A) =0} Thenlisan admissible ideal in IN, and I-convergence reduces to statisti-
cal convergence.

In the present paper, by using the concepts of I-uniform and I-pointwise convergence, we give some results for
the sequences of functions, where I is assumed to be an admissible ideal. The most important theorem related
to this topic is the Arzela—Ascoli theorem. Recall that the classical Arzela—Ascoli theorem claims that given a
pointwise bounded sequence of equicontinuous functions defined on a compact set, we can find its uniformly
convergent subsequence. We also establish the relationship between equicontinuity and continuity by means
of ideal convergence. It should be mentioned that these results are more powerful than the classical theorems.
Let F = (f,;) be a family of functions defined on D < R. Thus, one can speak of the equicontinuity of the family
on D (see [3, 18]). It is clear that every member of the equicontinuous family is uniformly continuous. The
property can be weakened as follows.

Definition 1.2. J = (f,,) is called I-pointwise bounded on D ¢ R if there exists a set M e I such that (fn)nem is
pointwise bounded on D.

J-uniform boundedness can be defined in a similar way.

Example 1.3. Let K = [0, 1], = I, and define f,,: K — Ras follows:

ncosnx, n=m?2,
fn(x) = y b
sinnx, n#me.

Since 8({m? : m € N}) = 0 and |f,(x)| < 1, n # m?, one can easily see that (fy) is statistically uniformly
bounded, and hence statistically pointwise bounded. But observe that (f,) is neither pointwise bounded nor
uniformly bounded.

Definition 1.4. 7 = (fy,) is said to have the [-equicontinuity property on D if there exists a subset A € [ such
that the family of functions {fi : k ¢ A} ¢ J is equicontinuous on D.

The I-continuity property of the family F can be given similarly. These properties enhance the applicability
of our theorems.

2 Generalization of the Arzela—Ascoli theorem

In this section we prove the Arzela-Ascoli theorem by means of ideal convergence.

We first turn to introducing some notations and basic definitions to be used in this section. The next two
definitions are slightly more general than the ones given in [7].

Fix an admissible ideal I ¢ P(N). Assume that D # 0 and that the functionsf: D — R, fy: D — R, n € N,
are given. The sequence (fy)nen is said to be I-pointwise convergent to f on D if for all x € Dandalle>0
there exists Mg, € I such that for all n ¢ M x, we have |fa(x) = fix)| < &, and this convergence is denoted by
fn — f(I). Next recall the I-uniform convergence of (fn) to f. Itis denoted by f,, = f(I) and defined as [ollows:



DE GRUYTER E. Tag and T. Yurdakadim, The Arzela—Ascoli theorem by means of ideal convergence == 3

for all £ » 0, there exists Mg € I such that forall n ¢ M and all x € D, we have |fn(x) = f(x)| < €. It is easy to
see that [-uniform convergence implies I-pointwise convergence.
In order to give our main result we need the following theorems.

Theorem 2.1. Let (f,) be a sequence of functions from a countable set D into R which is I-pointwise bounded.
Then there cxists a subsequence (fy,) which is pointwise convergent on D.

Proof. Since (f,) is I-pointwise bounded on D, one can find a subset M € N such that M € [ and {fy}nem 18
pointwise bounded on D. By hypothesis, D is a countable set, so the existence of a pointwise subsequence
follows immediately. O

Theorem 2.2. Let (f,) be a sequence of functions from X ¢ R to R with the property of I-equicontinuity. If the
sequence (fy) is I-pointwise convergent on a dense subset D of X, then (f,) is I-pointwise convergent on X, and
the limit function f is continuous.

Proof. By the definition of I-equicontinuity, there exists a set My, < N such that My € I'and {f, : n ¢ My} is
equicontinuous on X. Then, using the definition of equicontinuity, for every £ > 0, one can find T(g) > O such
that |x — y| < 7 for every x,y € X implies |fn(x) - faly)l < § forevery n ¢ M. Now for given x € X and € > 0,
one can also find an open set A containing x such that [f(x) = fu(¥)] < % forall yin A and n ¢ M;. Since D is
dense in X, there must be a point y € D n A. By hypothesis, (f,(y)) is I-convergent, and hence it must be an
[-Cauchy sequence. Thus, there exists a subset M; < N such that M5 € I, and for every n, m ¢ M;, we have
Ifa¥) = Fn(¥)] < § (see [6]). Let M = My U M;. For every n, m ¢ M, we get

a0 = fn QO < 1fa ) = FalW + () = feO] + [fimy) = fm (0] < £.

So (f,(x)) is an I-convergent sequence. Since x € X is arbitrary, (f,) is I-pointwise convergent on X. Let f be
a function to which (f,)) is I-pointwise convergent. Hence, for every y € X such that |x - y| < 7 and for every
n ¢ M, we have

1) = FO)1 < 1f0x) = Fa GOl + Ufa(X) = fa)] + Ifay) = fN)] < €

Hence, f is continuous at x. O

Theorem 2.3. Let K be a compact set and (f,) a sequence of functions with the property of I-equicontinuity. If
(fa) is I-pointwise convergent on K to a function f, then (fy,) is I-uniformly convergent to f.

Proof. By the I-equicontinuity property, there existsa subset M; ¢ N, with M, € I, and for given ¢ > 0, each
x in K is contained in an open set A, such that [f,,(x) - faly)l < § forall y in Ay and n ¢ M.

By the compactness of K, there exists a fnite collection of these sets {Ay,, Ax,, ... , Ay, } which cov-
ers K. Since (f,) is I-pointwise convergent, we have |f,(x;) = f(x;)| < % for all n ¢ M,, such that M,, €I for
each x; corresponding to this finite collection. Then, for any y € K, there exists i < k such that y € Ay,. Let

M = My UMy, UMy, U---UMy,. Hence, for every n ¢ M,

Fa () = FOO < Ufn () = Faxidl + (i) = fxil + IfCxi) = Fn)l < €
Thus, (f,) is I-uniformly convergent to f on K. ]

As a consequence of the above theorems, we formulate the following analog of the Arzela-Ascoli theorem by
means of ideal convergence.

Theorem 2.4. Let K be a compact set and (f,) a sequence of functions from K to R which is I-pointwise bounded
with the property of I-equicontinuity. Then (f,) has a subsequence (fy,) which is [-uniformly convergent to a
continuous function f.

Proof. By the compactness of K, there cxisls a subset D of K which is dense and countable. We define
D = {X1,X2,..s Xk -+ - }- By Theorem 2.1, (f») has a subsequence which is pointwise convergent. fn, — f
implies that f,, — f(I) on D. Since D is dense in K, by Theorem 2.2, f,, — f()on Kand f is continuous. Then
fn, = f(I) on K, by Theorem 2.3. This completes the proof. a

z
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Also, from | 1], we know that every statistically uniformly convergent sequence (f;) has a subsequence (fn:)
that converges uniformly. So we can immediately give the following result.

Corollary 2.5. Under the hypothesis of Theorem 2.4 withI = 15, (fn) has a subsequence (f"i) that is Is-uniformly
convergent on K.

Now we present examples of a sequence of functions satisfying Theorem 2.4 but not satisfying the classical
Arzela—Ascoli theorem.
Example 2.6. Let K = [0, 1], I =[5, and define f,: K — R as follows:

x2

2

semee o Fd

fn(x) = Xz +(1 = ﬁx)z' ’
X

x4+ =, n+ m’.
n

Since |fn(x)] < 2, for all x € K and all n € N, (f,) is uniformly bounded, and hence pointwise bounded. But
note that (f,) is not equicontinuous. So we can not use the classical Arzela-Ascoli theorem hut Theorem 2.4
can be applied to get an Is-uniformly convergent subsequence, since (f,;) has the I5-equicontinuity property.
Example 2.7. Let K = [0, 1], = Is, and define f,: K — R as follows:

1

=X, n=m?

fatx)=4n
x+n, n#mi.

Note that (f,) is Is-pointwise bounded and has the Is-equicontinuity property. So we cannot use the classical
Arzela-Ascoli theorem but Theorem 2.4 can be applied easily.

Let us give the next theorem without proof. Note that the proof can be obtained similarly to the proot of |7,

Iheorem 2.1].

Theorem 2.8. Let (f,) be a sequence of functions from A into IR with the property of I-continuity. If the sequence
(fn) is I-uniformly convergent to a function f, then f is continuous.

Corollary 2.9. If ¥ = (f) is a sequence of functions with the property of I-continuity on the compact set K into
R which is I-uniformly convergent to f on K, then F has the property of I-uniform boundedness.

Proof. Since f is the I-uniform limit of the sequence ¥, for every ¢ > 0, there exists a set M ¢ N such that
M < I, and for every n ¢ M and every x € K, we have |f,(x) - f(x)| < &. Moreover, it follows from Theorem 2.8
that f is continuous on K. Since K is compact, f is bounded. Also, since, forall x € K,

Ifn (] = IFN < Ifn(x) = fO)] < 1,
we have |f,,(x)| < |[f(x)] + 1 < L. Thus, J has the property of I-uniform boundedness. O

Theorem 2.10. If T = (f,) is a sequence of functions on a compact set K into R which is I-uniformly convergent
and has the property of 1-continuity, then J has the [-equicontinuity property.

Proof. Let f be the I-uniform limit of the sequence 7. For every ¢ > 0, there exists a subset M ¢ N such that
M € [. Then, for every n ¢ M and for every x € K, we have |f,(x) - f(x)] < % By Theorem 2.8, f is continuous
on K, and since K is compact, f is uniformly continuous. This means that for every £ > 0, there exists 7(g) > O
such that [or every x, y € K, with |x — y| < 7, we have

; £
[fix) = fv)l < <.
3
Forn ¢ M, it follows that

() = faI < Ifa(x) = FOO1 + [FC0) = )l + fly) = fa¥)] < €.
This completes the proof. [
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The following corollary can be regarded as the converse of Theorem 2.4.

Corollary 2.11. Let K be a compact set and ¥ = (f,) be a sequence of functions with the property of I-continuity.
If (fa) has a subsequence (f,, ) which is I-uniformly convergent to a function on K, then F has the property of
I-uniform boundedness and I-equicontinuity.

Proof. The proof can be easily obtained by using Theorem 2.10 and Corollary 2.9, respectively. d
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