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Abstract
Let L = –�Hn + V be a Schrödinger operator on the Heisenberg groupHn , where the
nonnegative potential V belongs to the reverse Hölder class RHq1 for some q1 ≥ Q/2,
and Q is the homogeneous dimension ofHn. Let b belong to a new Campanato
space �θ

ν (ρ), and let IL
β be the fractional integral operator associated with L. In this

paper, we study the boundedness of the commutators [b,IL
β ] with b ∈ �θ

ν (ρ) on

central generalized Morrey spaces LMα,V
p,ϕ (Hn), generalized Morrey spacesMα,V

p,ϕ (Hn),
and vanishing generalized Morrey spaces VMα,V

p,ϕ (Hn) associated with Schrödinger
operator, respectively. When b belongs to �θ

ν (ρ) with θ > 0, 0 < ν < 1 and (ϕ1,ϕ2)
satisfies some conditions, we show that the commutator operator [b,IL

β ] is bounded

from LMα,V
p,ϕ1

(Hn) to LMα,V
q,ϕ2

(Hn), fromMα,V
p,ϕ1

(Hn) toMα,V
q,ϕ2

(Hn), and from VMα,V
p,ϕ1

(Hn) to
VMα,V

q,ϕ2
(Hn), 1/p – 1/q = (β + ν)/Q.
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1 Introduction
Heisenberg groups, in discrete and continuous versions, appear in many parts of mathe-
matics, including Fourier analysis, several complex variables, geometry, and topology. We
state some basic results about the Heisenberg group. More detailed information can be
found in [5, 12, 13] and the references therein.

Let us consider the Schrödinger operator on Heisenberg group Hn

L = –�Hn + V on Hn, n ≥ 3,

where V �= 0 is nonnegative and belongs to the reverse Hölder class RHq for some q ≥ Q/2,
that is, there exists a constant C > 0 such that the reverse Hölder inequality

(
1

|B(g, r)|
∫

B(g,r)
V q(h) dh

)1/q

≤ C
|B(g, r)|

∫
B(g,r)

V (h) dh (1.1)
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holds for every g ∈ Hn and 0 < r < ∞, where B(g, r) denotes the ball centered at g with
radius r.

We also say that a nonnegative function V ∈ RH∞ if there exists a constant C > 0 such
that

sup
h∈B(g,r)

V (h) ≤ C
|B(g, r)|

∫
B(g,r)

V (h) dh

for all g ∈Hn and 0 < r < ∞.
In particular, if V is a nonnegative polynomial, then V ∈ RH∞.
We define the auxiliary function 0 < ρ(g) < ∞ for a given potential V ∈ RHq with q ≥

Q/2:

ρ(g) := sup
r>0

{
r :

1
rQ–2

∫
B(g,r)

V (h) dh ≤ 1
}

for g ∈Hn (for example, see [36]).
Let θ > 0 and 0 < ν < 1. In view of [24, 26], the Campanato class associated with the

Schrödinger operator �θ
ν(ρ) consists of locally integrable functions b such that

1
|B(g, r)|1+ν/Q

∫
B(g,r)

∣∣b(h) – bB
∣∣dh ≤ C

(
1 +

r
ρ(g)

)θ

(1.2)

for all g ∈ Hn and r > 0, where bB is the mean integral of b in the ball B(g, r). A seminorm
of b ∈ �θ

ν(Hn,ρ), denoted by [b]θβ , is given as the infimum of the constants in inequality
(1.2).

Note that if θ = 0, then �θ
ν (Hn,ρ) is the classical Campanato space; if ν = 0, then

�θ
ν (Hn,ρ) is the space BMOθ (Hn,ρ) introduced in [3]; see also [25].
For brevity, we further use the notations

A
α,V
p,ϕ (f ; g, r) :=

(
1 +

r
ρ(g)

)α

r–Q/pϕ(g, r)–1‖f ‖Lp(B(g,r))

and

A
W ,α,V

,ϕ (f ; g, r) :=

(
1 +

r
ρ(g)

)α

r–Q/pϕ(g, r)–1‖f ‖WLp(B(g,r)).

We give the definition of central (local) and global generalized Morrey spaces (including
weak version) associated with the Schrödinger operator; it was introduced by the first
author in [18] in the Euclidean setting (see also [1, 3, 39]).

Definition 1.1 Let ϕ(r) be a positive measurable function on (0,∞), 1 ≤ p < ∞, α ≥ 0, and
V ∈ RHq, q ≥ 1. We denote by Mα,V

p,ϕ = Mα,V
p,ϕ (Hn) and LMα,V

p,ϕ = LMα,V
p,ϕ (Hn) the generalized

Morrey space and the central generalized Morrey space associated with the Schrödinger
operator, the spaces of all functions f ∈ Lp

loc(Hn) with finite quasinorms

‖f ‖Mα,V
p,ϕ

= sup
g∈Hn ,r>0

A
α,V
p,ϕ (f ; g, r) and ‖f ‖LMα,V

p,ϕ
= sup

r>0
A

α,V
p,ϕ (f ; e, r),

respectively. Here e is the identity element in Hn.



Guliyev et al. Advances in Difference Equations  (2018) 2018:273 Page 3 of 14

Also, by WMα,V
p,ϕ = WMα,V

p,ϕ (Hn) and LWMα,V
p,ϕ = LWMα,V

p,ϕ (Hn) we denote the weak gen-
eralized Morrey space and central weak generalized Morrey space associated with the
Schrödinger operator, the spaces of all functions f ∈ WLp

loc(Hn) with

‖f ‖WMα,V
p,ϕ

= sup
g∈Hn ,r>0

A
W ,α,V

,ϕ (f ; g, r) < ∞ and

‖f ‖LWMα,V
p,ϕ

= sup
r>0

A
W ,α,V

,ϕ (f ; e, r) < ∞,

respectively.

Remark 1.1
(i) When α = 0 and ϕ(r) = r(λ–Q)/p, Mα,V

p,ϕ (Rn) is the classical Morrey space Mp,λ(Rn)
introduced by Morrey [28], and LMα,V

p,ϕ (Rn) is the central Morrey space LMp,λ(Rn)
studied by Alvarez et al. [2] in the Euclidean setting.

(ii) When ϕ(r) = r(λ–Q)/p, Mα,V
p,ϕ (Rn) is the Morrey space associated with Schrödinger

operator Mα,V
p,λ (Rn) studied by Tang and Dong in [39] on the Euclidean setting.

(iii) When α = 0, Mα,V
p,ϕ (Hn) is the generalized Morrey space Mp,ϕ(Hn) studied by

Guliyev et al. [20], and LMα,V
p,ϕ (Hn) is the central generalized Morrey space

LMp,ϕ(Hn) studied by first author in [14]; see also [10, 15, 17, 19, 21, 23, 34, 35].
(iv) Mα,V

p,ϕ (Rn) and LMα,V
p,ϕ (Rn) are the generalized Morrey space and the central

generalized Morrey space associated with the Schrödinger operator, respectively,
studied by first author in [18] in the Euclidean setting; see also [1].

Definition 1.2 The vanishing generalized Morrey space VMα,V
p,ϕ (Hn) associated with the

Schrödinger operator is defined as the space of functions f ∈ Mα,V
p,ϕ (Hn) such that

lim
r→0

sup
g∈Hn

A
α,V
p,ϕ (f ; g, r) = 0. (1.3)

The vanishing weak generalized Morrey space VWMα,V
p,ϕ (Hn) associated with the

Schrödinger operator is defined as the space of functions f ∈ WMα,V
p,ϕ (Hn) such that

lim
r→0

sup
g∈Hn

A
W ,α,V
p,ϕ (f ; g, r) = 0.

The classical Morrey spaces Mp,λ(Rn) were introduced by Morrey in [28] to study the
local behavior of solutions to second-order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [7, 9, 11, 28,
31]. The generalized Morrey spaces are defined with rλ replaced by a general nonnegative
function ϕ(r) satisfying some assumptions (see, for example, [16, 20, 27, 29, 37], etc.).

In the case α = 0, ϕ(x, r) = r(λ–n)/p VMα,V
p,ϕ (Rn) is the vanishing Morrey space VMp,λ in-

troduced in [40], where applications to PDE were considered.
We refer to [1, 8, 22, 32, 33] for some properties of vanishing generalized Morrey spaces.

Definition 1.3 Let L = –�Hn + V with V ∈ RHQ/2. The fractional integral associated with
L is defined by

IL
β f (g) = L–β/2f (g) =

∫ ∞

0
e–tLf (g)tβ/2–1 dt
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for 0 < β < Q. The commutator of IL
β is defined by

[
b,IL

β

]
f (g) = b(g)IL

β f (g) – IL
β (bf )(g).

Note that, if L = –�Hn is the sub-Laplacian on Hn, then IL
β and [b,IL

β ] are the Riesz
potential Iβ and the commutator of the Riesz potential [b, Iβ ], respectively, that is,

Iβ f (g) =
∫
Hn

f (h)
|h–1g|Q–β

dh, [b, Iβ ]f (g) =
∫
Hn

b(g) – b(h)
|h–1g|Q–β

f (h) dh.

When b ∈ BMO, Chanillo proved in [6] that [b, Iβ ] is bounded from Lp(Rn) to Lq(Rn)
with 1/q = 1/p – β/n, 1 < p < n/β . When b belongs to the Campanato space �ν , 0 < ν < 1,
Paluszynski [30] showed that [b, Iβ ] is bounded from Lp(Rn) to Lq(Rn) with 1/q = 1/p–(β +
ν)/n, 1 < p < n/(β + ν). When b ∈ BMOθ (ρ), Bui [4] obtained the boundedness of [b,IL

β ]
from Lp(Rn) to Lq(Rn) with 1/q = 1/p – β/n, 1 < p < n/β .

Inspired by the results mentioned, we are interested in the boundedness of [b,IL
β ] on

the generalized Morrey spaces Mα,V
p,ϕ (Hn) and the vanishing generalized Morrey spaces

VMα,V
p,ϕ (Hn) when b belongs to the new Campanato class �θ

ν (ρ).
In this paper, we consider the boundedness of the commutator of IL

β on the central
generalized Morrey spaces LMα,V

p,ϕ (Hn), the generalized Morrey spaces Mα,V
p,ϕ (Hn), and the

vanishing generalized Morrey spaces VMα,V
p,ϕ (Hn). When b belongs to the new Campanato

space �θ
ν(ρ), 0 < ν < 1, we show that [b,IL

β ] are bounded from LMα,V
p,ϕ1 (Hn) to LMα,V

q,ϕ2 (Hn),
from Mα,V

p,ϕ (Hn) to Mα,V
q,ϕ (Hn), and from VMα,V

p,ϕ (Hn) to VMα,V
q,ϕ (Hn) with 1/q = 1/p – (β +

ν)/Q, 1 < p < Q/(β + ν).
Our main results are as follows.

Theorem 1.1 Let x0 ∈Hn, b ∈ �θ
ν(ρ), V ∈ RHq1 , q1 > Q/2, 0 < ν < 1, α ≥ 0, 1 ≤ p < Q/(β +

ν), 1/q = 1/p – (β + ν)/Q, and let ϕ1,ϕ2 ∈ �
α,V
p,loc satisfy the condition

∫ ∞

r

ess inft<s<∞ ϕ1(g0, s)s
Q
p

t
Q
q

dt
t

≤ c0ϕ2(g0, r), (1.4)

where c0 does not depend on g0 and r. Then the operator [b,IL
β ] is bounded from Mα,V

p,ϕ1 (Hn)
to Mα,V

q,ϕ2 (Hn) for p > 1 and from Mα,V
1,ϕ1 (Hn) to WMα,V

Q
Q–β–ν

,ϕ2
(Hn). Moreover, for p > 1,

∥∥[
b,IL

β

]
f
∥∥

Mα,V
q,ϕ2

≤ C[b]θν‖f ‖Mα,V
p,ϕ1

,

and for p = 1,

∥∥[
b,IL

β

]
f
∥∥

WMα,V
Q

Q–β–ν
,ϕ2

≤ C[b]θν‖f ‖Mα,V
1,ϕ1

,

where C does not depend on f .
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Corollary 1.1 Let b ∈ �θ
ν(ρ), V ∈ RHq1 , q1 > Q/2, 0 < ν < 1, α ≥ 0, 1 ≤ p < Q/(β + ν),

1/q = 1/p – (β + ν)/Q, and let ϕ1 ∈ �α,V
p , ϕ2 ∈ �α,V

q satisfy the condition

∫ ∞

r

ess inft<s<∞ ϕ1(g, s)s
Q
p

t
Q
q

dt
t

≤ c0ϕ2(g, r), (1.5)

where c0 does not depend on x and r. Then the operator [b,IL
β ] is bounded from Mα,V

p,ϕ1 (Hn)
to Mα,V

q,ϕ2 (Hn) for p > 1 and from Mα,V
1,ϕ1 (Hn) to WMα,V

Q
Q–β–ν

,ϕ2
(Hn). Moreover, for p > 1,

∥∥[
b,IL

β

]
f
∥∥

Mα,V
q,ϕ2

≤ C[b]θ‖f ‖Mα,V
p,ϕ1

,

and for p = 1,

∥∥[
b,IL

β

]
f
∥∥

WMα,V
Q

Q–β–ν
,ϕ2

≤ C‖f ‖Mα,V
1,ϕ1

,

where C does not depend on f .

Theorem 1.2 Let b ∈ �θ
ν (ρ), V ∈ RHq1 , q1 > Q/2, 0 < ν < 1, α ≥ 0, b ∈ �θ

ν (ρ), 1 < p <
Q/(β + ν), 1/q = 1/p – (β + ν)/Q, and let ϕ1 ∈ �

α,V
p,1 , ϕ2 ∈ �

α,V
q,1 satisfy the conditions

cδ :=
∫ ∞

δ

sup
g∈Hn

ϕ1(g, t)
dt
t

< ∞

for every δ > 0 and

∫ ∞

r
ϕ1(g, t)

dt
t1–β–ν

≤ C0ϕ2(g, r), (1.6)

where C0 does not depend on g ∈ Hn and r > 0. Then the operator [b,IL
β ] is bounded from

VMα,V
p,ϕ1 (Hn) to VMα,V

q,ϕ2 (Hn) for p > 1 and from VMα,V
1,ϕ1 (Hn) to VWMα,V

Q
Q–β–ν

,ϕ2
(Hn).

Remark 1.2 Note that Theorems 1.1 and 1.2 and Corollary 1.1 were proved in [19, Theo-
rems 1.1, 1.2; Corollary 1.1] in the Euclidean setting.

In this paper, we use the symbol A � B to indicate that there exists a universal positive
constant C, independent of all important parameters, such that A ≤ CB.

2 Some preliminaries
Let Hn be a Heisenberg group of dimension 2n + 1, that is, a nilpotent Lie group with
underlying manifold R

2n ×R. The group structure is given by

(x, t)(y, s) =

(
x + y, t + s + 2

n∑
j=1

(xn+jyj – xjyn+j)

)
.

The Lie algebra of left-invariant vector fields on Hn is spanned by

X2n+1 =
∂

∂t
, Xj =

∂

∂xj
+ 2xn+j

∂

∂t
, Xn+j =

∂

∂xn+j
– 2xj

∂

∂t
, j = 1, . . . , n.
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The nontrivial commutation relations are given by [Xj, Xn+j] = –4X2n+1, j = 1, . . . , n. The
sub-Laplacian 	Hn is defined by �Hn =

∑2n
j=1 X2

j . The Haar measure on Hn is simply the
Lebesgue measure on R

2n ×R. The measure of any measurable set E ⊂ Hn is denoted by
|E|. The homogeneous norm on Hn is defined by

|g| =
(|x|4 + |t|2) 1

4 , g = (x, t) ∈Hn,

which leads to the left-invariant distance d(g, h) = |g–1h| on Hn. The dilations on Hn have
the form δr(x, t) = (rx, r2t), r > 0. The Haar measure on this group coincides with the
Lebesgue measure dx = dx1 . . . dx2n dt. The identity element inHn is e = 0 ∈R

2n+1, whereas
the element g–1 inverse to g = (x, t) is (–x, –t).

The ball of radius r and centered at g is B(g, r) = {h ∈Hn : |g–1h| < r}. Note that |B(g, r)| =
rQ|B(0, 1)|, where Q = 2n + 2 is the homogeneous dimension of Hn. If B = B(g, r), then λB
denotes B(g,λr) for λ > 0. Clearly, we have |λB| = λQ|B|.

For background on the analysis on the Heisenberg groups, we refer the reader to [13,
38].

We would like to recall the important properties concerning the critical function.

Lemma 2.1 ([24]) Let V ∈ RHQ/2. For the associated function ρ , there exist C and k0 ≥ 1
such that

C–1ρ(g)
(

1 +
|h–1g|
ρ(g)

)–k0

≤ ρ(h) ≤ Cρ(g)
(

1 +
|h–1g|
ρ(g)

) k0
1+k0

(2.1)

for all g, h ∈Hn.

Lemma 2.2 ([1]) Suppose g ∈ B(g0, r). Then, for k ∈ N, we have

1
(1 + 2k r

ρ(g) )N
� 1

(1 + 2k r
ρ(g0) )N/(k0+1)

.

The BMO space BMOθ (Hn,ρ) associated with the Schrödinger operator with θ ≥ 0 is
defined as the set of all locally integrable functions b such that

1
|B(g, r)|

∫
B(g,r)

∣∣b(h) – bB
∣∣dh ≤ C

(
1 +

r
ρ(g)

)θ

for all g ∈ Hn and r > 0, where bB = 1
|B|

∫
B b(h) dh (see [3]). The norm for b ∈ BMOθ (Hn,ρ),

denoted by [b]θ , is given by the infimum of the constants in the inequality above. Clearly,
BMO(Hn) ⊂ BMOθ (Hn,ρ).

Let θ > 0 and 0 < ν < 1. The seminorm on Campanato class �θ
ν (ρ) is

[b]θν := sup
g∈Hn ,r>0

1
|B(g,r)|1+ν/Q

∫
B(g,r) |b(h) – bB|dh

(1 + r
ρ(g) )θ

< ∞.
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The Lipschitz space associated with the Schrödinger operator (see [26]) consists of the
functions f satisfying

‖f ‖Lipθ
ν (ρ) := sup

g∈Hn ,r>0

|f (g) – f (h)|
|h–1g|ν(1 + |h–1g|

ρ(g) + |h–1g|
ρ(h) )θ

< ∞.

It is easy to see that this space is exactly the Lipschitz space when θ = 0.
Note that if θ = 0 in (1.2), then �θ

ν (ρ) is the classical Campanato space; if ν = 0, then
�θ

ν (ρ) is the space BMOθ (ρ); and if θ = 0 and ν = 0, then it is the John–Nirenberg space
BMO.

The following embedding between Lipθ
ν (ρ) and �θ

ν(ρ) was proved in [26, Theorem 5].

Lemma 2.3 ([26]) Let θ > 0 and 0 < ν < 1. Then we have the following embedding:

�θ
ν(ρ) ⊆ Lipθ

ν(ρ) ⊆ �(k0+1)θ
ν (ρ),

where k0 is the constant appearing in Lemma 2.1.

We give some inequalities about the Campanato space associated with Schrödinger op-
erator �θ

ν (ρ).

Lemma 2.4 ([26]) Let θ > 0 and 1 ≤ s < ∞. If b ∈ �θ
ν (ρ), then there exists a constant C > 0

such that

(
1

|B|
∫

B

∣∣b(h) – bB
∣∣s dh

)1/s

≤ C[b]θνrν

(
1 +

r
ρ(g)

)θ ′

for all B = B(g, r) with g ∈Hn and r > 0, where θ ′ = (k0 +1)θ , and k0 is the constant appearing
in (2.1).

Let Kβ be the kernel of IL
β . The following result gives an estimate of the kernel Kβ (g, y).

Lemma 2.5 ([4]) If V ∈ RHQ/2, then, for every N , there exists a constant C such that

∣∣Kβ (g, y)
∣∣ ≤ C

(1 + |h–1g|
ρ(g) )N

1
|h–1g|Q–β

. (2.2)

Finally, we recall a relationship between essential supremum and essential infimum.

Lemma 2.6 ([41]) Let f be a real-valued nonnegative measurable function on E. Then

(
ess inf

g∈E
f (g)

)–1
= ess sup

g∈E

1
f (g)

.

Lemma 2.7 Let ϕ be a positive measurable function on (0,∞), 1 ≤ p < ∞, α ≥ 0, and
V ∈ RHq, q ≥ 1. If

sup
t<r<∞

(
1 +

r
ρ(e)

)α r– n
p

ϕ(r)
= ∞ for some t > 0, (2.3)

then LMα,V
p,ϕ (Hn) = �, where � is the set of all functions equivalent to 0 on Hn.
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Lemma 2.8 ([1]) Let ϕ be a positive measurable function on (0,∞), 1 ≤ p < ∞, α ≥ 0, and
V ∈ RHq, q ≥ 1.

(i) If

sup
t<r<∞

(
1 +

r
ρ(g)

)α r– Q
p

ϕ(r)
= ∞ for some t > 0 and for all g ∈Hn, (2.4)

then Mα,V
p,ϕ (Hn) = �.

(ii) If

sup
0<r<τ

(
1 +

r
ρ(g)

)α

ϕ(r)–1 = ∞ for some τ > 0 and for all g ∈Hn, (2.5)

then Mα,V
p,ϕ (Hn) = �.

Remark 2.1 We denote by �
α,V
p,loc the sets of all positive measurable functions ϕ on (0,∞)

such that, for all t > 0,

∥∥∥∥
(

1 +
r

ρ(e)

)α r– n
p

ϕ(r)

∥∥∥∥
L∞(t,∞)

< ∞.

Moreover, we denote by �α,V
p (see [1]) the sets of all positive measurable functions ϕ on

(0,∞) such that, for all t > 0,

sup
g∈Hn

∥∥∥∥
(

1 +
r

ρ(g)

)α r– Q
p

ϕ(r)

∥∥∥∥
L∞(t,∞)

< ∞ and sup
g∈Hn

∥∥∥∥
(

1 +
r

ρ(g)

)α

ϕ(r)–1
∥∥∥∥

L∞(0,t)
< ∞.

For the nontriviality of the spaces LMα,V
p,ϕ (Hn) and Mα,V

p,ϕ (Hn), we always assume that ϕ ∈
�

α,V
p,loc, ϕ ∈ �α,V

p , respectively.

Remark 2.2 We denote by �
α,V
p,1 the set of all positive measurable functions ϕ on Hn ×

(0,∞) such that

inf
g∈Hn

inf
r>δ

(
1 +

r
ρ(g)

)–α

ϕ(g, r) > 0 for some δ > 0 (2.6)

and

lim
r→0

(
1 +

r
ρ(g)

)α rQ/p

ϕ(g, r)
= 0.

For the nontriviality of the space VMα,V
p,ϕ (Hn), we always assume that ϕ ∈ �

α,V
p,1 .

3 Proof of Theorem 1.1
We first prove the following conclusions.

Lemma 3.1 Let 0 < ν < 1, 0 < β + ν < Q, and b ∈ �θ
ν(ρ), then the following pointwise esti-

mate holds:

∣∣[b,IL
β

]
f (g)

∣∣ � [b]θν Iβ+ν

(|f |)(g).
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Proof Note that

[
b,IL

β

]
f (g) = b(g)IL

β f (g) – IL
β (bf )(g) =

∫
Hn

[
b(g) – b(h)

]
Kβ (g, h)f (h) dy.

If b ∈ �θ
ν(ρ), then from Lemma 2.5 we have

∣∣[b,IL
β

]
f (g)

∣∣ ≤
∫
Hn

∣∣b(g) – b(h)
∣∣∣∣Kβ (g, h)

∣∣∣∣f (h)
∣∣dy

� [b]θν
∫
Hn

∣∣h–1g
∣∣ν∣∣Kβ (g, h)

∣∣∣∣f (h)
∣∣dy = [b]θνIβ+ν

(|f |)(g). �

From Lemma 3.1 we get the following:

Corollary 3.1 Suppose V ∈ RHq1 with q1 > Q/2 and b ∈ �θ
ν (ρ) with 0 < ν < 1. Let 0 <

β + ν < Q, and let 1 ≤ p < q < ∞ satisfy 1/q = 1/p – (β + ν)/Q. Then, for all f in Lp(Hn), we
have

∥∥[
b,IL

β

]
f
∥∥

Lq
� ‖f ‖Lp

when p > 1 and

∥∥[
b,IL

β

]
f
∥∥

WLq
� ‖f ‖L1

when p = 1.

To prove Theorem 1.1, we need the following new result.

Theorem 3.1 Suppose V ∈ RHq1 with q1 > Q/2, b ∈ �θ
ν(ρ), θ > 0, 0 < ν < 1. Let 0 < β + ν <

Q, and let 1 ≤ p < q < ∞ satisfy 1/q = 1/p – (β + ν)/Q. Then

∥∥[
b,IL

β

]
f
∥∥

Lq(B(g0,r)) �
∥∥Iβ+ν

(|f |)∥∥Lq(B(g0,r)) � r
Q
q

∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

for all f ∈ Lp
loc(Hn). Moreover, for p = 1,

∥∥[
b,IL

β f
]∥∥

WL Q
Q–β–ν

(B(g0,r)) �
∥∥Iβ+ν

(|f |)∥∥WL Q
Q–β–ν

(B(g0,r)) � rn–β

∫ ∞

2r

‖f ‖L1(B(g0,t))

tQ–β–ν

dt
t

for all f ∈ L1
loc(Hn).

Proof For arbitrary g0 ∈ Hn, set B = B(g0, r) and λB = B(g0,λr) for any λ > 0. We write f as
f = f1 + f2, where f1(h) = f (h)χB(g0,2r)(h), and χB(g0,2r) denotes the characteristic function of
B(g0, 2r). Then

∥∥[
b,IL

β

]
f
∥∥

Lq(B(g0,r)) �
∥∥Iβ+ν

(|f |)∥∥Lq(B(g0,r))

≤ ‖Iβ+ν f1‖Lq(B(g0,r)) + ‖Iβ+ν f2‖Lq(B(g0,r)).
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Since f1 ∈ Lp(Hn), from the boundedness of Iβ+ν from Lp(Hn) to Lq(Hn) (see [38]) it follows
that

‖Iβ+ν f1‖Lq(B(g0,r)) � ‖f ‖Lp(B(g0,2r))

� r
Q
q ‖f ‖Lp(B(g0,2r))

∫ ∞

2r

dt

t
Q
q +1

� r
Q
q

∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

. (3.1)

To estimate ‖Iβ+ν f2‖Lp(B(g0,r)), obverse that g ∈ B and h ∈ (2B)c imply |h–1g| ≈ |h–1g0|. Then
by (2.2) we have

sup
g∈B

∣∣Iβ+ν f2(g)
∣∣ �

∫
(2B)c

|f (h)|
|h–1g0|Q–β–ν

dh �
∞∑

k=1

(
2k+1r

)–n+β

∫
2k+1B

∣∣f (h)
∣∣dh.

By Hölder’s inequality we get

sup
g∈B

∣∣Iβ+ν f2(g)
∣∣ �

∞∑
k=1

‖f ‖Lp(2k+1B)
(
2k+1r

)–1– Q
p +β

∫ 2k+1r

2k r
dt

�
∞∑

k=1

∫ 2k+1r

2k r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

�
∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

. (3.2)

Then

‖Iβ+ν f2‖Lq(B(g0,r)) � r
Q
q

∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

(3.3)

for 1 ≤ p < Q/β . Therefore by (3.1) and (3.3) we get

∥∥Iβ+ν

(|f |)∥∥Lq(B(g0,r)) � r
Q
q

∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

(3.4)

for 1 < p < Q/β .
When p = 1, by the boundedness of Iβ+ν from L1(Hn) to WL Q

Q–β–ν
(Hn) we get

‖Iβ+ν f1‖WL Q
Q–β–ν

(B(g0,r)) � ‖f ‖L1(B(g0,2r)) � rQ–β–ν

∫ ∞

2r

‖f ‖L1(B(g0,t))

tQ–β–ν

dt
t

.

By (3.3) we have

‖Iβ+ν f2‖WL Q
Q–β–ν

(B(g0,r)) ≤ ‖Iβ+ν f2‖L Q
Q–β–ν

(B(g0,2r)) � rQ–β–ν

∫ ∞

2r

‖f ‖L1(B(g0,t))

tQ–β–ν

dt
t

.

Then

∥∥Iβ+ν

(|f |)∥∥WL Q
Q–β–ν

(B(g0,r)) � rQ–β–ν

∫ ∞

2r

‖f ‖L1(B(g0,t))

tQ–β–ν

dt
t

. �

Proof of Theorem 1.1 From Lemma 2.6 we have

1

ess inft<s<∞ ϕ1(g, s)s
Q
p

= ess sup
t<s<∞

1

ϕ1(g, s)s
Q
p

.
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Since ‖f ‖Lp(B(g0,t)) is a nondecreasing function of t and f ∈ Mα,V
p,ϕ1 (Hn), we have

(1 + t
ρ(g0) )α‖f ‖Lp(B(g0,t))

ess inft<s<∞ ϕ1(g0, s)s
Q
p

� ess sup
t<s<∞

(1 + t
ρ(g0) )α‖f ‖Lp(B(g0,t))

ϕ1(g0, s)s
Q
p

� sup
0<s<∞

(1 + s
ρ(g0) )α‖f ‖Lp(B(g0,s))

ϕ1(g0, s)s
Q
p

� ‖f ‖Mα,V
p,ϕ1

.

Since α ≥ 0 and (ϕ1,ϕ2) satisfies condition (1.5), we have

∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

=
∫ ∞

2r

(1 + t
ρ(g0) )α‖f ‖Lp(B(g0,t))

ess inft<s<∞ ϕ1(g0, s)s
Q
p

ess inft<s<∞ ϕ1(g0, s)s
Q
p

(1 + t
ρ(g0) )αt

Q
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

∫ ∞

2r

ess inft<s<∞ ϕ1(g0, s)s
Q
p

(1 + t
ρ(g0) )αt

Q
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

(
1 +

r
ρ(g0)

)–α ∫ ∞

r

ess inft<s<∞ ϕ1(g0, s)s
Q
p

t
Q
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

(
1 +

r
ρ(g0)

)–α

ϕ2(g0, r). (3.5)

Then by Theorem 3.1 we get

∥∥[
b,IL

β

]
f
∥∥

Mα,V
q,ϕ2

�
∥∥Iβ+ν

(|f |)∥∥Mα,V
q,ϕ2

� sup
g0∈Hn ,r>0

(
1 +

r
ρ(g0)

)α

ϕ2(g0, r)–1r–Q/q∥∥Iβ+ν

(|f |)∥∥Lp(B(g0,r))

� sup
g0∈Hn ,r>0

(
1 +

r
ρ(g0)

)α

ϕ2(g0, r)–1
∫ ∞

2r

‖f ‖Lp(B(g0,t))

t
Q
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

.

Let q = Q
Q–β–ν

. Similarly to estimates (3.5), we have

∫ ∞

2r

‖f ‖L1(B(g0,t))

tQ–β–ν

dt
t

� ‖f ‖Mα,V
1,ϕ1

(
1 +

r
ρ(g0)

)–α

ϕ2(g0, r).

Thus by Theorem 3.1 we get

∥∥[
b,IL

β

]
f
∥∥

WMα,V
Q

Q–β–ν
,ϕ2

�
∥∥Iβ+ν

(|f |)∥∥WMα,V
Q

Q–β–ν
,ϕ2

� sup
g0∈Hn ,r>0

(
1 +

r
ρ(g0)

)α

ϕ2(g0, r)–1rβ–n∥∥Iβ+ν

(|f |)∥∥WL Q
Q–β–ν

(B(g0,r))
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� sup
g0∈Hn ,r>0

(
1 +

r
ρ(g0)

)α

ϕ2(g0, r)–1
∫ ∞

2r

‖f ‖L1(B(g0,t))

tQ–β–ν

dt
t

� ‖f ‖Mα,V
1,ϕ1

. �

4 Proof of Theorem 1.2
We derive the statement from estimate (3.4). The estimation of the norm of the operator,
that is, the boundedness in the nonvanishing space, immediately follows by Theorem 1.1.
So we only have to prove that

lim
r→0

sup
g∈Hn

A
α,V
p,ϕ1 (f ; g, r) = 0 ⇒ lim

r→0
sup
g∈Hn

A
α,V
q,ϕ2

([
b,IL

β

]
f ; g, r

)
= 0 (4.1)

and

lim
r→0

sup
g∈Hn

A
α,V
1,ϕ1 (f ; g, r) = 0 ⇒ lim

r→0
sup
g∈Hn

A
W ,α,V
Q/(Q–β),ϕ2

([
b,IL

β

]
f ; g, r

)
= 0. (4.2)

To show that supg∈Hn (1 + r
ρ(g) )αϕ2(g, r)–1r–Q/p‖[b,IL

β ]f ‖Lq(B(g,r)) < ε for small r, we split
the right-hand side of (3.4):

(
1 +

r
ρ(g)

)α

ϕ2(g, r)–1r–Q/p∥∥[
b,IL

β

]
f
∥∥

Lq(B(g,r)) ≤ C
[
Iδ0 (g, r) + Jδ0 (g, r)

]
, (4.3)

where δ0 > 0 (we may take δ0 > 1), and

Iδ0 (g, r) :=
(1 + r

ρ(g) )α

ϕ2(g, r)

∫ δ0

r
t– Q

q –1‖f ‖Lp(B(g,t)) dt

and

Jδ0 (g, r) :=
(1 + r

ρ(g) )α

ϕ2(g, r)

∫ ∞

δ0

t– Q
q –1‖f ‖Lp(B(g,t)) dt,

and we suppose that r < δ0. We use the fact that f ∈ VMα,V
p,ϕ1 (Hn) and choose any fixed δ0 > 0

such that

sup
g∈Hn

(
1 +

t
ρ(g)

)α

ϕ1(g, t)–1t–n/p‖f ‖Lp(B(g,t)) <
ε

2CC0
,

where C and C0 are constants from (1.6) and (4.3). This allows us to estimate the first term
uniformly in r ∈ (0, δ0):

sup
g∈Hn

CIδ0 (g, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now can be made by the choice of r sufficiently small.
Indeed, thanks to condition (2.6), we have

Jδ0 (g, r) ≤ cσ0

(1 + r
ρ(g) )α

ϕ1(g, r)
‖f ‖VMα,V

p,ϕ1
,
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where cσ0 is the constant from (1.3). Then, by (2.6) it suffices to choose r small enough
such that

sup
x∈Rn

(1 + r
ρ(g) )α

ϕ2(g, r)
≤ ε

2cσ0‖f ‖VMα,V
p,ϕ1

,

which completes the proof of (4.1).
The proof of (4.2) is similar to that of (4.1).

5 Conclusions
In this paper, we study the boundedness of the commutators [b,IL

β ] with b ∈ �θ
ν(ρ) on the

central generalized Morrey spaces LMα,V
p,ϕ (Hn), generalized Morrey spaces Mα,V

p,ϕ (Hn), and
vanishing generalized Morrey spaces VMα,V

p,ϕ (Hn) associated with the Schrödinger opera-
tor. When b belongs to �θ

ν (ρ) with θ > 0, 0 < ν < 1 and (ϕ1,ϕ2) satisfies some conditions,
we show that the commutator operator [b,IL

β ] is bounded from LMα,V
p,ϕ1 (Hn) to LMα,V

q,ϕ2 (Hn),
from Mα,V

p,ϕ1 (Hn) to Mα,V
q,ϕ2 (Hn), and from VMα,V

p,ϕ1 (Hn) to VMα,V
q,ϕ2 (Hn), 1/p – 1/q = (β + ν)/Q.

Our result about the boundedness of [b,IL
β ] with b ∈ �θ

ν (ρ) from LMα,V
p,ϕ1 (Hn) to

LMα,V
q,ϕ2 (Hn) (Theorem 1.1) is based on the local estimate for the commutators [b,IL

β ] (The-
orem 3.1).
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