

A STUDY ON MATRIX SUMMABILITY OF FOURIER SERIES

ŞEBNEM YILDIZ

Department of Mathematics Ahi Evran University Kırşehir, Turkey E-mail: sebnemyildiz@ahievran.edu.tr sebnem.yildiz82@gmail.com

Abstract

In this paper, a main result dealing with absolute Riesz summability of Fourier series has been generalized to the $|A, p_n|_k$ summability method. Some new results concerning an application of absolute matrix summability to Fourier series have been obtained.

1. Introduction

The notion of weighted mean, so the notion of a matrix summability method has many applications to all branches of sciences especially to statistics, physics, computer science, information theory, economics and biological science. For any sequence (λ_n) we write that $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. A sequence (λ_n) is said to be of bounded variation, denoted by $(\lambda_n) \in \mathcal{BV}$, if

$$\sum_{n=1}^{\infty} \mid \Delta \lambda_n \mid < \infty$$

Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . We denote by (u_n) and (z_n) the *n*-th (C, 1) means of the sequences (s_n) and (na_n)

²⁰¹⁰ Mathematics Subject Classification: 26D15, 40F05, 40G99, 42A24.

Keywords: summability factors, absolute matrix summability, Fourier series, infinite series, Hölder inequality, Minkowski inequality.

Received May 11, 2017; Revised July 5, 2017; Accepted September 22, 2017