
Preservice Middle and High School Mathematics
Teachers’ Strategies when Solving Proportion Problems

Muhammet Arican1

Received: 15 February 2016 /Accepted: 3 October 2016 /Published online: 20 October 2016
# Ministry of Science and Technology, Taiwan 2016

Abstract The purpose of this study was to investigate eight preservice middle and high
school mathematics teachers’ solution strategies when solving single and multiple
proportion problems. Real-world missing-value word problems were used in an inter-
view setting to collect information about preservice teachers’ (PSTs) reasoning about
proportional relationships. An explanatory case study methodology with multiple cases
was used to make comparisons within and across cases. Analysis of the semi-structured
interviews with each PST revealed that using practical problems, in which plastic gears
and a mini balance system were provided, and multiple proportion problems facilitated
the PSTs’ recognition of the proportional relationships in their solutions. Therefore,
they avoided using cross-multiplication and erroneous strategies in those problems.
Among the strategies that the PSTs used in solving single and multiple proportion
problems, the ratio table strategy was the most frequent and effective strategy. The ratio
table strategy enabled the PSTs to recognize the constant ratio and product relationships
more than the other strategies. The results of this study illuminate how PSTs reason
about proportional relationships when they cannot rely on computation methods like
cross-multiplication.

Keywords Proportions . Proportional reasoning . Proportional relationships . Ratios

Introduction

Understanding ratios, proportions, and proportional reasoning constitutes an im-
portant area of school mathematics that is essential for students to learn but
difficult for teachers to teach (Lobato & Ellis, 2010, p. 1). Proportional reasoning
is also essential in understanding many situations in science and in everyday life

Int J of Sci and Math Educ (2018) 16:315–335
DOI 10.1007/s10763-016-9775-1

* Muhammet Arican
muhammet.arican@ahievran.edu.tr

1 Department of Mathematics and Science Education, Ahi Evran University, Kirsehir, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s10763-016-9775-1&domain=pdf


(Cramer & Post, 1993). For instance, students need to understand and use ratios
and proportions to represent quantitative relationships (National Council of
Teachers of Mathematics, 2000), and they should be able to analyze proportional
relationships and use them to solve real-world and mathematical problems
(Common Core State Standards Initiative, 2010). The significance of proportional
reasoning in students’ mathematical development is also emphasized in the large-
scale international assessments such as the Trends in International Mathematics
and Science Study (TIMSS) and the Programme for International Student Assess-
ment (PISA). These two assessments consider understanding ratios, proportions,
and proportional relationships as a benchmark entity for students’ mathematical
proficiency. Therefore, proportional reasoning plays a key role in students’ math-
ematical development, and it is an important concept in students’ elementary
school mathematics and in higher mathematics (Lesh, Post & Behr, 1988).

As stated in the Common Core State Standards for Mathematics, to be able to reason
proportionally, students should be able to BDecide whether two quantities are in a
proportional relationship (7.RP.2a)^ (CCSSI, 2010, p. 48). There are two types of
proportional relationships between quantities: directly proportional relationships and
inversely proportional relationships. Lamon (2007) states that y = k*x is the mathe-
matical model for directly proportional relationships. In this model, the variables y and
x represent the quantities that are in a directly proportional relationship, and the amount
k represents the constant of proportionality. Since y = k*x necessitates y/x = k, in a
directly proportional relationship, the quotient of the two covarying quantities always
remains constant. Whereas, the mathematical model for an inversely proportional
relationship is y*x = k. Hence, in an inversely proportional relationship, the product
of the values of inversely proportional quantities remains constant.

Despite the given importance and effort spent on teaching ratios and propor-
tions, many studies (e.g. Clark, 2008; De Bock, Verschaffel & Janssens, 1998;
Hart, 1984; Modestou & Gagatsis, 2007) have reported students’ difficulties and
poor performances on proportional relationships. A small number of studies on
teachers’ reasoning about proportional relationships (e.g. Izsák & Jacobson 2013)
have reported that teachers’ difficulties are often similar to those of students’. One
of the problems with teaching and learning proportional relationships is that
traditional proportion instruction places an emphasis on rule memorization and
rote computations (Izsák & Jacobson, 2013). The most common textbook strategy
for solving a missing-value problem is the cross-multiplication strategy (Fisher,
1988), which requires setting a proportion and cross-multiplying numbers within
the proportion without thinking about proportional relationships between quanti-
ties. Although students and teachers may severely depend on using the cross-
multiplication strategy when solving proportion problems, BA robust understand-
ing of proportional relationships includes understanding and using multiplicative
relationships between two covarying quantities and recognizing whether or not
two covarying quantities remain in the same constant ratio^ (Izsák & Jacobson,
2013, p. 2). Moreover, Stemn (2008) noted that although the cross-multiplication
algorithm is effective in solving proportion problems, it hinders students’ under-
standing of the multiplicative relationship.

A second problem with teaching and learning proportional relationships is that
students and preservice teachers (PSTs) usually tend to judge nonproportional
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relationships to be proportional and apply proportional strategies for nonproportional
situations (e.g. De Bock et al., 1998; Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009;
Modestou & Gagatsis, 2007; Riley, 2010; Van Dooren, De Bock, Janssens &
Verschaffel, 2007). For example, Fisher (1988) gave 20 secondary mathematics
teachers the following inverse proportion problem:

If it takes nine workers 5 hours to mow a certain lawn, how long would it take six
workers to mow the same lawn? (p. 160).

Fisher (1988) discussed that 12 out of 20 teachers solved this problem incorrectly,
and 9 of them approached the problem as if it were a direct proportion problem. In
addition, the following problems were also reported in the literature: Students and PSTs
are likely to use additive strategies to solve proportion problems (Hart, 1984;
Misailadou & Williams, 2003; Riley, 2010; Simon & Blume, 1994); they have
difficulty creating suitable reciprocal multiplicative relationships for nonproportional
problems (Izsák & Jacobson, 2013); and they have difficulty understanding ratio-as-
measure and the invariance of a ratio (Simon & Blume, 1994).

In earlier research, researchers investigated teachers’ proportional reasoning
mostly using missing-value word problems, which usually involved a single
proportional or nonproportional relationship. Moreover, as stated by Lamon
(2007), mathematics education research has overlooked teachers’ proportional
reasoning. In particular, only a few studies have reported teachers’ proportional
reasoning regarding inverse proportions (e.g. Fisher, 1988; Izsák & Jacobson,
2013; Lim, 2009; Riley, 2010), and even fewer researchers have studied multiple
proportions (e.g. Vergnaud, 1983, 1988). Hence, this study contributes to the
current literature on proportions by investigating PSTs’ reasoning on single and
multiple proportions. In this study, I report results from semi-structured interviews
during which preservice middle and high school mathematics teachers in the USA
worked on real-world missing-value word problems that involved directly and
inversely proportional relationships. The purpose of this study was to investigate
PSTs’ solution strategies and to report facilities and difficulties that they encoun-
tered when solving proportion problems. Therefore, the following research ques-
tions were investigated:

1. What strategies do preservice middle and high school mathematics teachers use to
solve single and multiple proportion problems?

2. What difficulties and facilities do preservice middle and high school mathematics
teachers encounter when solving proportion problems?

Theoretical Frameworks

The theoretical framework of this study is developed drawing on two frameworks. In
particular, Vergnaud’s (1983, 1988) the multiplicative conceptual field theory was used
to develop the categories of proportions (see Fig. 1) and to interpret PSTs’ reasoning on
the problems presented in the mathematical tasks. Second, the solution strategies
frameworks described by Fisher (1988), Inhelder and Piaget (1958), Karplus, Pulos
and Stage (1983b), and (Lamon, 1993) were used as tools to classify and to explain the
PSTs’ solution strategies.
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The Multiplicative Conceptual Field Theory

Vergnaud (1983, 1988) emphasized that whole-number multiplication and division,
fractions, ratios, rational numbers, and linear relationships are not mathematically inde-
pendent of one another and placed these concepts within a larger context that he calls the
multiplicative conceptual field. A conceptual field is a Bset of problems and situations for
the treatment of which concepts, procedures, and representations of different but narrowly
interconnected types are necessary^ (Vergnaud, 1983, p. 127). From this perspective, Ba
concept’s meaning does not come from one situation only but from a variety of situations
and that, reciprocally, a situation cannot be analyzed with one concept alone, but rather
with several concepts, forming systems^ (Vergnaud, 2009, p. 86). Hence, for Vergnaud
(2009), a set of situations and a set of concepts are tied together, and Bthe development of a
conceptual field requires children’s meeting and being faced with contrasting situations^
(p. 86). Therefore, as stated by Vergnaud (2009), he conceptualized the theory of
conceptual field as a developmental theory.

Vergnaud (1983, 1988) discussed three types of multiplicative structures: isomor-
phism of measures, product of measures, and multiple proportion other than product.
The isomorphism of measures structure Bconsists of a simple direct proportion between
two measure-spaces M1 and M2^ (Vergnaud, 1983, p. 129) in which BMeasure spaces
usually refer to different sets of objects, different types of quantities, or different units
of measure^ (Lamon, 2007, p. 634). The product of measures structure Bconsists of the
Cartesian composition of two measure-spaces, M1 and M2, into a third, M3^
(Vergnaud, 1983, p. 134). The problems in this structure are concerned with area,
volume, Cartesian product, and work. For instance, multiplying the lengths of width
and height of a rectangle yields its area. In the example, the area is double proportional
to the lengths of width and height. In the multiple proportion other than product
structure, Ba measure-space M3 is proportional to two different independent measure-
spaces M1 and M2^ (Vergnaud, 1983, p. 138). This type of proportional relationship is
also called a jointly proportional relationship in the literature. For example, BThe
consumption of cereal in a scout camp is proportional to the number of persons and
to the number of days^ (Vergnaud, 1983, p. 138).

Vergnaud (1983) distinguished the second and third multiplicative structures as
follows: In the product of measures structure, the constant of the proportionality is
thought to be 1, but the same is not true for the multiple proportion other than product
structure. For example, in the Speed task (see Table 1), the distance (D) a car traveled in
some fixed time (T) at a constant speed (V) can be expressed by the equation V*T = D.

Proportions

Single Proportions

Direct Proportions
y = k*x

Inverse Proportions
y*x = k

Multiple Proportions

Compound Proportions

Direct-Direct-Inverse
y*x = k*z

Inverse-Inverse-Inverse
y*x*z = k

Continued Proportions

Fig. 1 Classification of proportions
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Table 1 Description of the mathematical tasks

Task and study used Task descriptions Problem characteristics

Gear study 1 and 2 This task included two parts: given that
two gears were meshed, (a) the
PSTs calculated either the number
of notches or the size of a gear; (b)
they calculated either the number of
notches or the number of revolu-
tions of a gear.

There was a single directly
proportional
relationship between the size of a
gear
and its number of notches and a
single inversely proportional
relationship between the number of
revolutions that a gear made and its
size. (Single proportion)

Bakery study 1 and 2 The PSTs calculated the number of
cupcakes, number of minutes, and
number of workers. In some
problems, fixing one of the three
quantities, the PSTs investigated a
single relationship. In some other
problems, there was not any fixed
quantity, so the PSTs investigated
multiple relationships.

The PSTs explored one inversely and
two directly proportional
relationships among the number of
people, number of cupcakes, and
number of minutes. Hence, the
problems in this task could be
classified within the multiple
proportion category under the
direct-direct-inverse proportions
structure. (Multiple proportion)

Balance study 1 and 2 The PSTs were provided with a mini
balance system. Given that some
numbers of weights were hung on
one side of the balance, they
balanced the system on the other
side by hanging weights at different
distances.

The problems in this task could be
classified within the single
proportion category. The PSTs
explored an inversely proportional
relationship between the number of
weights hung and distance (how far
from the center a weight hung).
(Single proportion)

Speed study 1 and 2 The PSTs calculated the distance, time,
and speed of a given car. Similar to
the Bakery task, single and multiple
relationships were investigated.

The PSTs investigated one inversely
and two directly proportional
relationships among the distance,
speed, and time. Hence, this task
involved direct-direct-inverse
proportional relationships. (Multiple
proportion)

Fence study 1 and 2 In this task, the PSTs calculated the
number of workers, number of days,
and number of fences painted.
Similar to the Bakery and Speed
tasks, single and multiple
relationships were investigated.

The PSTs identified one inversely and
two directly proportional
relationships among the number of
workers, number of days, and
number of fences painted.
Therefore, this task involved
direct-direct-inverse proportional
relationships. (Multiple proportion)

Apartment study 1 The PSTs calculated the number of
workers, number of hours they
work each day, and number of days
required to build an apartment.

This task involved
inverse-inverse-inverse proportional
relationships among the number of
workers, number of hours they
work each day, and number of days
required to build an apartment.
(Multiple proportion)

Painter study 1 Fixing the number of hours, the PSTs
calculated either the number of
bedrooms painted or the number of
painters needed. Similarly, fixing

The PSTs explored a single directly
proportional relationship between
the number of painters and number
of bedrooms and a single inversely
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In the example, the distance equation demonstrates a product of measures structure
because the constant of the proportionality is 1. On the other hand, in the Bakery task
(Table 1), the multiplicative relationships among the number of people (P), number of
minutes (M), and number of cupcakes (C) can be expressed by the equation P*M = kC,
in which k≠1 represents the constant of proportionality and demonstrates Bnumber of
person-minutes per cupcake.^ Although these two structures include an inversely
proportional relationship between quantities multiplied, Vergnaud (1983, 1988) did
not focus on this inversely proportional relationship in detail. Vergnaud (1988) called
the problems of the type of isomorphism of measures as simple proportion problems
and called the problems of the last two structures as multiple proportion problems. As
noted by Vergnaud (1988), multiple proportion problems have not been researched
widely, and most teachers are unaware of students’ difficulties with these problems.

In this study, I classify proportions into two main categories: single proportions and
multiple proportions (Fig. 1). In Fig. 1, I classified multiple proportions for the case of
the three measure spaces. My classification uses Vergnaud’s (1983, 1988) classification
of multiplicative structures and extends it in several ways. First, my definition of a
single proportion structure combines isomorphism of measures (direct proportion) and
inverse proportion structures. Because Vergnaud (1983, 1988) did not focus on the
inverse proportion structure in detail and an inversely proportional relationship is also
formed between two quantities, I placed inverse proportion structure in the single
proportion category. Second, my definition of a multiple proportion structure contains
two main types of proportions: compound and continued. A compound proportion
consists of the product of measures and multiple proportion other than product
structures, in which a combination of direct and inverse proportions are presented.
For three measure spaces, the compound proportion structure involves direct-direct-
inverse and inverse-inverse-inverse proportion structures. Vergnaud’s (1983, 1988)
product of measures and multiple proportion other than product structures are equiv-
alent to a direct-direct-inverse proportion structure in my classification because both
structures combine one inversely and two directly proportional relationships. Therefore,
I placed them in the compound proportion category under the direct-direct-inverse

Table 1 (continued)

Task and study used Task descriptions Problem characteristics

the number of bedrooms, they
calculated either the number of
painters or the number of hours.

proportional relationship between
the number of painters and number
of hours. (Multiple proportion)

Cookie Fac. study 1 The PSTs calculated either the number
of assembly lines to make boxes of
cookies to fill a truck or the number
of hours needed to fill this truck.

This task involved a single inversely
proportional relationship between
the number of assembly lines and
number of hours. (Single
proportion)

Scout Camp study 2 Given that some number of people
went on a scout camp, the PSTs
calculated the number of people,
amount of cereal each person ate per
day, and number of days they stayed
in the camp.

There were inverse-inverse-inverse
proportional relationships among
the number of people, amount of
cereal each person eats per day, and
number of days they stayed in the
camp. (Multiple proportion)
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proportion structure rather than discussing them in separate categories. On the other
hand, if there are quantities that have a structure in which a:b = b:c = c:d and so on, then
this structure is called continued proportions. In the study, continued proportions are
not discussed further.

Strategy Frameworks

The literature on students’ proportional reasoning indicate that strategies students use
when solving proportion problems are usually classified in some developmental stages.
For example, Inhelder and Piaget (1958) discussed four stages of development for
proportional reasoning: concrete operational, additive, pre-proportional, and propor-
tional (as cited in Lesh & Harel, 2003). In the concrete operational reasoning stage,
students’ reasoning tend to involve qualitative judgments (e.g. A > B). In the additive
reasoning stage, students focus on the additive differences between quantities (e.g. A-
B = C-D). In the pre-proportional reasoning stage, students think about proportions by
noticing a pattern or a relationship between quantities (e.g. two apples for 1 dollar, so
four apples for 2 dollars). Finally, in the proportional reasoning stage, students reason
about multiplicative relationships between quantities (e.g. A/B = C/D).

Similar to Inhelder and Piaget (1958), several studies reported strategies used by
students and teachers when solving proportions. Considering the four stages above as a
basis for my discussion, in the following pages, I discuss some of the ways previous
studies classified students and teachers’ responses. Although there are several other
studies (e.g. Ben-Chaim, Keret & Ilany, 2012; Canada, Gilbert & Adolphson, 2008;
Cox, 2013; Harel & Behr, 1995; Tourniaire & Pulos, 1985) that describe students’ or
teachers’ strategies when solving proportion problems, I report the solution strategies
frameworks described by Karplus et al. (1983b), Fisher (1988), and Lamon (1993). I
decided to report these three studies because the strategy categories discussed in these
studies were consistent with the four stages above. In my analysis, I mainly followed
the strategy categories described by Fisher (1988) because it is one of the very few
examples that demonstrates teachers’ solution strategies.

Karplus et al. (1983b) developed lemonade puzzles to explore proportional and
other types of reasoning of 60 sixth graders and 60 eight graders. They collected
students’ strategies in a strategy scale that involved four categories: Category I (in-
complete or illogical strategy); Category Q (qualitative strategy); Category A (additive
strategy); and Category P (proportional strategy). The responses in Category I indicat-
ed that students did not know the answer, guessed, or used inappropriate quantitative
operations. The responses in Category Q demonstrated that students compared given
quantities qualitatively using words, such as less and more, or identical terms. The
responses in Category A showed that students compared quantities by paying attention
to the differences in the values of these quantities. Finally, the responses in Category P
revealed that students compared quantities by paying attention to the proportional
relationships.

Fisher (1988) used a list of nine strategies to classify secondary teachers’ solution
strategies to solve two direct and two inverse proportion problems. She treated the first
five of the nine strategies as the incorrect strategies and the remaining four as the
correct strategies. No Answer; Intuitive (guessing the answer or answering the question
by just relying on feelings or intuition); Additive (the subject incorrectly focuses on the
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additive differences between the given quantities and does not consider multiplicative
relationships); Proportion Attempt (the subject understands that proportion was in-
volved but cannot express the relationship); Incorrect Other (an incorrect strategy that
cannot be placed in categories 1 – 4); Proportion Formula (a correct strategy in which
the subject solves a problem by showing the equivalence of two ratios or by generating
an equation that expresses the equality of two products followed by an explicit
statement noticing the inverse relationship); Proportional Reasoning (the subject solves
the problem by using a correct proportion strategy other than the proportion formula);
Algebra (the subject solves the problem by setting up an algebraic equation other than
the proportion formula); and Correct Other (a correct strategy that cannot be placed in
categories 6 – 8).

Lamon (1993, p. 46) identified 6 strategies from 24 sixth-grade students’ responses to a
set of 40 ratio and proportion problems: Avoiding (students did not establish a genuine
interaction with the problem); Visual or Additive (students solved problems by using the
trial-and-error method, employed visual judgments, or they used incorrect additive
strategies. They did not offer reasons for their responses); Pattern Building (students used
verbal or written patterns without considering numerical relationships); Pre-proportional
Reasoning (students used intuitive activities, such as charts, pictures, or models, to solve
the problems. Some relative thinking was also involved in the solution processes);
Qualitative Proportional Reasoning (students understood numerical relationships, used
a ratio as a unit, and used relative thinking to solve the problems); and Quantitative
Proportional Reasoning (students used algebraic symbols to show proportions and
understood functional and scalar relationships in those symbols).

The strategy categories determined by Karplus et al. (1983b), Fisher (1988), and
Lamon (1993) appeared to correspond and complete each other. The categories
determined by Karplus et al. (1983b) were the relatively least extensive in comparison
to the categories determined by Fisher (1988) and Lamon (1993). Lamon (1993) extended
the categories of Karplus et al. (1983b) by considering the proportional reasoning
category to include three separate categories: pre-proportional, qualitative proportional,
and quantitative proportional. Furthermore, she considered visual and additive strategies
in the same category and added pattern building as a new strategy category. Fisher (1988)
had done relatively more extensive job in categorizing teachers’ responses. Fisher’s
(1988) proportion formula, proportional reasoning, and algebra categories were consistent
with Lamon’s (1993) qualitative and quantitative proportional reasoning categories.
Fisher (1988) grouped the strategies that fell out the categories that she determined by
including incorrect other and correct other categories.

Methodology

Participants

An explanatory multiple-case study methodology (Yin, 1993, 2009) was used to design
this study. Because one of the purposes of this study was to explore PSTs’ reasoning,
each individual PST constituted a case. Since there was more than one case, a multiple-
case study methodology best suited the scope of this study. One of the most important
strengths of case study is that it allows researchers to explore a real-life phenomenon in

322 M. Arican



depth (Yin, 2009). Hence, conceptualizing this study as a multiple-case study method-
ology allowed me to explore PSTs’ reasoning in depth. I recruited eight PSTs from one
large public university in the Southeast USA. The university offers separate programs
leading to certification for secondary grades (6 – 12) and middle grades (4 – 8)
mathematics teachers. Because the focus of this study involved challenging mathemat-
ical problems, PSTs with some college level experience on direct and inverse propor-
tions were preferred. The secondary grades program includes one content course with a
focus on multiplicative relationships, ratios, and proportions; the middle grades pro-
gram includes two such content courses. Therefore, PSTs who attended or were
attending one of these courses were selected.

I designed a preliminary study (study 1) to learn PSTs’ understanding of directly and
inversely proportional relationships and to test the quality of the mathematical tasks and
interview questions. Based on the responses collected in study 1, I reduced the number
of tasks from eight to six and made small changes in the given tasks and follow-up
questions; however, the mathematical structures of the tasks remained unchanged. In
the spring semester of 2013, I recruited one female middle grade teacher (Abby) and
one female (Sally) and two male secondary grade teachers (Jason and Robert) for study
1. In the fall semester of 2014, I recruited two female secondary grade (Kathy and
Susan) and two female middle grade (Carol and Helen) PSTs for study 2. To maintain
confidentiality, I replaced all real names with pseudonyms.

Data Collection and Analysis

I collected the data through semi-structured clinical interviews (Bernard, 1994).
Conducting semi-structured interviews provided the flexibility to probe or modify
the follow up questions depending on the PSTs’ responses. Two video cameras
were used during the interviews: One focused on the PST’s written work, and the
other focused on the PST and interviewer. I conducted all of the interviews, and
one graduate student operated the video cameras. Each interview lasted between
45 and 90 min. In study 1, Robert, Jason, and Sally were interviewed for 3 h each,
and Abby was interviewed for approximately 80 min. In study 2, each PST was
interviewed approximately 4 to 5 h.

I used a thematic analysis approach (Boyatzis, 1998) to analyze the interview
data. After transcribing the interviews verbatim, I open coded the interview
transcripts line-by-line for the PSTs’ strategies, and if necessary wrote memos
about these strategies. Next, I created a code file for each task in Microsoft Excel.
Then, I counted the number of occurrences of each code and entered that number
in the record for the task. Later, I returned to the interview transcripts and recoded
these to strengthen the reliability of the results. I then aggregated similar codes
together to determine the connections among the codes and to identify relation-
ships. In the last step of the data analysis, I wrote cross-task analyses of each case
based on the strategies identified.

Mathematical Tasks

Nine mathematical tasks were used in this study (Table 1). Some combinations of the
first eight tasks were used in study 1. Study 2 involved six tasks—Gear, Balance,
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Bakery, Balance, Speed, Fence, and Scout Camp—in which the Fence and Scout Camp
tasks were used as extras. I developed the Gear, Painter, Apartment, and Balance
System tasks and adapted the Bakery, Fence, Cookie Factory, and Speed tasks from
Mathematics for Elementary Teachers (Beckmann, 2011), and adapted the Scout
Camping task from Vergnaud’s (1983) study. The mathematical tasks involved either
single or multiple proportional relationships and all of the problems were missing-value
type problems. In the Balance and Gear tasks, I provided the PSTs with a mini number
balance system and plastic gears, respectively. The Gear task involved two parts in both
study 1 and 2; the Bakery task involved two and three parts in study 1 and 2,
respectively; and the Painter task involved two parts.

Mathematical Analysis of the Tasks. In the direct proportion problems, there was a
constant ratio relationship between the two covarying quantities. For example, in the
Gear task, there was a constant ratio relationship between the size of a gear and its
number of notches. I provided the PSTs with two gears, which were thought to be
meshed, and asked to calculate either the number of notches or the radius of one of the
gears. In general, the multiplicative relationship between the number of notches (N) and
radii (r) can be expressed with the following equation, where N

r notches/cm represents
the constant ratio or the unit rate.

r cmð Þ* N
r
notches=cm

� �
¼ N notches ð1Þ

In the inverse proportion problems, there was a constant product relationship
between the two covarying quantities. For example, in the Gear task, the product of
the number of revolutions (R) and number of notches (N) yielded the total number of
notches (T) revolved on a gear, which was constant. This relationship can be expressed
with the following equation:

R revolutionsð Þ* N notches=revolutionð Þ ¼ T notches ð2Þ

In the Balance task, to balance the system on two sides, the PSTs were required to
have the same value, which was determined by multiplying the number of weights and
distance from the center of the system, on both sides. Therefore, the contexts of the
Gear and Balance tasks were appropriate for facilitating the PSTs’ understanding of
constant product relationships.

Because the PSTs compared three quantities in the multiple proportion tasks,
identifying multiplicative relationships were expected to be more difficult than single
proportion tasks. For instance, in the Bakery task, there was a direct-direct-inverse
proportional relationships structure. The multiplicative relationships among the number
of people (P), the number of minutes (M), and the number of cupcakes (C) can be
expressed with the following equation. In the equation, k represents the number of
person-minutes per cupcake.

Ppeopleð Þ* Mminutesð Þ ¼ C cupcakesð Þ*k ð3Þ
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Results

Based on the analysis of the PSTs’ responses to the proportion tasks in study 1 and
2, I provided the PSTs’ solution strategies in Table 2. Table 2 aligns the PSTs and
mathematical tasks that they worked on. Moreover, it shows the strategies that
they used for each task and the counts of these strategies appeared in each task. In
the table, I entered strategy names in abbreviated forms and provided extended
forms of these abbreviations at the end of the table. The table suggests that many
of the PSTs’ strategies could be classified as proportional reasoning, proportion
formula, and algebra strategies (e.g. Fisher, 1988). I classified the ratio table, unit
ratio, and double number line strategies within the proportional reasoning category
because in these strategies, the PSTs considered proportionality in their reasoning
and solved the given problems without necessarily using a proportion formula. If
the PSTs used a proportion formula (i.e. a/b = c/d) to solve a given problem, then I
classified this strategy under the proportion formula strategy. Following Fisher
(1988) study, if the PSTs solved a problem by forming an algebraic equation other
than a proportion formula, then I classified the strategy as an algebra strategy.
Additive, computation (i.e. unit conversion method), intuitive (i.e. double
counting strategy), and visual strategies were also observed but occurred in very
few instances.

As Table 2 shows, the ratio table appeared to be the most preferred strategy.
Three different variations of this strategy were observed. In the most common
usage, the PSTs entered the given information side by side—without necessarily
having rows and columns—and either multiplied or divided within and/or be-
tween measure spaces (Fig. 2a). In the second type of usage, they entered the
information and separated the values of the quantities from different measure
spaces by rows and columns, and again either multiplied or divided within and/or
between measure spaces (Fig. 2b). In the last type, which was only used by Sally
in the Bakery task, the information was entered into a parenthesis rather than into
a table (Fig. 2c).

The ratio table strategy usually yielded the correct results if the PSTs inferred
the correct relationships between quantities, and it was effective in facilitating the
PSTs’ recognition of the constant ratio and product relationships. For example, in
the Gear task, Kathy calculated the number of revolutions of Gear L, with eight
notches, given that Gear M had 14 notches and revolved four times. She used the
idea Btwo gears go through the same number of notches^ and calculated the
answer to be seven revolutions. She calculated this answer by determining the
total notches revolved on Gear M, in which she multiplied 14 notches and 4
revolutions, and dividing the total notches by 8 notches. The remaining PSTs also
recognized this constant product relationship in the Gear task. Hence, the context
of this task facilitated the PSTs’ determination of the constant product, the total
notches moved, by coordinating the number of revolutions and number of notches.
When asked if she could use a ratio table strategy to solve the same problem,
Kathy was able to generate one for the relationship between the number of notches
and number of revolutions depicted in the problem (see Fig. 2b). She recognized
that the product of all rows (notches and revolutions) was equal to 56:
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Kathy: Okay, so well that has to be 56, I mean this is 56 here. I just know, I just kind
of know that like all of these, like these two [pointed at notches and revolutions]
have to multiply to give me 56 like every single time. So, I am saying what times
two is 56 and that is, I do not know, 28. And then 56

3 , I do not know what that is.

Int: You can leave like that. Knowing that 56, you said 56 is the?

Kathy: is the product of notches and revolutions.

Table 2 Preservice teachers’ solution strategies

Study 1

Task Abby Sally Jason Robert

Gear I PF (11); RT (2) PF (8); Additive (1) PF (7); UR (2)

Gear II PF (5) Algebra (6); PF (1) Algebra (6)
Additive (2)

Bakery I PF (3); RT (1) RT (3) UR (2)
Algebra (1)

Bakery II RT (3); Algebra (2) RT (2), Algebra (1) RT (3); Algebra (1)

Painter I RT (2)

Painter II RT (1); Algebra (1)

Fence RT (4) RT (3) RT (1)

Apartment RT (2) RT (2); Algebra (1) Algebra (3)

Cookie Factory Algebra (2); RT (1)

Speed UR (4); RT (4) RT (4); UC (2) RT (2)

Balance Algebra (5); RT (1)

Study 2

Task Kathy Susan Carol Helen

Gear I RT (9); DNL (2)
UR (2)

PF (11); RT (1) PF (10); UR (4)
SD (1); RT (1)
DC (1)

RT (5); UR (4)
PF (2); DC (1)

Gear II Algebra (7)
Additive (1)
DNL (1); RT (1)

Algebra (9); RT
(1) DNL (1);
UR (1)

PF (3)
Algebra (3)

RT (5)
DNL (2)

Bakery I DNL (3); RT (2) RT (2); PF (2)
UR (1); DC (1)

RT (3) RT (5)
UR (2)

Bakery II RT (4) RT (2); UR (1) RT (2); Visual (1) RT (2); Visual (2)

Bakery III RT (3) RT (6); DNL (6)
UR (1)

RT (2); UR (2) RT (3)

Balance Algebra (3)
RT (1)

Algebra (4); RT (1) Algebra (3) Algebra (4)
RT (2)

Speed RT (6); UC (4)
DC (1)

RT (5); UC (4)
Algebra (3); PF (1)
DNL (1); UR (1)

RT (7); PF (1)
UR (3); DNL (1)

Additive (2)

UC (4); RT (3)
PF (1)

Fence RT (1) RT (2)

Scout Camp RT (3) Algebra (2) Visual (1) Visual (1); RT (2)

RT ratio table, PF proportion formula, UR unit ratio, DNL double number line, SD strip diagram, UC unit
conversion, DC double counting
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In the exchange, Kathy explicitly stated that 56 was the product of notches and
revolutions. In her explanation, she attended to the multiplicative relationships between
the number of notches and number of revolutions to discuss the constant product
relationship. Therefore, the exchange and Fig. 2b suggested that the ratio table strategy
facilitated Kathy’s recognition of the constant product relationship between the number
of notches and number of revolutions.

The use of the ratio table also appeared to be effective in the multiple
proportion tasks (i.e. Bakery, Speed, Fence, Apartment, and Scout Camp) because
it allowed the PSTs to fix one quantity at a time and then to compare the
remaining two quantities. As a general strategy, the PSTs usually fixed the value
of one of the three quantities and then compared the remaining two quantities. If
the values of the two quantities were both increasing or decreasing together, then
the PSTs concluded the relationship to be directly proportional. On the other
hand, if the value of one quantity was increasing and the value of the second
quantity was decreasing or vice versa, then they decided the relationship to be
inversely proportional. For example, in the Bakery task, when I asked Susan to
calculate the time required by one person to frost 2N cupcakes, given that three
people frosted N cupcakes in T minutes, she immediately recognized that there
was not a constant value and stated this by saying BNothing’s constant now.^ In
her ratio table strategy (see Fig. 2a), Susan first fixed N cupcakes to a constant
number, and by reasoning within measure spaces, she decided that one person
could frost N cupcakes in 3T minutes. Next, she fixed the number of people to
one, and by multiplying within measure spaces, Susan decided that one person
could frost 2N cupcakes in 6T minutes. As shown in Fig. 2a, the PSTs

Fig. 2 a Susan’s ratio table strategy in the Bakery task, b Kathy’s ratio table strategy in the Gear task, and c
Sally’s ratio table strategy in the Bakery task
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occasionally performed the multiplication and division operations without writing
on the paper.

In the Speed task, by fixing a quantity at a time and describing qualitative relation-
ships between the remaining two quantities, Abby determined a directly proportional
relationship between distance and time and an inversely proportional relationship
between time and speed:

Abby: The amount of miles and the amount of seconds is the proportional
relationship if the miles per hour stay the same. But here if you are looking at
the seconds and the miles per hours, inversely proportional because uhmmm the
amount of miles that you are traveling stay the same, then as the seconds…as the
amount of time you take increases the miles per hour that you are driving
decreases if you are traveling the same distance. So, it depends on what uhmmm
what variables you look at or what two variables you are comparing.

Abby’s reasoning indicated that she inferred the directly and inversely proportional
relationships by considering speed and distance as constants one at a time and
describing the coordinated increases and decreases in the values of the remaining two
quantities. In the multiple proportion problems, the PSTs successfully coordinated the
need for fixing a quantity at a time with the presence of a directly or inversely
proportional relationship between the other two quantities.

The second most common approach to solve a proportion problem was the propor-
tion formula strategy. In this strategy, the PSTs formed a direct or an inverse proportion,
showing the equivalence of two ratios, and they calculated the missing value by
multiplying (or dividing) within or between measure spaces or by cross-multiplying
values within the proportion (see Fig. 3a, b). The commonly observed mistake the PSTs
had within this strategy was forming a direct proportion to solve an inverse proportion
problem. In this study, Carol and Jason used a direct proportion to solve some of the
inverse proportion problems. For instance, when I asked Carol to calculate the speed of
a car that covered a certain distance in 60 s, given that another car covered the same
distance in 90 s at 60 mph, she incorrectly formed a direct proportion. Next, she cross-
multiplied the values within this proportion and calculated the speed of the car to be
40 mph (Fig. 3a). Carol immediately recognized that the answer she found was not
correct and explained:

Carol: Yeah, I cross multiply by, but it’s not going to equals 90x and x equals 40
but that doesn’t make sense because if you are traveling the same distance in the
shorter amount of time, your speed will be…will increase, not decrease. So, that’s
not right, that’s why I x’d it out…let me think, hold on…So, if you traveled X
distance in 90 seconds at 60 mph and you want to travel X in 60 seconds and you
want to know how much…how fast that would take. Gosh, I don’t know…It
would be I think it’s…well if your time is decreasing, your speed is increasing
because your distance’s staying the same, right?

Carol’s determination of the inverse qualitative relationship, which she stated by saying Bif
your time is decreasing, your speed is increasing,^ seemed to help her understand that her
claim of the speed of the car as 40 mph was incorrect. Although Carol recognized that
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forming a direct proportion was an inappropriate method, she had difficulty finding a
better strategy to solve this problem. Similarly, in study 1, Jason also erroneously formed a
direct proportion to solve an inverse proportion problem (Fig. 3b) in the Gear task.
Nevertheless, overall, the use of incorrect proportion formula strategy was limited.

In the Speed task, Helen and Sally solved a direct proportion problem as if it were an
inverse proportion problem. When I asked Helen to calculate the time needed by a car
to travel 16 mi, given that it covered 40 mi in 60 min, she used a ratio table strategy and
justified her reasoning:

Helen: So, I can just do the table. So if I was traveling 1 mile it would take me
more, like it would take me longer to travel 1 mile at the same rate.

Int: Yeah at the same rate, sorry I forgot to mention that. You are driving at the
same rate, same speed.

Helen: So, that means it would take 2000 minutes for 1 mile.

Continuing the same strategy, Helen calculated the answer to be 125 min but then she
immediately recognized that her answer was incorrect:

Helen: …Because four times 5 is 20, yeah that is right yeah that time I have two
zeros that is 2000 yeah yeah that is right. Okay, so then to get to 16 miles, that
would times by 16, so that means I would divide this [pointed 2000 minutes] by
16. So, it would be 2000 over 16, which is [obtained 125 minutes]. So, 16 miles
ohhh that does not make sense.

Int: What happened?

Helen: If I travel 40 miles in 50 minutes uhmm then to travel 1 mile it is, if I
am just traveling wait if I am just going to travel just 1 mile it is going to
take less time.

Fig. 3 a Carol’s incorrect proportion formula strategy in the Speed task and b Jason’s incorrect proportion
formula strategy in the Gear task
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Helen’s attention to the qualitative relationship, less miles less time, appeared to help
her recognize the mistake. Considering Sally also reasoned in a similar fashion, the
involvement of the time concept might have affected Helen and Sally’s incorrect
strategy decisions, or it is possible that they might confused the units, miles and miles
per hour.

The PSTs preferred the unit ratio strategy after the ratio table and proportion formula
strategies. In this strategy, the PSTs usually inferred a unit ratio relationship between
two quantities and used this relationship to calculate a missing value in the problem.
The PSTs usually used this strategy with the other strategies (Fig. 4a, b). For example,
as displayed in Fig. 4a, Carol used this strategy with a proportion formula strategy,
where she obtained a 1-cm-to-4-notches unit ratio relationship from 3 cm and 12
notches information. Similarly, Helen used the unit ratio strategy with a double number
line strategy to obtain a 1-notch-24-revolutions relationship (see Fig. 4b). In study 1,
Robert frequently stated the unit ratio relationships between any two quantities in the
form of equations (e.g. 1 cm = 4 notches, 1 person = 25 cupcakes) and used this
equation to calculate the missing-value asked in the problem.

The PSTs also used the algebra strategy to solve the given problems. In this strategy,
the PSTs determined an algebraic expression or formula to indicate the multiplicative
relationships between quantities and used this expression to solve the given problems.
For instance, the PSTs easily recognized the constant product relationships in the Gear
and Balance tasks, but they usually had difficulty recognizing constant products in the
remaining inverse proportion tasks. In the Gear task, the PSTs generally considered the
equality of the total number of notches revolved on two meshed gears after some
number of revolutions. The PSTs’ ideas about total number of notches revolved on a
given gear could be expressed with the multiplication statement in Eq. 1 (see
BMathematical Analysis of the Tasks^ section).

In the Balance task, the PSTs performed experiments to balance the system. Hence,
they empirically determined the constant product relationship, W1*D1 = W2*D2, and
used this relationship to solve the given problems. In this equation, D1 and D2
expressed the distances from the center in the first and second sides, and W1 and W2
expressed the number of weights hung in the first and second sides. Therefore, the
contexts of the Gear and Balance tasks might have facilitated the PSTs’ understanding
of the constant product relationships between quantities. On the other hand, in the
multiple proportion problems, the PSTs had difficulty determining algebraic equations
or formulas in expressing the multiplicative relationships presented in those problems.

Fig. 4 a Carol’s unit ratio strategy in the Gear task and;b Helen’s double number line strategy in the Gear task
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It is possible that their difficulties were related with inability to coordinate multiple
relationships. Therefore, the PSTs’ difficulty expressing multiplicative relationships in
the multiple proportion tasks suggested possible constraints in their understanding of
the multiplicative relationships when more than two quantities were present.

Because the PSTs who participated in study 2 were given instruction on double
number line and strip diagram on proportions, they sometimes used the double number
line and strip diagram strategies in solving given problems. In a double number line, a
pair of quantities from two separate measure spaces generates a batch, and one can
iterate this batch by a factor to get multiple batches. Hence, the quantities that generate
a batch covary directly. Therefore, the double number line strategy was naturally more
suitable in expressing directly proportional relationships. In the inverse proportion
problems, the product of the inversely proportional quantities was directly proportional
to each inversely proportional quantity. Hence, inverse proportion problems could also
be solved by the double number line strategy if the intention was to express a directly
proportional relationship. For instance, as shown in Fig. 4b, using the double number
line strategy, Helen calculated the number of revolutions of a gear with six notches to
be four, given that another gear with eight notches revolved three times. Because
quantities inversely covary in an inverse proportion, using double number line was
not an appropriate strategy; however, Helen just showed how to use a double number
line to solve an inverse proportion problem without attending to the operations used.

In the Gear task, Kathy drew two separate double number lines (Fig. 5) to calculate
the number of revolutions of Gear L, with 8 notches, given that Gear M had 14 notches
and revolved four times. Because Kathy successfully inferred 56 notches to be the total
notches moved on both gears by multiplying 14 notches per revolution and 4 revolu-
tions, this information suggested her understanding of the constant product relationship
between the number of notches and number of revolutions. Therefore, Kathy’s under-
standing of the constant product relationship facilitated her comprehension of using two
separate double number lines to solve this problem.

The PSTs also used additive, computation (i.e. unit conversion method), intuitive
(i.e. double counting strategy), and visual strategies. Although the additive strategy is
the most frequently reported erroneous method in the literature regarding ratios and
proportions (Misailadou & Williams, 2003), in this study, the PSTs used additive,

Fig. 5 Kathy’s two double number lines strategy in the Gear task
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computation, intuitive, and visual strategies to verify their calculations. Because the
PSTs used these strategies in very few instances, they seemed to prefer reasoning
multiplicatively rather than additively, and this was supported by the inclusion of Gear
and Balance tasks and multiple proportion problems.

Discussion and Implications

In this study, I investigated how PSTs reason about proportional relationships. This is a
critical topic because existing mathematics education research documents numerous
difficulties that students and teachers have with this topic, some of which I discussed in
the previous pages. In earlier studies on proportions, researchers generally used word
problems with a single proportional or a nonproportional relationship to investigate
how students or teachers reason about proportions. In this study, the PSTs examined
single and multiple proportional relationships that were presented through real-world
missing-value word problems. The purpose of this study was to report PSTs’ strategies
when solving these problems.

The PSTs usually persisted using a strategy if they observed that the strategy yielded
the correct results. Therefore, in many instances, I encouraged them to use other
strategies than the ones they generally employed. Based on the PSTs’ responses, the
ratio table strategy appeared to be the most frequent and convenient strategy in solving
single and multiple proportion problems. In the single proportion problems, the use of
the ratio table strategy facilitated the PSTs’ recognition of the constant ratio and product
relationships between quantities. The PSTs easily recognized the constancy of the
quotients and products when they entered the given data into a ratio table. Otherwise,
they had difficulty recognizing these constant relationships, especially the constant
product relationships. Furthermore, in the multiple proportion problems, the ratio table
strategy allowed the PSTs to fix one quantity at a time and then to compare the
remaining two quantities. Therefore, the ratio table strategy was effective in solving
multiple proportion problems. These results may inspire teachers and teacher educators
to use the ratio table strategy in teaching direct and inverse proportions.

Besides the ratio table strategy, the PSTs also used the proportion formula very
often. The common mistake of the PSTs with the proportion formula strategy was that
because some of them tended to judge inversely proportional relationships to be
directly proportional, which was consistent with the findings from previous studies
(e.g. Cramer, Post & Currier, 1993; Fisher, 1988; Lim, 2009; Riley, 2010), they formed
a direct proportion to solve an inverse proportion problem. In addition, in this study,
two PSTs solved a direct proportion problem as if it were an inverse proportion
problem. Therefore, these results suggested that they might not have had well-
developed strategies for inferring directly and inversely proportional relationships and
for successfully distinguishing these relationships from each other.

The use of physical materials (i.e. balance and plastic gears) provided practical
experiences and helped the PSTs have a robust understanding of directly and inversely
proportional relationships. The PSTs easily recognized the constancy of the products in
the Gear and Balance tasks but they usually had difficulty recognizing constant
products in the remaining inverse proportion tasks. In the Gear task, the context helped
the PSTs in determining the constant product—the total notches moved—by
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coordinating the number of groups (where a group corresponded to one rotation) and
the size of groups (where the size was the number of notches). Similarly, in the Balance
task, the PSTs made experiments to balance the system on both sides, and so they
empirically determined the constant product in the balance. Hence, the contexts of the
Gear and Balance tasks facilitated the PSTs’ understanding of the constant product
relationships between quantities. This result encourages using concrete materials in
teaching inversely proportional relationships.

Because multiple proportion problems were formed by three quantities, it was not
easy to solve those problems by simply forming a proportion and applying the cross-
multiplication strategy. The PSTs avoided using cross-multiplication and additive
strategies in those problems. Hence, the inclusion of multiple proportion problems
precipitated the use of ratio table, proportion formula, and unit ratio strategies. Because
solving proportion problems using mechanical knowledge or cross-multiplication does
not guarantee proportionality taking place in students’ reasoning, and students often
engage in more sophisticated reasoning when not using the cross-multiplication strat-
egy (Avcu & Dogan, 2014; Karplus, Pulos and Stage, 1983a; Lamon, 2007), the use of
multiple proportion tasks was effective in revealing the PSTs’ reasoning about propor-
tional relationships. Therefore, the results of this study illuminate how PSTs reason
about proportional relationships when they cannot rely on computation methods like
cross-multiplication. Moreover, the PSTs’ difficulty expressing multiplicative relation-
ships between quantities in the multiple proportion problems suggested possible
constraints in their understanding of the multiplicative relationships when more than
two quantities were present. Thus, there may be important differences in how students
reason about multiplicative relationships among the tasks.
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