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In this paper we study the behavior of Hardy–Littlewood maximal operator and 
the action of commutators in generalized local Morrey spaces LMp,ϕ

{x0}(R
n) and 

generalized Morrey spaces Mp,ϕ(Rn).
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We study in generalized local Morrey spaces LMp,ϕ
{x0}(R

n) and generalized Morrey spaces Mp,ϕ(Rn)
the boundedness of Hardy–Littlewood maximal operator in terms of Sharp Maximal Function and, as 
consequence, the boundedness of Commutators of the type

[a,K](f) = a (K, f) − K (a, f),

where K is a Calderón–Zygmund singular integral operator, f is in a Generalized Local Morrey Space 
LMp,ϕ

{x0}(R
n) and the function a belongs to the Bounded Mean Oscillation class (B.M.O.) at first defined by 

John–Nirenberg.
The Generalized Morrey Spaces Mp,ϕ(Rn) are obtained by replacing in the classical Morrey Space 

Mp,λ(Rn), rλ by a function ϕ.
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The classical Morrey spaces were introduced by Morrey [19] to study the local behavior of solutions to 
second order elliptic partial differential equations (see e.g. [17,22]). For the properties and applications of 
classical Morrey spaces, we refer the readers to [8,9,14,19]. Mizuhara [18] and Nakai [21] introduced gener-
alized Morrey spaces. Later, Guliyev [14] defined the generalized Morrey spaces Mp,ϕ(Rn) with normalized 
norm.

We point out that ϕ is a measurable non-negative function and no monotonicity type condition is imposed 
on it. Commutators in Generalized Morrey Spaces have not been studied up to now and this paper seems 
to be the first in this direction.

We observe that in this paper we extend results contained in [7], basic tool in the subsequent study of 
regularity results of solutions of partial differential equations of elliptic and parabolic type and systems (see 
e.g. [8,6,23,24] and others). Also, Corollary 4.3 can be viewed as a generalization of a well known inequality 
by Fefferman and Stein, see [10] p. 153, and Theorem 4.5, is true under more general hypotheses that can be 
found in literature, see [28] pp. 417–418. Aim of the authors is to continue the study of this kind of operators 
and apply the new results contained in the present paper to partial differential equations of different type.

2. Definitions and useful tools

We set, throughout the paper,

B(x, r) = {y ∈ R
n : |x− y| < r}

a generic ball in Rn centered at x with radius r.
We find it convenient to define the generalized Morrey spaces in the following form.

Definition 2.1. Let ϕ(x, r) be a positive measurable function on Rn × (0, ∞) and 1 ≤ p < ∞. We denote 
by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the space of all functions f ∈ Lp

loc(Rn) with finite 
quasinorm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of all functions f ∈
WLploc(Rn) for which

‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖WLp(B(x,r)) < ∞,

where WLp(B(x, r)) denotes the weak Lp-space consisting of all measurable functions f for which

‖f‖WLp(B(x,r)) ≡ ‖fχB(x,r)‖WLp(Rn) < ∞.

According to this definition we recover, for 0 ≤ λ < n, the Morrey space Mp,λ and weak Morrey space 
WMp,λ under the choice ϕ(x, r) = r

λ−n
p :

Mp,λ = Mp,ϕ
∣∣∣
ϕ(x,r)=r

λ−n
p

, WMp,λ = WMp,ϕ
∣∣∣
ϕ(x,r)=r

λ−n
p

.

The vanishing Morrey space V Lp,λ(Rn) in its classical version is introduced in [29], where applications 
to PDE were considered. We also refer to [5,27] for some properties of such spaces.

We are ready to give the following definition of Vanishing generalized Morrey spaces, inspired by the 
classical one of Vanishing Morrey spaces given by Vitanza and deeply treated in [29] and [30].
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Definition 2.2 (Vanishing generalized Morrey space). The vanishing generalized Morrey space VMp,ϕ(Rn)
is defined as the space of functions f ∈ Mp,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖Lp(B(x,r)) = 0.

Definition 2.3 (Vanishing weak generalized Morrey space). The vanishing weak generalized Morrey space 
VWMp,ϕ(Rn) is defined as the space of functions f ∈ WMp,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖WLp(B(x,r)) = 0.

Everywhere in the sequel we assume that

lim
r→0

1
infx∈Rn ϕ(x, r) = 0 (2.1)

and

sup
0<r<∞

1
infx∈Rn ϕ(x, r) < ∞, (2.2)

which makes the spaces VMp,ϕ(Rn) and VWMp,ϕ(Rn) non-trivial, because bounded functions with compact 
support belong then to this space.

The spaces VMp,ϕ(Rn) and WVMp,ϕ(Rn) are Banach spaces with respect to the norm

‖f‖VMp,ϕ ≡ ‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖Lp(B(x,r)),

‖f‖VWMp,ϕ ≡ ‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖WLp(B(x,r)),

respectively.
We will also use the notation

Mp,ϕ(f ;x, r) := ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖Lp(B(x,r))

and

MW
p,ϕ(f ;x, r) := ϕ(x, r)−1 |B(x, r)|− 1

p ‖f‖WLp(B(x,r))

for brevity, so that

VMp,ϕ(Rn) =
{
f ∈ Mp,ϕ(Rn) : lim

r→0
sup
x∈Rn

Mp,ϕ(f ;x, r) = 0
}

and similarly for VWMp,ϕ(Rn).
Besides the modular Mp,ϕ(f ; x, r) we also use its least non-decreasing dominant

M̃p,ϕ(f ;x, r) = sup
0<t<r

Mp,ϕ(f ;x, t), (2.3)

which may be equivalently used in the definition of the vanishing spaces, since

lim
r→0

sup Mp,ϕ(f ;x, r) = 0 � lim
r→0

sup M̃p,ϕ(f ;x, r) = 0.

x∈Rn x∈Rn
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Let us consider, for f ∈ L1
loc(Rn), the Hardy Littlewood Maximal Operator M as

M f (x) = sup
B(x,r)

1
|B(x, r) |

∫
B(x,r)

| f(y) | d y,

where B(x, r) is the ball centered at x of radius r (see [26], pp. 8–9).

Remark 2.4. We observe that the properties stated for M hold for the larger “uncentred” maximal function 
M̃f defined by

M̃ f (x) = sup
x∈B

1
|B |

∫
B

| f(y) | d y,

where the supremum is taken, not just over all balls B centered in x but to all balls B containing x.
It is true because, for every x, we can write

(M f)(x) ≤ (M̃f)(x)

and also exists a constant c greater than 1 such that

(M̃f)(x) ≤ c (M f)(x).

For these observations see [26] p. 13 (also [28] p. 80).

Two variants of Hardy–Littlewood Maximal function M , are the following Sharp Maximal Function

f#(x) = sup
x∈B

1
|B |

∫
B

| f(y) − fB | d y,

where the supremum is taken over the balls B containing x (see [26], p. 146) and the Fractional Maximal 
Function Mη f used, for instance, by Muchkenhoupt and Wheeden in their relevant results contained in [20]:

Mη f (x) = sup
x∈B

1
|B | 1 − η

∫
B

| f(y) | d y,

where f ∈ L1
loc(Rn), 0 < η < 1 and the supremum is taken over the balls B containing x.

Let K be a Calderón–Zygmund singular integral operator (see e.g. [22]). Useful in the sequel is the 
following Commutator between the operator K and the multiplication operator by a locally integrable 
function a on Rn: [

a,K
]
(f)x = a(x)

(
K f

)
(x) − K

(
a f

)
(x),

for suitable functions f . Later, is useful to consider the function a in the space BMO of Bounded Mean 
Oscillation functions (see [16]).

Lemma 2.5. (See [7], Lemma 1.) Let K be a Calderón–Zygmund singular integral operator, 1 < q < s <
p < +∞, 0 < λ < n and a ∈ BMO(Rn).

Then there exists a constant c ≥ 0 independent of a and f such that

([
a, K

]
( f )

)# (x) ≤ c ‖a‖∗
{(

M |Kf |q
) 1

q (x) +
(
M |f |s

) 1
s (x)

}
for a.a. x ∈ R

n and every f ∈ Mp,λ(Rn).
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The proof of this Lemma is similar to that one contained in [28], pp. 418–419, due to J.-O. Strömberg, 
it could be generalized for a function f ∈ Mp,ϕ(Rn).

In the sequel we need the following supremal inequalities.
Let v be a weight. We denote by L∞

v (0, ∞) the space of all functions g(t), t > 0 with finite norm

‖g‖L∞
v (0,∞) = sup

t>0
v(t)|g(t)|

and L∞(0, ∞) ≡ L∞
1 (0, ∞). Let M(0, ∞) be the set of all Lebesgue-measurable functions on (0, ∞) and 

M+(0, ∞) its subset of all nonnegative functions on (0, ∞). We denote by M+(0, ∞; ↑) the cone of all functions 
in M+(0, ∞) which are non-decreasing on (0, ∞) and

A =
{
ϕ ∈ M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on (0, ∞). We define the supremal operator Su on g ∈
M(0, ∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [4].

Theorem 2.6. Let v1, v2 be non-negative measurable functions satisfying 0 < ‖v1‖L∞(t,∞) < ∞ for any 
t > 0 and let u be a continuous non-negative function on (0, ∞). Then the operator Su is bounded from 
L∞,v1(0, ∞) to L∞,v2(0, ∞) on the cone A if and only if

∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞. (2.4)

3. Generalized local Morrey spaces and vanishing generalized local Morrey spaces

Definition 3.1. Let ϕ(x, r) be a positive measurable function on Rn × (0, ∞) and 1 ≤ p < ∞. We denote by 
LMp,ϕ ≡ LMp,ϕ(Rn) the local generalized Morrey space, the space of all functions f ∈ Lp

loc(Rn) with finite 
quasinorm

‖f‖LMp,ϕ = sup
r>0

ϕ(0, r)−1 |B(0, r)|− 1
p ‖f‖Lp(B(0,r)).

Also by WLMp,ϕ ≡ WLMp,ϕ(Rn) we denote the weak generalized Morrey space of all functions f ∈
WLp

loc(Rn) for which

‖f‖WLMp,ϕ = sup
r>0

ϕ(0, r)−1 |B(0, r)|− 1
p ‖f‖WLp(B(0,r)) < ∞.

Definition 3.2. Let ϕ(x, r) be a positive measurable function on Rn × (0, ∞) and 1 ≤ p < ∞. For any fixed 
x0 ∈ R

n we denote by LMp,ϕ
{x0} ≡ LMp,ϕ

{x0}(R
n) the local generalized Morrey space, the space of all functions 

f ∈ Lp
loc(Rn) with finite quasinorm

‖f‖LMp,ϕ
{x0}

= ‖f(x0 + ·)‖LMp,ϕ .

Also by WLMp,ϕ
{x0} ≡ WLMp,ϕ

{x0}(R
n) we denote the weak generalized Morrey space of all functions f ∈

WLp
loc(Rn) for which
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‖f‖WLMp,ϕ
{x0}

= ‖f(x0 + ·)‖WLMp,ϕ < ∞.

According to this definition we recover, for 0 ≤ λ < n, the local Morrey space LMp,λ
{x0} and weak local 

Morrey space WLMp,λ
{x0} under the choice ϕ(x0, r) = r

λ−n
p :

LMp,λ
{x0} = LMp,ϕ

{x0}

∣∣∣
ϕ(x0,r)=r

λ−n
p

, WLMp,λ
{x0} = WLMp,ϕ

{x0}

∣∣∣
ϕ(x0,r)=r

λ−n
p

.

Wiener [31,32] looked for a way to describe the behavior of a function at the infinity. The conditions he 
considered are related to appropriate weighted Lq spaces. Beurling [3] extended this idea and defined a pair 
of dual Banach spaces Aq and Bq′ , where 1/q+1/q′ = 1. To be precise, Aq is a Banach algebra with respect 
to the convolution, expressed as a union of certain weighted Lq spaces; the space Bq′ is expressed as the 
intersection of the corresponding weighted Lq′ spaces. Feichtinger [11] observed that the space Bq can be 
described by

‖f‖Bq
= sup

k≥0
2−

kn
q ‖fχk‖Lq(Rn), (3.5)

where χ0 is the characteristic function of the unit ball {x ∈ R
n : |x| ≤ 1}, χk is the characteristic function 

of the annulus {x ∈ R
n : 2k−1 < |x| ≤ 2k}, k = 1, 2, . . . . By duality, the space Aq(Rn), called Beurling 

algebra now, can be described by

‖f‖Aq
=

∞∑
k=0

2−
kn
q′ ‖fχk‖Lq(Rn). (3.6)

Let Ḃq(Rn) and Ȧq(Rn) be the homogeneous versions of Bq(Rn) and Aq(Rn) by taking k ∈ Z in (3.5)
and (3.6) instead of k ≥ 0 there.

If λ < 0, then LMp,λ
{x0}(R

n) = Θ, where Θ is the set of all functions equivalent to 0 on Rn. Note that 
LMp,0(Rn) = Lp(Rn) and LMp,n(Rn) = Ḃp(Rn).

Alvarez, Guzman-Partida and Lakey [2] in order to study the relationship between central BMO spaces 
and Morrey spaces, they introduced λ-central bounded mean oscillation spaces and central Morrey spaces 
Ḃp,λ(Rn).

The following lemma, useful in itself, shows that the quasi-norm of the local Morrey space LMp,λ(Rn), 
λ ≥ 0 is equivalent to the quasi-norm Ḃp,λ(Rn):

‖f‖Ḃp,λ
= sup

k∈Z

2−
kλ
p ‖fχk‖Lp

,

where χk is the characteristic function of the annulus B(0, 2k) \B(0, 2k−1), k ∈ Z.

Lemma 3.3. For 0 < p ≤ ∞, λ ≥ 0, the quasi-norm ‖f‖LMp,λ is equivalent to the quasi-norm ‖f‖Ḃp,λ
.

Proof. Let 0 < p ≤ ∞, λ ≥ 0 and f ∈ LMp,λ(Rn). Then

‖f‖Ḃp,λ
≤ sup

k∈Z

(2k)−
λ
p ‖f‖Lp(B(0,2k)) ≤ sup

r>0
r−

λ
p ‖f‖Lp(B(0,r)) = ‖f‖LMp,λ .

On the other hand, for 0 < p < ∞,

‖f‖p
LMp,λ = sup

k∈Z

sup
2k−1<r≤2k

r−λ

∫
|f(y)|pdy
B(0,r)
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≤ 2λ sup
k∈Z

(2k)−λ

∫
B(0,2k)

|f(y)|pdy

= 2λ sup
k∈Z

2−kλ
k∑

m=−∞
2mλ2−mλ

∫
B(0,2m)\B(0,2m−1)

|f(y)|pdy

≤ 2λ
(

sup
m∈Z

2−mλ

∫
B(0,2m)\B(0,2m−1)

|f(y)|pdy
)

sup
k∈Z

(
2−kλ

k∑
m=−∞

2mλ
)

= 2λ

1 − 2−λ
‖f‖p

Ḃp,λ
.

So for 0 < p < ∞

‖f‖LMp,λ ≤ 2
λ
p
(
1 − 2−λ

)− 1
p ‖f‖Ḃp,λ

.

A similar argument shows that

‖f‖LM∞,λ
≤ ‖f‖Ḃ∞,λ

. �
The quasi-norms ‖f‖Ḃp,λ

in the case λ = n were investigated by Beurling [3], Feichtinger [11] and others.
The following statement was proved in [12] (see also [13–15]).

Theorem 3.4. Let x0 ∈ R
n, 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition

∞∫
r

ϕ1(x0, t)
dt

t
≤ C ϕ2(x0, r), (3.7)

where C does not depend on r. Let also K be a Calderón–Zygmund singular integral operator. Then the 
operator K is bounded from LMp,ϕ1

{x0} to LMp,ϕ2
{x0} for p > 1 and from LM1,ϕ1

{x0} to WLM1,ϕ2
{x0} for p = 1.

The following statement, containing results obtained in [18,21] was proved in [12] (see also [13,14]).

Corollary 3.5. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition

∞∫
r

ϕ1(x, t)
dt

t
≤ C ϕ2(x, r), (3.8)

where C does not depend on x and r. Let also K be a Calderón–Zygmund singular integral operator. Then 
the operator K is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1 to WM1,ϕ2 for p = 1.

4. Results

Theorem 4.1. For any fixed x0 ∈ R
n, r > 0, f ∈ Lq

loc(Rn) and 1 < q < +∞

‖Mf‖Lq(B(x0,r)) ≤ c r
n
q sup

t>2r
t−

n
q ‖f‖Lq(B(x0,t))

≤ c r
n
q sup

t>2r
t−

n
q ‖f �‖Lq(B(x0,t)), (4.9)
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and for all x0 ∈ R
n, r > 0 and f ∈ L1

loc(Rn)

‖Mf‖WL1(B(x0,r)) ≤ c rn sup
t>2r

t−n ‖f‖L1(B(x0,t))

≤ c rn sup
t>2r

t−n ‖f �‖L1(B(x0,t)), (4.10)

where c is independent of f , x0 and r.

Proof. Inequalities (4.9) and (4.10) are consequence of Lemma 3.3 in [1] and the following inequality

‖f‖Lq(B(x0,t)) ≤ ‖f �‖Lq(B(x0,t))

is contained in [10]. �
Theorem 4.2. Let x0 ∈ R

n, 1 ≤ q < ∞ and the functions ϕ1, ϕ2 satisfy the condition

sup
r<t<∞

ess inf
t<τ<∞

ϕ1(x0, τ) τ
n
q

t
n
q

≤ C ϕ2(x0, r), (4.11)

where C does not depend on r. Then for 1 < q < ∞ the maximal operator M is bounded from LMq,ϕ1
{x0}(R

n) to 
LMq,ϕ2

{x0}(R
n) and for 1 ≤ q < ∞ the operator M is bounded from LMq,ϕ1

{x0}(R
n) to WLMq,ϕ2

{x0}(R
n). Moreover, 

for 1 < q < ∞

‖Mf‖LM
q,ϕ2
{x0}

≤ c ‖f‖LM
q,ϕ1
{x0}

≤ c ‖f �‖LM
q,ϕ1
{x0}

,

where c does not depend on x0 and f and for 1 ≤ q < ∞

‖Mf‖WLM
q,ϕ2
{x0}

≤ c ‖f‖LM
q,ϕ1
{x0}

≤ c ‖f �‖LM
q,ϕ1
{x0}

,

where c does not depend on x0 and f .

Proof. By Theorems 4.1 and 2.6 we get

‖Mf‖LM
q,ϕ2
{x0}

≤ c sup
r>0

ϕ2(x0, r)−1 sup
t>2r

t−
n
q ‖f‖Lq(B(x0,t))

≤ c sup
r>0

ϕ1(x0, r)−1 r−
n
q ‖f‖Lq(B(x0,t))

= c ‖f‖LM
q,ϕ1
{x0}

≤ c ‖f �‖LM
q,ϕ1
{x0}

,

where c does not depend on x0 and f , if 1 ≤ q < ∞ and

‖Mf‖WLM
q,ϕ2
{x0}

≤ c sup
r>0

ϕ2(x0, r)−1 sup
t>2r

t−
n
q ‖f‖Lq(B(x0,t))

� sup
r>0

ϕ1(x0, r)−1 r−
n
q ‖f‖Lq(B(x0,t))

= ‖f‖LM
q,ϕ1
{x0}

≤ c ‖f �‖LM
q,ϕ1
{x0}

,

where c does not depend on x0 and f , if 1 ≤ q < ∞. �



1396 V.S. Guliyev et al. / J. Math. Anal. Appl. 457 (2018) 1388–1402
Remark 4.3. Let 1 ≤ q < ∞ and the functions ϕ1, ϕ2 satisfy the condition

sup
r<t<∞

ess inf
t<τ<∞

ϕ1(x, τ) τ
n
q

t
n
q

≤ C ϕ2(x, r), (4.12)

where C does not depend on x and r. Then for 1 < q < ∞ the maximal operator M is bounded from 
Mq,ϕ1(Rn) to Mq,ϕ2(Rn) and for 1 ≤ q < ∞ the operator M is bounded from Mq,ϕ1(Rn) to WM q,ϕ2(Rn). 
Moreover, for 1 < q < ∞

‖Mf‖Mq,ϕ2 ≤ c ‖f‖Mq,ϕ1 ≤ c ‖f �‖Mq,ϕ1 ,

where c does not depend on f and for 1 ≤ q < ∞

‖Mf‖WMq,ϕ2 ≤ c ‖f‖Mq,ϕ1 ≤ c ‖f �‖Mq,ϕ1 ,

where c does not depend on f .

Remark 4.4. Let us consider x0 ∈ R
n, 1 < p < + ∞, 0 < λ < n.

Then, there exists a nonnegative constant c independent of x0 and f such that

‖M f‖LMp,λ
{x0}

≤ c ‖f‖LMp,λ
{x0}

≤ c ‖f �‖LMp,λ
{x0}

for every f ∈ LMp,λ
{x0}(R

n).

An improvement of the above theorem is the next result in the Vanishing Generalized Morrey Spaces.

Theorem 4.5. Let us consider 1 ≤ q < +∞, ϕ2 satisfy the condition (2.1), the functions ϕ1, ϕ2 satisfy the 
conditions

cδ := sup
δ<t<∞

sup
x∈Rn

ϕ1(x, t) < ∞ (4.13)

for every δ > 0 and

sup
r<t<∞

ϕ1(x, t)

ϕ2(x, r)
≤ C0, (4.14)

where C0 does not depend on x ∈ R
n and r > 0. Then, for 1 < q < ∞ the maximal operator M is bounded 

from VM q,ϕ1(Rn) to VM q,ϕ2(Rn) and, for 1 ≤ q < ∞, from VMq,ϕ1(Rn) to VWM q,ϕ2(Rn).

Proof. The norm inequalities follow from Remark 4.3, so we only have to prove that

lim
r→0

sup
x∈Rn

Mq,ϕ1(f ;x, r) = 0 =⇒ lim
r→0

sup
x∈Rn

Mq,ϕ2(Mf ;x, r) = 0, (4.15)

when 1 < q < ∞, and

lim
r→0

sup
x∈Rn

Mq,ϕ1(f ;x, r) = 0 =⇒ lim
r→0

sup
x∈Rn

M
q,ϕ2
W (Mf ;x, r) = 0, (4.16)

when 1 ≤ q < ∞. In this estimation we follow some ideas of [25], but base ourselves on Theorem 4.1.
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We start with (4.15). We rewrite the inequality (4.9) in the form

Mq,ϕ2(Mf ;x, r) ≤ C
supt>r t

−n
q ‖f‖Lq(B(x,t))

ϕ2(x, r)
. (4.17)

To show that sup
x∈Rn

Mq,ϕ2(Mf ; x, r) < ε for small r, we split the right-hand side of (4.17):

Mq,ϕ2(Mf ;x, r) ≤ C [Iδ0(x, r) + Jδ0(x, r)], (4.18)

where δ0 > 0 will be chosen as shown below (we may take δ0 < 1) and

Iδ0(x, r) :=
supr<t<δ0 t

−n
q ‖f‖Lq(B(x,t))

ϕ2(x, r)
,

Jδ0(x, r) :=
supt>δ0 t

−n
q ‖f‖Lq(B(x,t))

ϕ2(x, r)

and it is supposed that r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Rn

Mq,ϕ1(f ;x, t) < ε

2CC0
, for all 0 < t < δ0,

where C and C0 are constants from (4.18) and (4.14), which is possible since f ∈ VM q,ϕ1(Rn). Then 
‖f‖Lq(B(x,t)) <

ε
2CC0

ϕ1(x, t) and we obtain the estimate of the first term uniform in r ∈ (0, δ0):

sup
x∈Rn

CIδ0(x, r) <
ε

2 , 0 < r < δ0

by (4.14).
The estimation of the second term now may be made already by the choice of r sufficiently small thanks 

to the condition (2.1). We have

Jδ(x, r) ≤
cδ0‖f‖Mq,ϕ1

ϕ2(x, r)
,

where cδ0 is the constant of (4.13) for δ = δ0.
Then, by (2.1) it suffices to choose r small enough such that

sup
x∈Rn

1
ϕ1(x, r)

≤ ε

2cδ0‖f‖Mq,ϕ1
,

which completes the proof of (4.15).
The proof of (4.16) is, line by line, similar to the proof of (4.15). �
The following theorem was proved by Guliyev in [15].

Theorem 4.6. Let x0 ∈ R
n, 1 ≤ q < ∞, K be a Calderón–Zygmund singular integral operator and the 

functions ϕ1, ϕ2 satisfy the condition

∞∫ ess inf
t<τ<∞

ϕ1(x0, τ) τ
n
q

t
n
q +1 dt ≤ C ϕ2(x0, r), (4.19)
r
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where C does not depend on r. Then for 1 < q < ∞ the operator K is bounded from LMq,ϕ1
{x0}(R

n) to 
LMq,ϕ2

{x0}(R
n) and for 1 ≤ q < ∞ the operator K is bounded from LMq,ϕ1

{x0}(R
n) to WLMq,ϕ2

{x0}(R
n). Moreover, 

for 1 < q < ∞

‖Kf‖LM
q,ϕ2
{x0}

≤ c ‖f‖LM
q,ϕ1
{x0}

≤ c ‖f �‖LM
q,ϕ1
{x0}

,

where c does not depend on x0 and f and for 1 ≤ q < ∞

‖Kf‖WLM
q,ϕ2
{x0}

≤ c ‖f‖LM
q,ϕ1
{x0}

≤ c ‖f �‖LM
q,ϕ1
{x0}

,

where c does not depend on x0 and f .

The following theorem is valid.

Theorem 4.7. Let x0 ∈ R
n, 1 < q < s < p < +∞, K be a Calderón–Zygmund singular integral operator 

and the function ϕ satisfy the condition

sup
r<t<∞

ess inf
t<τ<∞

ϕ(x0, τ) τ
nq
p

t
nq
p

≤ C ϕ(x0, r), (4.20)

sup
r<t<∞

ess inf
t<τ<∞

ϕ(x0, τ) τ
ns
p

t
ns
p

≤ C ϕ(x0, r) (4.21)

and

∞∫
r

ess inf
t<τ<∞

ϕ(x0, τ) τ
n
p

t
n
p +1 dt ≤ C ϕ(x0, r), (4.22)

where C does not depend on r.
If a ∈ BMO(Rn) then, the commutator

[a,K](f) = aKf − K (af)

is a bounded operator from LMp,ϕ
{x0}(R

n) in itself. Precisely, ∀f ∈ LMp,ϕ
{x0}(R

n), we have

‖[a,K](f)‖LMp,ϕ
{x0}

≤ c ‖a‖∗ ‖f‖LMp,ϕ
{x0}

≤ c ‖a‖∗ ‖f �‖LM
q,ϕ1
{x0}

,

for some constant c ≥ 0 independent of a and f .

Proof. Using Lemma 1 in [7] and Theorem 4.2 we get, for 1 < q < s < p < ∞,

‖[a,K](f)‖LMp,ϕ
{x0}

≤ c · ‖M([a,K])‖LMp,ϕ
{x0}

≤ c · ‖ [a, K]� ‖LMp,ϕ
{x0}

≤ c · ‖a‖∗ · ‖
(
M |Kf |q

) 1
q +

(
M |f |s

) 1
s ‖LMp,ϕ

{x0}
.

Note that from the boundedness of the maximal operator M from LM
p
q ,ϕ

{x0}(R
n) in itself and from 

LM
p
s ,ϕ

{x0}(R
n) in itself, 1 < q < s < p < ∞ the sufficient conditions are (4.20) and (4.21), consequently 

(see, Theorem 4.2).
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Also, from the boundedness of the Calderón–Zygmund singular integral operator K from LMp,ϕ
{x0}(R

n) in 
itself the sufficient condition is (4.19) (see, Theorem 4.6).

Then, we have

‖
(
M |Kf |q

) 1
q ‖LMp,ϕ

{x0}
≤

(
‖M(|K f |q)‖

LM
p
q
,ϕ

{x0}

) 1
q

≤ c ·
(
‖|K f |q‖

LM
p
q
,ϕ

{x0}

) 1
q

≤ c‖|K f |‖LMp,ϕ
{x0}

≤ c‖ f‖LMp,ϕ
{x0}

and

‖(M(|K f |q) 1
q ‖LMp,ϕ

{x0}
≤ c ‖f‖LMp,ϕ

{x0}
.

In the same way one can easily see that

‖(M(| f |s) 1
s ‖LMp,ϕ

{x0}
≤ c ‖f‖LMp,ϕ

{x0}
,

we get

‖[a,K](f)‖LMq,ϕ
{x0}

≤ c ‖a‖∗ ‖f‖LMq,ϕ
{x0}

.

So, the theorem was proved. �
Corollary 4.8. Let x0 ∈ R

n, 1 < p < +∞, K be a Calderón–Zygmund singular integral operator and the 
function ϕ(x0, ·) : (0, ∞) → (0, ∞) be an decreasing function. Assume that the mapping r �→ ϕ(x0, r) r

n
p is 

almost increasing (there exists a constant c such that for s < r we have ϕ(x0, s) s
n
p ≤ cϕ(x0, r) r

n
p ). Let 

also

∞∫
r

ϕ(x0, t)
dt

t
≤ C ϕ(x0, r), (4.23)

where C does not depend on r.
If a ∈ BMO(Rn), then the commutator [a, K] is a bounded operator from LMp,ϕ

{x0}(R
n) in itself.

From Theorem 4.7 we get the following corollary.

Corollary 4.9. Let 1 < q < s < p < +∞, K be a Calderón–Zygmund singular integral operator and the 
function ϕ satisfy the condition

sup
r<t<∞

ess inf
t<τ<∞

ϕ(x, τ) τ
nq
p

t
nq
p

≤ C ϕ(x, r),

sup
r<t<∞

ess inf
t<τ<∞

ϕ(x, τ) τ
ns
p

t
ns
p

≤ C ϕ(x, r)

and
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∞∫
r

ess inf
t<τ<∞

ϕ(x, τ) τ
n
p

t
n
p +1 dt ≤ C ϕ(x, r),

where C does not depend on x and r.
If a ∈ BMO(Rn), then the commutator [a, K] is a bounded operator from Mp,ϕ(Rn) in itself. Precisely, 

∀f ∈ Mp,ϕ(Rn), we have

‖[a,K](f)‖Mp,ϕ ≤ c ‖a‖∗ ‖f‖Mp,ϕ ≤ c ‖a‖∗ ‖f �‖Mp,ϕ ,

for some constant c ≥ 0 independent of a and f .

Corollary 4.10. Let 1 < p < +∞, K be a Calderón–Zygmund singular integral operator and the function 
ϕ(x, r) : Rn × (0, ∞) → (0, ∞) be an decreasing function on r. Assume that the mapping r �→ ϕ(x, r) r

n
p is 

almost increasing on r (there exists a constant c such that for s < r we have ϕ(x, s) s
n
p ≤ cϕ(x, r) r

n
p ). Let 

also

∞∫
r

ϕ(x, t) dt
t

≤ C ϕ(x, r), (4.24)

where C does not depend on x and r.
If a ∈ BMO(Rn), then the commutator [a, K] is a bounded operator from Mp,ϕ(Rn) in itself.

Remark 4.11. Note that, the Corollaries 4.8, 4.9 and 4.10 are news.

Remark 4.12. Note that the condition (4.12) in Theorem 4.3 is weaker than the condition (4.19) in Theo-
rem 4.6 and the condition (4.19) in Theorem 4.6 is weaker than the condition (4.23) in Corollary 4.8. Indeed, 
if condition (4.23) holds, then

∞∫
r

ess inf
t<s<∞

ϕ1(x0, s)s
n
p

t
n
p +1 dt ≤

∞∫
r

ϕ1(x0, t)
dt

t
,

so condition (4.19) holds.
Also, if condition (4.19) holds, then for any τ ∈ (r, ∞)

Cϕ2(x0, r) ≥
∞∫
r

ess inf
t<s<∞

ϕ1(x0, s)s
n
p

t
n
p +1 dt ≥

∞∫
τ

ess inf
t<s<∞

ϕ1(x0, s)s
n
p

t
n
p +1 dt

≥ ess inf
τ<s<∞

ϕ1(x0, s)s
n
p

∞∫
τ

dt

t
n
p +1 ≈

ess inf
τ<s<∞

ϕ1(x0, s)s
n
p

τ
n
p

,

so that

sup
r<τ<∞

ess inf
τ<s<∞

ϕ1(x0, s) s
n
p

τ
n
p

≤ C

∞∫
r

ess inf
t<s<∞

ϕ1(x0, s)s
n
p

t
n
p +1 dt ≤ C ϕ2(x0, r),

so condition (4.12) holds.
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On the other hand, the functions

ϕ1(r) = 1
χ(1,∞)(r)r

n
p −β

, ϕ2(r) = r−
n
p
(
1 + rβ

)
(4.25)

for 0 < β ≤ n
p satisfy condition (4.12), for 0 < β < n

p satisfy condition (4.19), but for 0 < β < n
p do 

not satisfy condition (4.23). Also for β = n
p the pair function (4.25) satisfies condition (4.12), but does not 

satisfy condition (4.19).
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