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SOME RESULTS FOR MAX-PRODUCT OPERATORS

VIA POWER SERIES METHOD

T. YURDAKADIM and E. TAŞ

Abstract. In this paper, we obtain an approximation theorem by max-product
operators with the use of power series method which is more effective than ordinary

convergence and includes both Abel and Borel methods. We also estimate the error

in this approximation. Finally, we provide an example which satisfies our theorem.

1. Introduction

The classical Korovkin theorem states the uniform convergence of a sequence of
positive linear operators in C[a, b], the space of all continuous real valued func-
tions defined on [a, b] by providing the convergence only on three test functions
{1, x, x2}. There are also trigonometric versions of this theorem with the test
functions {1, cosx, sinx}, and abstract Korovkin type given in [12, 15]. These
type of results let us to say the convergence with minimum calculations have also
important applications in the polynomial approximation theory, in various areas
of functional analysis, in numerical solutions of differential and integral equations
[1, 2]. Recently it has been asked: Do all the approximation operators need to
be linear? It was shown by Bede and et. al. [3]–[10] that the linear structure
is not the only one which allows us to construct particular approximation opera-
tors. Then following this idea, these type of approximation results were extended
with the use of statistical convergence and summation process by max-product
operators [13, 14].

In this paper, we obtain new approximation results for these max-product oper-
ators by using power series method which is not only more effective than ordinary
convergence but also includes Abel and Borel methods. We also estimate the error
in this approximation. Finally we provide an example which satisfies our theorem.

Let us begin with recalling some basic definitions and notations used in the
paper.

Let (pj) be a real sequence with p1 > 0 and p2, p3, · · · ≥ 0 such that the
corresponding power series p(t) :=

∑∞
n=1 pnt

n−1 has radius of convergence R with
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0 < R ≤ ∞. If the limit

lim
t→R−

1

p(t)

∞∑
n=1

xnpnt
n−1 = L

exists, then we say that x = (xn) is convergent in the sense of power series method
[16, 18]. Power series method includes many well known summability methods
such as Abel and Borel. Both methods have in common that their definitions are
based on power series and that they are not matrix methods (See [11, 19] for
details). In order to see that power series method is more effective than ordinary
convergence, let x = (1, 0, 1, 0, . . . ), R =∞, p (t) = et and for n ∈ N, pn = 1

(n−1)! .

Then it is easy to see that

lim
t→∞

1

et

∞∑
n=1

xnt
n−1

(n− 1)!
= lim
t→∞

1

et

∞∑
k=0

t2k

(2k)!
= lim
t→∞

{et + e−t

2

}
=

1

2
.

So the sequence x = (xn) is convergent to 1
2 in the sense of power series method

but it is not convergent in the ordinary sense. Note that the power series method
is regular if and only if

lim
t→R−

pnt
n−1

p(t)
= 0 for each n ∈ N,

holds [11, 19]. Throughout the paper, we assume that power series method is
regular.

Let (X, d) be an arbitrary compact metric space and C(X, [0,∞)) denote the
space of all nonnegative continuous functions on X. Let also the symbol

∨
denotes

the maximum operation. Then we consider the following max-product operators
defined by

Ln(f ;x) :=

n∨
k=0

Kn,k(x) · f(xn,k),

where x ∈ X, n ∈ N, xn,k ∈ X, k = 0, 1, 2, . . . , n, f ∈ C(X, [0,∞)) and Kn,k(·) is
a nonnegative continuous function on X. Note that the max-product operators are
positive but not linear. Indeed they satisfy the property of the pseudo-linearity as
follows:

Ln(αf
∨
βg) = αLn(f)

∨
βLn(g)

holds for all f, g ∈ C(X, [0,∞)) and for nonnegative numbers α, β.
It is important to recall the following Lemma of [4] which plays an useful role

in our results.

Lemma 1. For any ak, bk ∈ [0,∞), k = 0, 1, 2, . . . , n, we have∣∣∣ n∨
k=0

ak −
n∨
k=0

bk

∣∣∣ ≤ n∨
k=0

|ak − bk|.
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Since the power series method is regular, the operator defined by

Vt :=
1

p(t)

∞∑
n=1

pnt
n−1Ln

is acting from C(X, [0,∞)) into itself. For y ∈ X, consider the test function
e0(y) := 1 and the moment function ϕx(y) := d2(y, x) for each fixed x ∈ X. Then
we can give the following theorem

Theorem 1. If the following conditions

lim
t→R−

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0)− e0

∥∥∥ = 0

and

lim
t→R−

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(ϕx)

∥∥∥ = 0

hold, then for all f ∈ C(X, [0,∞)), we have

lim
t→R−

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f)− f

∥∥∥ = 0.

Proof. Let x ∈ X and f ∈ C(X, [0,∞)) be given. Then we have

∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f ;x)− f(x)

∣∣∣
≤ 1

p(t)

∞∑
n=1

pnt
n−1
∣∣∣ n∨
k=0

Kn,k(x) · f(xn,k)−
n∨
k=0

Kn,k(x) · f(x)
∣∣∣

+ |f(x)|
∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1

n∨
k=0

Kn,k(x)− 1
∣∣∣

≤ 1

p(t)

∞∑
n=1

pnt
n−1

n∨
k=0

Kn,k(x)|f(xn,k)− f(x)|

+ |f(x)|
∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣.
Since the function f is uniform continuous on the compact set X, for a given ε > 0,
one can choose δ > 0 such that the following inequality

|f(xn,k)− f(x)| ≤ ε+
2‖f‖
δ2

ϕx(xn,k)
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holds for all x, xn,k ∈ X. By combining the above inequalities, we get∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f ;x)− f(x)

∣∣∣
≤ ε

1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x) +

2‖f‖
δ2

1

p(t)

∞∑
n=1

pnt
n−1Ln(ϕx;x)

+ |f(x)|
∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣
≤ ε+(ε+ ‖f‖)

∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣
+

2‖f‖
δ2

1

p(t)

∞∑
n=1

pnt
n−1Ln(ϕx;x).

Now, taking supremun over x ∈ X on the both sides of the last inequality, one can
see that∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f)− f

∥∥∥ ≤ ε+ (ε+ ‖f‖)
∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0)− e0

∥∥∥
+

2‖f‖
δ2

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(ϕx)

∥∥∥.
Finally by taking limit as t→ R− and also using the hypothesis, we complete the
proof. �

2. Error Estimation in the Approximation by Power Series Method

In this section, we give the error estimation in our theorem with the use of classical
modulus of continuity. First recall the following Lemma of [13]

Lemma 2. For every ak, bk ≥ 0, k = 0, 1, 2, . . . , n, we have

n∨
k=0

akbk ≤

√√√√ n∨
k=0

a2k

√√√√ n∨
k=0

b2k.

For the classical modulus of continuity which is defined as follows;

w(f ; δ) = sup
d(x,y)≤δ

|f(y)− f(x)|,

where δ is a positive constant and f ∈ C(X, [0,∞)). Also if (X, d) is compact
convex metric space, then it is well known from [17] that

w(f, λδ) ≤ (λ+ 1)w(f, δ) for any λ, δ ∈ [0,∞).
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Theorem 2. Let (X, d) be compact convex metric space. For all f ∈C(X, [0,∞)),
we have

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f)− f

∥∥∥
≤ w(f, δt)

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0)

∥∥∥+ w(f, δt)

√√√√∥∥∥ 1

p(t)

∞∑
n=1

pntn−1Ln(e0)
∥∥∥

+ ‖f‖
∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0)− e0

∥∥∥,
where δt :=

√
‖ 1
p(t)

∑∞
n=1 pnt

n−1Ln(ϕx)‖.

Proof. Let x ∈ X and f ∈ C(X, [0,∞)) be given. Then

∣∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f ;x)− f(x)

∣∣∣∣
≤ 1

p(t)

∞∑
n=1

pnt
n−1

n∨
k=0

Kn,k(x)|f(xn,k)− f(x)|

+ |f(x)|
∣∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣∣
≤ w(f, δ)

1

p(t)

∞∑
n=1

pnt
n−1

n∨
k=0

Kn,k(x)(1 +
d(xn,k, x)

δ
)

+ |f(x)|
∣∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣∣
holds and we get

∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f ;x)− f(x)

∣∣∣
≤ w(f, δ)

1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)

+
w(f, δ)

δ

1

p(t)

∞∑
n=1

pnt
n−1

n∨
k=0

Kn,k(x)d(xn,k, x)

+ |f(x)|
∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣.
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By the above lemma and from Cauchy-Schwarz inequality, we also have∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f ;x)− f(x)

∣∣∣
≤ w(f, δ)

1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)

+
w(f, δ)

δ

√√√√ 1

p(t)

∞∑
n=1

pntn−1Ln(e0;x)

√√√√ 1

p(t)

∞∑
n=1

pntn−1Ln(ϕx;x)

+ |f(x)|
∣∣∣ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0;x)− e0(x)

∣∣∣.
Taking supremum over x ∈ X and also taking

δ = δt =

√√√√∥∥∥ 1

p(t)

∞∑
n=1

pntn−1Ln(ϕx;x)
∥∥∥.

we get ∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(f)− f

∥∥∥
≤ w(f, δt)

∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0)

∥∥∥
+ w(f, δt)

√√√√∥∥∥ 1

p(t)

∞∑
n=1

pntn−1Ln(e0)
∥∥∥

+ ‖f‖
∥∥∥ 1

p(t)

∞∑
n=1

pnt
n−1Ln(e0)− e0

∥∥∥,
which completes the proof. �

3. Concluding Remarks

As a concluding remark, we present an example which makes impossible to ap-
proximate f by means of Ln(f) with the given approximation theorems above. For
this purpose, consider the sequence defined as sn = 0, n is square and 1 otherwise.

Also let R = 1, p (t) =
1

1− t
and for n ∈ N, pn = 1. In this case the power

series method coincides with Abel method. Note that {sn} is convergent to 1 in
the sense of power series method. Now take X = [0, 1], n ∈ N, xn,k = k

n ∈ [0, 1],
k = 0, 1, 2 . . . , n, and

Kn,k(x) :=

(
n
k

)
xk(1− x)n−k∨n

m=0

(
n
m

)
xm(1− x)n−m

.
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Bede and Gal introduced the max-product Bernstein operators as follows [3].

Bn(f ;x) :=

n∨
k=0

Kn,k(x) · f
(k
n

)
=

∨n
k=0

(
n
k

)
xk(1− x)n−kf( kn )∨n

m=0

(
n
m

)
xm(1− x)n−m

.

It is known that
lim
n→∞

‖Bn(f)− f‖ = 0.

With the use of these operators, define Ln by Ln(f ;x) := snBn(f ;x). Note that
it is impossible to approximate f by means of Ln(f) since the sequence {sn} is
nonconvergent in the ordinary sense. Furthermore, for any f ∈ (C[0, 1], [0,∞)),
we can write that∥∥∥ 1

1− t

∞∑
n=1

tn−1Ln(f)− f
∥∥∥

=
∥∥∥ 1

1− t

∞∑
n=1

tn−1snBn(f)− f
∥∥∥

≤ 1

1− t

∞∑
n=1

tn−1‖Bn(f)− f‖+ ‖f‖
∣∣∣ 1

1− t

∞∑
n=1

tn−1sn − 1
∣∣∣.

Finally by taking limit as t→ R− and also using the regularity of power series
method, we get ∥∥∥ 1

1− t

∞∑
n=1

tn−1Ln(f)− f
∥∥∥→ 0,

which provides an example for our theorem.
It is also noteworthy that

• in the case of R = 1, p (t) = 1
1−t and for j ≥ 1, pj = 1, the power

series method coincides with Abel method which is a sequence-to-function
transformation,

• in the case of R =∞, p (t) = et and for j ≥ 1, pj = 1
(j−1)! , the power series

method coincides with Borel method.

We can therefore give all of the theorems of this paper for Abel and Borel conver-
gences.
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E. Taş, Department of Mathematics, Ahi Evran University, Kırşehir, Turkey,
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