

Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute 171 (2017) 328-331

www.elsevier.com/locate/trmi

Original article

On Riesz summability factors of Fourier series Şebnem Yildiz

Department of Mathematics, Ahi Evran University, Kırşehir, Turkey

Received 22 February 2017; received in revised form 8 June 2017; accepted 15 June 2017 Available online 4 July 2017

Abstract

In this paper, a main theorem dealing with $|\bar{N}, p_n|_k$ summability method has been generalized for $\varphi - |\bar{N}, p_n; \delta|_k$ summability by using different and general summability factors of Fourier series.

© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Summability factors; Absolute matrix summability; Fourier series; Infinite series; Hölder inequality; Minkowski inequality

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{\nu=0}^n a_{n\nu} s_{\nu}, \quad n = 0, 1, \dots.$$
(1.1)

Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{\nu=0}^n p_{\nu} \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$
(1.2)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu s_\nu \quad (P_n \neq 0),$$
(1.3)

E-mail address: sebnemyildiz@ahievran.edu.tr.

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.06.003

2346-8092/© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

defines the sequence (σ_n) of the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [1]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \ge 1$, if (see [2])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\Delta\sigma_{n-1}|^k < \infty.$$
(1.4)

In the special case when $p_n = 1$ for all values of *n* (resp. k = 1), then $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (resp. $|\bar{N}, p_n|$) summability.

The $\varphi - |\bar{N}, p_n; \delta|_k$ summability method is defined by Seyhan (see [3]). The series $\sum a_n$ is said to be summable $\varphi - |\bar{N}, p_n; \delta|_k$, $k \ge 1$ and $\delta \ge 0$, if

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} |\sigma_n - \sigma_{n-1}|^k < \infty.$$
(1.5)

If we take $\delta = 0$ and $\varphi_n = \frac{p_n}{p_n}$, then $\varphi - |\bar{N}, p_n; \delta|_k$ summability is the same as $|\bar{N}, p_n|_k$ summability. Let *f* be a periodic function with period 2π and integrable (*L*) over $(-\pi, \pi)$.

Without loss of generality we may assume that the constant term in the Fourier series of f is zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0,$$
(1.6)

and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} C_n(t).$$
 (1.7)

2. Known result

Many papers dealing with $|\bar{N}, p_n|_k$ summability factors and $\varphi - |\bar{N}, p_n; \delta|_k$ summability factors of Fourier series have been done (see [4–10]). Among them, Bor [5] has proved the following theorem.

Theorem A. If (λ_n) is a non-negative and non-increasing sequence such that $\sum p_n \lambda_n < \infty$, where (p_n) is a sequence of positive numbers such that $P_n \to \infty$ as $n \to \infty$, and $\sum_{v=1}^n P_v C_v(t) = O(P_n)$, then the series $\sum C_n(t)P_n\lambda_n$ is summable $|\bar{N}, p_n|_k$, $k \ge 1$.

3. Main result

The aim of this paper is to prove a more general theorem which includes the above mentioned result as special cases. Now, we shall prove the following theorem.

Theorem B. Let (p_n) and (λ_n) be sequences satisfying the conditions of Theorem A and let (φ_n) be a sequence of positive real numbers such that

$$\varphi_n p_n = O(P_n), \tag{3.1}$$

$$\sum_{n=\nu+1}^{\infty} \varphi_n^{\delta k-1} \frac{1}{P_{n-1}} = O\left(\varphi_v^{\delta k} \frac{1}{P_v}\right),\tag{3.2}$$

$$\sum_{n=1}^{m} \varphi_n^{\delta k} p_n \lambda_n = O(1) \quad as \quad m \to \infty,$$
(3.3)

$$\sum_{n=1}^{m} \varphi_n^{\delta k} P_n \Delta \lambda_n = O(1) \quad as \quad m \to \infty.$$
(3.4)

Then the series $\sum C_n(t)P_n\lambda_n$ is summable $\varphi - |\bar{N}, p_n; \delta|_k$, $k \ge 1$ and $0 \le \delta k < 1$.

We need the following lemma for the proof of Theorem B.

Lemma 1 ([5]). If (λ_n) is a non-negative and non-increasing sequence such that $\sum p_n \lambda_n$ is convergent, where (p_n) is a sequence of positive numbers such that $P_n \to \infty$ as $n \to \infty$, then $P_n \lambda_n = O(1)$ as $n \to \infty$ and $\sum P_n \Delta \lambda_n < \infty$.

Remark 1. It should be noted that if we take $\delta = 0$ and $\varphi_n = \frac{P_n}{p_n}$ in this theorem, (3.4) is satisfied by Lemma 1. Condition (3.3) is satisfied by a hypothesis of Theorem A. Also in this case conditions (3.1) and (3.2) are obvious.

4. Proof of Theorem B

Let $I_n(t)$ be the sequence of (\bar{N}, p_n) means of the series $\sum C_n(t)P_n\lambda_n$. Then, by definition, we have

$$I_n(t) = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu \sum_{i=0}^\nu C_i(t) P_i \lambda_i = \frac{1}{P_n} \sum_{\nu=0}^n (P_n - P_{\nu-1}) C_\nu(t) P_\nu \lambda_\nu.$$

Then, for $n \ge 1$, we have

$$I_n(t) - I_{n-1}(t) = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} C_v(t) P_v \lambda_v.$$

By Abel's transformation, we have

$$\begin{split} I_n(t) - I_{n-1}(t) &= \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} \Delta(P_{\nu-1}\lambda_{\nu}) \sum_{r=1}^{\nu} P_r C_r(t) + \frac{p_n}{P_n} \lambda_n \sum_{\nu=1}^{n} P_\nu C_\nu(t) \\ &= O(1) \left\{ \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} (P_\nu \lambda_\nu - p_\nu \lambda_\nu - P_\nu \lambda_{\nu+1}) P_\nu \right\} + O(1) p_n \lambda_n \\ &= O(1) \left\{ \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu P_\nu \Delta \lambda_\nu - \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu p_\nu \lambda_\nu + p_n \lambda_n \right\} \\ &= O(1) \left\{ I_{n,1}(t) + I_{n,2}(t) + I_{n,3}(t) \right\}. \end{split}$$

To prove Theorem B, by Minkowski's inequality it is sufficient to show that

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} |I_{n,r}(t)|^k < \infty, \quad for \quad r=1,2,3.$$

First, using the hypotheses of Theorem B, we have that

$$\begin{split} &\sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} |I_{n,1}(t)|^k = \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu P_\nu \Delta \lambda_\nu \right|^k \\ &\leq \sum_{n=2}^{m+1} \varphi_n^{\delta k-1} \frac{1}{P_{n-1}} \left\{ \sum_{\nu=1}^{n-1} P_\nu P_\nu \Delta \lambda_\nu \right\} \times \left\{ \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu P_\nu \Delta \lambda_\nu \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{\delta k-1} \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu P_\nu \Delta \lambda_\nu \\ &= O(1) \sum_{\nu=1}^{m} P_\nu P_\nu \Delta \lambda_\nu \sum_{n=\nu+1}^{m+1} \varphi_n^{\delta k-1} \frac{1}{P_{n-1}} \\ &= O(1) \sum_{\nu=1}^{m} \varphi_\nu^{\delta k} P_\nu \Delta \lambda_\nu = O(1) \quad as \quad m \to \infty. \end{split}$$

Now, when k > 1, applying Hölder's inequality with indices k and k' where $\frac{1}{k} + \frac{1}{k'} = 1$, we have that

$$\sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} |I_{n,2}(t)|^k = \sum_{n=2}^{m+1} \varphi_n^{\delta k+k-1} \left| \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu p_\nu \lambda_\nu \right|^k$$

$$\leq \sum_{n=2}^{m+1} \varphi_n^{\delta k-1} \frac{1}{P_{n-1}} \left\{ \sum_{\nu=1}^{n-1} P_v^k p_\nu \lambda_v^k \right\} \times \left\{ \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_\nu \right. \\ \left. = O(1) \sum_{\nu=1}^m P_v^k \lambda_v^k p_\nu \sum_{n=\nu+1}^{m+1} \varphi_n^{\delta k-1} \frac{1}{P_{n-1}} \right. \\ \left. = O(1) \sum_{\nu=1}^m P_v^k \lambda_v^k p_\nu \varphi_v^{\delta k} \frac{1}{P_\nu} \\ \left. = O(1) \sum_{\nu=1}^m \varphi_v^{\delta k} (P_\nu \lambda_\nu)^{k-1} p_\nu \lambda_\nu \\ \left. = O(1) \sum_{\nu=1}^m \varphi_v^{\delta k} p_\nu \lambda_\nu = O(1) \quad as \quad m \to \infty, \right.$$

by virtue of the hypotheses of Theorem B and Lemma 1. Finally, using the fact that $P_n\lambda_n = O(1)$, by Lemma 1, we obtain that

$$\sum_{n=1}^{m} \varphi_n^{\delta k+k-1} |I_{n,3}(t)|^k = \sum_{n=1}^{m} \varphi_n^{\delta k+k-1} |p_n \lambda_n|^k$$

$$\leq \sum_{n=1}^{m} \varphi_n^{\delta k} \varphi_n^{k-1} (p_n \lambda_n)^{k-1} (p_n \lambda_n)$$

$$= \sum_{n=1}^{m} \varphi_n^{\delta k} (\varphi_n p_n)^{k-1} \lambda_n^{k-1} (p_n \lambda_n)$$

$$= O(1) \sum_{n=1}^{m} \varphi_n^{\delta k} (P_n \lambda_n)^{k-1} (p_n \lambda_n)$$

$$= O(1) \sum_{n=1}^{m} \varphi_n^{\delta k} (p_n \lambda_n) = O(1) \quad as \quad m \to \infty,$$

by virtue of the hypotheses of Theorem B. This completes the proof of Theorem B.

Acknowledgment

The author would like to express her sincerest thanks to the referee for valuable suggestions for the improvement of this paper.

References

- [1] G.H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949.
- [2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985) 147-149.
- [3] H. Seyhan, (Ph.D thesis), Erciyes University, Kayseri, 1995.
- [4] H. Bor, Multipliers for $|\bar{N}, p_n|_k$ summability of Fourier series, Bull. Inst. Math. Acad. Sin. (N.S.) 17 (1989) 285–290.
- [5] H. Bor, On the absolute summability factors of Fourier series, J. Comput. Anal. Appl. 8 (2006) 223–227.
- [6] H. Bor, Some new results on infinite series and Fourier series, Positivity 19 (2015) 467–473.
- [7] H. Bor, Some new results on absolute Riesz summability of infinite series and Fourier series, Positivity 20 (2016) 599-605.
- [8] K.N. Mishra, Multipliers for $|\bar{N}, p_n|_k$ summability of Fourier series, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (1986) 431–438.
- [9] H.S. Özarslan, On the local property of $\phi |\bar{N}, p_n; \delta|_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sin. (N.S.) 25 (4) (1997) 311–316.
- [10] H.S. Özarslan, A note on $|\bar{N}, p_n|_k$ summability factors, Int. J. Pure Appl. Math. 13 (2004) 485–490.