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Abstract In the present paper, we study the problem of approximation to a function
by means of positive linear operators in modular spaces in the sense of power series
method. Indeed, in order to get stronger results than the classical cases, we use the
power seriesmethodwhich also includes bothAbel andBorelmethods. An application
that satisfies our theorem is also provided.
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1 Introduction

Themain theorems in classical approximation theory are theWeierstrass-type approx-
imation theorems which state a continuous function can be uniformly approximated
by some approximations and error estimates which are obtained in terms of the mod-
ulus of continuity [13,17]. These type of results let us to say the convergence with
minimum calculations and also have important applications in the polynomial approx-
imation theory, in various of functional analysis, in numerical solutions of differential
and integral equations [1,2]. Recently some versions of Korovkin type theorems have
been given inmodular spaces that include as particular cases L p, Orlicz andMusielak-
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Orlicz spaces [8,19] with the use of statistical convergence, filter convergence and
convergences generated by summability methods [9–11,14–16,20,24].
An outline of the paper is as follows: The next section contains basic notation and
definitions. In Sect. 3, we give a Korovkin type theorem in modular spaces by power
series method which includes both Abel and Borel methods. In the final section, we
provide an example which is an application of our theorem.

2 Notations and definitions

Let us begin with recalling some basic definitions and notations which will be used
throughout the paper.
Let (p j ) be real sequence with p0 > 0 and p1, p2, p3, · · · ≥ 0, and such that the
corresponding power series p(t) := ∑∞

j=0 p j t j has radius of convergence R with
0 < R ≤ ∞. If, for all t ∈ (0, R),

lim
t→R−

1

p(t)

∞∑

j=0

x j p j t
j = L

then we say that x = (x j ) is convergent in the sense of power series method [18,
22]. Power series method includes many well known summability methods such as
Abel and Borel. Both methods have in common that their definitions are based on
power series and they are not matrix methods (see [12,23] for details ). In order to
see that power series method is more effective than ordinary convergence, let x =
(1, 0, 1, 0, . . .), R = ∞, p (t) = et and for j ≥ 0, p j = 1

j ! . Then it is easy to see that

lim
t→∞

1

et

∞∑

j=0

x j t j

j ! = lim
t→∞

1

et

∞∑

j=0

t2 j

(2 j)! = lim
t→∞

1

et

{
et + e−t

2

}

= 1

2
.

So the sequence x = (x j ) is convergent to 1
2 in the sense of power series method but

it is not convergent in the ordinary sense. Note that the power series method is regular
if and only if

lim
t→R−

p j t j

p(t)
= 0

holds for each j ∈ N0 [12]. Throughout the paper we assume that power seriesmethod
is regular.

Let G = [a, b] be a bounded interval of the real lineR provided with the Lebesgue
measure. We denote by X (G) the space of all real-valued measurable functions on
G with equality almost everywhere, by C(G) the space of all continuous real valued
functions onG, and byC∞(G) the space of all infinitely differentiable functions onG.
A functional � : X (G) → [0,∞] is a modular on X (G) provided that the following
conditions hold:



Approximation by positive linear operators in modular... 1295

(i) �[ f ] = 0 if and only if f = 0 a.e on G,
(ii) �[− f ] = �[ f ] for every f ∈ X (G),
(iii) �[α f + βg] ≤ �[ f ] + �[g] for every f, g ∈ X (G) and for any α, β ≥ 0 with

α + β = 1.

A modular � is said to be Q-quasi convex if there exists a constant Q ≥ 1 such that
the inequality

�[α f + βg] ≤ Qα�[Q f ] + Qβ�[Qg]

holds for every f, g ∈ X (G), α, β ≥ 0 with α + β = 1. In particular if Q = 1, then
� is called convex.

A modular � is said to be Q-quasi semiconvex if there exists a constant Q ≥ 1
such that the inequality

�[a f ] ≤ Qa�[Q f ]

holds for every f ∈ X (G), f ≥ 0 and a ∈ (0, 1]. It is clear that every Q-quasi convex
modular is Q-quasi semiconvex. A modular � is said to be monotone if �[ f ] ≤ �[g]
for all f, g ∈ X (G) with | f | ≤ |g|.

We now consider some subspaces of X (G) by means of a modular � as follows

L�(G) :=
{

f ∈ X (G) : lim
λ→0+ �[λ f ] = 0

}

and

E�(G) := { f ∈ L�(G) : �[λ f ] < ∞ for all λ > 0}

are called the modular space generated by � and the space of the finite elements of
L�(G), respectively. Observe that if � is Q-quasi semiconvex then the space

{ f ∈ X (G) : �[λ f ] < ∞ for some λ > 0}

coincides with L�(G). The notions about modulars have been introduced and widely
discussed in [4–8].
Now recall the convergences in the sense of power series method in modular spaces
which have been studied in [25]. Let { f j } be a function sequence whose terms belong
to L�(G). Then, { f j } is modularly convergent to a function f ∈ L�(G) in the sense
of power series method if and only if

lim
t→R−

1

p(t)

∞∑

j=0

p j t
j�[λ0( f j − f )] = 0 f or some λ0 > 0.
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Also, { f j } is strongly convergent to a function f ∈ L�(G) in the sense of power series
method if and only if

lim
t→R−

1

p(t)

∞∑

j=0

p j t
j�[λ( f j − f )] = 0 f or every λ > 0.

Recall that { f j } is modularly convergent to a function f ∈ L�(G) if and only if

lim
j→∞ �[λ0( f j − f )] = 0 f or some λ0 > 0,

also { f j } is strongly convergent to a function f ∈ L�(G) if and only if

lim
j→∞ �[λ( f j − f )] = 0 f or every λ > 0.

One can also study these convergences such a general case:

lim
t→R− �

⎡

⎣λ0
1

p(t)

∞∑

j=0

p j t
j ( f j − f )

⎤

⎦ = 0 f or some λ0 > 0,

lim
t→R− �

⎡

⎣λ
1

p(t)

∞∑

j=0

p j t
j ( f j − f )

⎤

⎦ = 0 f or every λ > 0.

Notice that �[λ0 1
p(t)

∑∞
j=0 p j t j ( f j − f )] = �[λ0( 1

p(t)

∑∞
j=0 p j t j f j − f )] since

p(t) =
∞∑

j=0

p j t
j and f = 1

p(t)

∞∑

j=0

p j t
j f.

In the present paper we consider these type of convergences. If there exists a constant
M > 0 such that

�[2u] ≤ M�[u]

holds for all u ≥ 0 then it is said to be that � satisfies the �2-condition. A modular �

is said to be

– finite if χG , the characteristic function associated with G, belongs to L�(G),
– absolutely finite if � is finite and for every ε > 0, λ > 0 there exists δ > 0 such
that �[λχB] < ε for any measurable subset B ⊂ G with |B| < δ,

– strongly finite if χG ∈ E�(G),
– absolutely continuous if there is a positive constant a with the property: for all

f ∈ X (G) with �[ f ] < ∞, the following condition holds: for every ε > 0 there
is a δ > 0 such that �[a f χB] < ε whenever B is any measurable subset of G with
|B| < δ.
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Recall that if a modular � is monotone and finite, then we have C(G) ⊂ L�(G)

[4]. In a similar manner, if � is monotone and strongly finite, then C(G) ⊂ E�(G).

3 Modular Korovkin theorem by power series method

Let � be monotone and finite modular on X (G). Assume that D is a set satisfying
C∞(G) ⊂ D ⊂ L�(G). We can construct such a subset D since � is monotone and
finite. Assume further that T := {Tj } is a sequence of positive linear operators from
D into X (G) for which there exists a subset XT ⊂ D containing C∞(G) such that
the inequality

lim sup
t→R−

�
[
λ

1

p(t)

∞∑

j=0

p j t
j (Tjh)

] ≤ P�[λh] (1)

holds for every h ∈ XT , λ > 0 and for an absolute positive constant P . Throughout
the paper we use the test functions defined by ei (x) = xi , i = 0, 1, 2, . . ..

Theorem 1 Let � be a strongly finite, monotone, absolutely continuous and Q-quasi
semiconvex modular on X (G). Let Tj , j ∈ N

0, be a sequence of positive linear
operators from D into X (G) satisfying (1). If

lim
t→R− �

⎡

⎣λ
1

p(t)

∞∑

j=0

p j t
j (Tjei − ei )

⎤

⎦ = 0,

for every λ > 0 and i = 0, 1, 2, then for every f ∈ L�(G) such that f − g ∈ XT for
every g ∈ C∞(G)

lim
t→R− �

⎡

⎣γ
1

p(t)

∞∑

j=0

p j t
j (Tj f − f )

⎤

⎦ = 0,

for some γ > 0.

Proof Let g ∈ C(G) ∩ D and first we show that

lim
t→R− �

⎡

⎣μ
1

p(t)

∞∑

j=0

p j t
j (Tj g − g)

⎤

⎦ = 0, f or every μ > 0. (2)

Since g is uniformly continuous on G then there exists a constant M > 0 such that
|g(x)| ≤ M for every x ∈ G.Given ε > 0,we can choose δ > 0 such that |y− x | < δ

implies |g(y) − g(x)| < ε where x, y ∈ G. One can see that for all x, y ∈ G
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|g(y) − g(x)| < ε + 2M

δ2
(y − x)2.

Since {Tj } is a sequence of positive linear operators, we get
∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (g(.); x) − g(x)

∣
∣
∣
∣

=
∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (g(.) − g(x); x) + 1

p(t)

∞∑

j=0

p j t
j Tj (g(x); x) − g(x)

∣
∣
∣
∣

≤ 1

p(t)

∞∑

j=0

p j t
j Tj (|g(.) − g(x)|; x) + |g(x)|

∣
∣
∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − e0(x)

∣
∣
∣
∣
∣
∣

≤ 1

p(t)

∞∑

j=0

p j t
j Tj (ε + 2M

δ2
(. − x)2; x) + M

∣
∣
∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − e0(x)

∣
∣
∣
∣
∣
∣

≤ ε + ε

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − 1

∣
∣
∣
∣ + 2M

δ2

1

p(t)

∞∑

j=0

p j t
j Tj ((. − x)2; x)

+ M

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − e0(x)

∣
∣
∣
∣

≤ ε + (ε + M)

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − e0(x)

∣
∣
∣
∣

+ 2M

δ2

[

(
1

p(t)

∞∑

j=0

p j t
j Tj (e2(.); x) − e2(x))

− 2e1(x)(
1

p(t)

∞∑

j=0

p j t
j Tj (e1(.); x) − e1(x))

+ e2(x)(
1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − e0(x))

]

≤ ε +
(

ε + M + 2Mr2

δ2

) ∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0(.); x) − e0(x)

∣
∣
∣
∣

+ 4Mr

δ2
|Tj (e1(.); x) − e1(x)|

+ 2M

δ2
|Tj (e2(.); x) − e2(x)|

where r := max{|a|, |b|}. So the last inequality gives for any μ > 0 that
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μ

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (g; x) − g(x)

∣
∣
∣
∣ ≤ με + μK

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e0; x) − e0(x)

∣
∣
∣
∣

+ μK

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e1; x) − e1(x)

∣
∣
∣
∣

+ μK

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (e2; x) − e2(x)

∣
∣
∣
∣

where K := max{ε + M + 2Mr2

δ2
, 4Mr

δ2
, 2M

δ2
}. By applying the modular � in the both

sides of the above inequality, since � is monotone, we have

�

[

μ(
1

p(t)

∞∑

j=0

p j t
j Tj (g) − g)

]

≤ �

[

με + μK

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj e0 − e0

∣
∣
∣
∣

+ μK

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj e1 − e1

∣
∣
∣
∣

+ μK

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj e2 − e2

∣
∣
∣
∣

]

.

So we may write that

�

⎡

⎣μ

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j T j (g) − g

⎞

⎠

⎤

⎦ ≤ �[4με]

+ �

⎡

⎣4μK

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j T j e0 − e0

⎞

⎠

⎤

⎦ + �

⎡

⎣4μK

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j T j e1 − e1

⎞

⎠

⎤

⎦

+ �

⎡

⎣4μK

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j T j e2 − e2

⎞

⎠

⎤

⎦ .

Since � is Q-quasi semiconvex and strongly finite, we have

�

[

μ(
1

p(t)

∞∑

j=0

p j t
j Tj (g) − g)

]

≤ Qε�[4μQ] + �

[

4μK (
1

p(t)

∞∑

j=0

p j t
j Tj e0 − e0)

]

+ �

[

4μK (
1

p(t)

∞∑

j=0

p j t
j Tj e1 − e1)

]

+ �

[

4μK (
1

p(t)

∞∑

j=0

p j t
j Tj e2 − e2)

]
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without loss of generality where 0 < ε ≤ 1. By taking limit superior as t → R− in
the both sides and by using hypothesis, we get

lim
t→R− �[μ 1

p(t)

∞∑

j=0

p j t
j (Tj g − g)] = 0

which proves our claim. Now let f ∈ L�(G) satisfying f − g ∈ XT for every
g ∈ C∞(G). Since |G| < ∞ and � is strongly finite and absolutely continuous, it
is known that � is also absolutely finite on X (G) (see [3]). Using the properties of �

and it is also known from [8] that the space C∞(G) is modularly dense in L�(G), i.e.,
there exists a sequence {gk} ⊂ C∞(G) such that

lim
k

�[3λ0(gk − f )] = 0 for some λ0 > 0.

This means that, for every ε > 0, there is a positive number k0 = k0(ε) so that

�[3λ0(gk − f )] < ε for every k ≥ k0.

On the other hand, by linearity and positivity of the operators Tj we may write that

λ0

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj ( f ; x) − f (x)

∣
∣
∣
∣ ≤ λ0

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj ( f − gk0; x)

∣
∣
∣
∣

+ λ0

∣
∣
∣
∣

1

p(t)

∞∑

j=0

p j t
j Tj (gk0; x) − gk0

∣
∣
∣
∣

+ λ0|gk0(x) − f (x)|.

Applying the modular � in the both sides of the above inequality, since � is monotone

�

⎡

⎣λ0

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j Tj f − f

⎞

⎠

⎤

⎦ ≤ �

⎡

⎣3λ0

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j Tj ( f − gk0)

⎞

⎠

⎤

⎦

+ �

⎡

⎣3λ0

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j Tj gk0 − gk0

⎞

⎠

⎤

⎦

+ �
[
3λ0

(
gk0 − f

)]
.
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Then it follows from the above inequalities that

�

⎡

⎣λ0

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j Tj f − f

⎞

⎠

⎤

⎦ ≤ �

⎡

⎣3λ0

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j Tj ( f − gk0)

⎞

⎠

⎤

⎦

+�

⎡

⎣3λ0

⎛

⎝ 1

p(t)

∞∑

j=0

p j t
j Tj gk0 − gk0

⎞

⎠

⎤

⎦ + ε.

Hence, using the facts that gk0 ∈ C∞(G) and f − gk0 ∈ XT , and taking limit superior
as t → R− in both sides, we obtain that

lim sup
t→R−

�

⎡

⎣λ0
1

p(t)

∞∑

j=0

p j t
j (Tj f − f )

⎤

⎦

≤ ε + P�
[
3λ0

(
f − gk0

)] + lim sup
t→R−

�

⎡

⎣3λ0
1

p(t)

∞∑

j=0

p j t
j (Tj gk0 − gk0

)
⎤

⎦

(3)

which gives

lim sup
t→R−

�

⎡

⎣λ0
1

p(t)

∞∑

j=0

p j t
j (Tj f − f )

⎤

⎦

≤ ε + εP + lim sup
t→R−

�

⎡

⎣3λ0
1

p(t)

∞∑

j=0

p j t
j (Tj gk0 − gk0

)
⎤

⎦ .

By (2), we get

lim sup
t→R−

�

⎡

⎣3λ0
1

p(t)

∞∑

j=0

p j t
j (Tj gk0 − gk0

)
⎤

⎦ = 0

and this implies

lim sup
t→R−

�

⎡

⎣λ0
1

p(t)

∞∑

j=0

p j t
j (Tj f − f )

⎤

⎦ ≤ ε + εP.

Since ε is arbitrary positive real number, we have

lim sup
t→R−

�

⎡

⎣λ0
1

p(t)

∞∑

j=0

p j t
j (Tj f − f )

⎤

⎦ = 0
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and also �[λ0 1
p(t)

∞∑
j=0

p j t j (Tj f − f )] is nonnegative then

lim
t→R− �

⎡

⎣λ0
1

p(t)

∞∑

j=0

p j t
j (Tj f − f )

⎤

⎦ = 0.

This completes the proof. 	

If the modular � satisfies the �2-condition, then one can get the following result

from the above theorem.

Theorem 2 Let � and T = {Tj } be as in the above theorem. If � satisfies the �2-
condition, then the followings are equivalent:

– lim
t→R− �[λ 1

p(t)

∞∑
j=0

p j t j (Tjei − ei )] = 0, for every λ > 0 and i = 0, 1, 2.

– lim
t→R− �[γ 1

p(t)

∞∑
j=0

p j t j (Tj f − f )] = 0, f or every γ > 0 then every f ∈ L�(G)

such that f − g ∈ XT , for every g ∈ C∞(G).

4 Concluding remarks

In this section we provide an example which satisfies our main theorem.
In order to provide the example, take G = [0, 1] and let ϕ : [0,∞) → [0,∞) be a
continuous function for which the following conditions hold:

– ϕ is convex,
– ϕ(0) = 0, ϕ(u) > 0 f or u > 0 and lim

u→+∞ ϕ(u) = ∞.

Here, consider the functional ρϕ on X (G) defined by

ρϕ[ f ] :=
1∫

0

ϕ(| f (x)|)dx, f or f ∈ X (G).

In this case, ρϕ is a convex modular on X (G) (see [4]). Consider the Orlicz space
generated by ϕ as follows

Lρ
ϕ(G) := { f ∈ X (G) : ρϕ[λ f ] < ∞ for some λ > 0}.

Let us consider a finite sequence 
 j = (v j,k)k=0,1,2,...,r( j),r( j)+1 ⊂ G satisfying the
following assumption:

0 < a j ≤ γ j,k := v j,k+1 − v j,k ≤ b j , k = 0, 1, 2, . . . , r( j)
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where a j , b j are positive real numbers and lim j→∞ b j = 0.Then, consider a sequence
U := {Uj } on the space Lρ

ϕ(G) (see [4]) which is defined by

Uj ( f ; x) :=
r( j)∑

k=0

K j (x, v j,k)
1

γ j,k

v j,k+1∫

v j,k

f (t)dt ; x ∈ G.

Here the kernel (K j ) j∈N0 , K j : G×
 j → R is a sequence of nonnegative functions
such that

r( j)∑

k=0

K j (x, v j,k) = 1, f or every j ∈ N0 and x ∈ [0, 1];

lim
j→∞mn(K j , .) = 0, n = 1, 2

and

∫

G

K j (x, v j,k)dx ≤ ξ j

where ξ j is a bounded sequence of positive numbers independent of k and

mn(K j , x) :=
r( j)∑

k=0

K j (x, v j,k)(v j,k − x)n .

Also assume that
ξ j
a j

≤ M for every j ∈ N0 and an absolute constant M > 0. Then it

is known that Uj map the Orlicz space Lρ
ϕ(G) into itself [4]. Moreover, the property

lim sup j→∞ �ϕ[λ(Ujh)] ≤ M�ϕ[λh] is satisfied with the choice of XU := Lρ
ϕ(G)

and for every function f ∈ Lρ
ϕ(G), {Uj f } is modularly convergent to f . Using the

operators {Uj } define the sequence of positive linear operators V := {Vj } on Lρ
ϕ(G)

as follows:

Vj ( f ; x) = (1 + s j )Uj ( f ; x), f or f ∈ Lρ
ϕ(G), x ∈ [0, 1] and j ∈ N0, (4)

where s j = 1, if j is square and 0 otherwise. Let R = 1, p(t) = 1
1−t and for j ∈ N0

p j = 1. Observe that {s j } is a sequence of zeros and ones which is nonconvergent but
convergent to 0 in the sense of power series method which coincides with the Abel
method under this choice. Let also ϕ(x) = x p for 1 ≤ p < ∞. In this case we have
Lρ

ϕ(G) = L p(G) and ρϕ[ f ] = ‖ f ‖p
L p

[21]. So one can get that
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ρϕ

⎡

⎣λ
1

p(t)

∞∑

j=0

p j t
j Vj h

⎤

⎦ =
∥
∥
∥
∥
∥
∥
λ

1

p(t)

∞∑

j=0

p j t
j (1 + s j )Ujh

∥
∥
∥
∥
∥
∥

p

L p

≤ 2p

∥
∥
∥
∥
∥
∥
λ

1

p(t)

∞∑

j=0

p j t
jU j h

∥
∥
∥
∥
∥
∥

p

L p

≤ 2p|λ|p 1

p(t)

∞∑

j=0

p j t
j‖Ujh‖p

L p

and

lim sup
t→R−

ρϕ

⎡

⎣λ
1

p(t)

∞∑

j=0

p j t
j Vj h

⎤

⎦ ≤ 2p|λ|pM‖λh‖p
L p

= Nρϕ[λh]

where N = 2p|λ|pM. Now, we show that conditions in Theorem 1 holds. First note
that

Vj (e0; x) = 1 + s j

since Uj (e0) = 1. Therefore

ρϕ

[

λ(
1

p(t)

∞∑

j=0

p j t
j Vj (e0) − e0)

]

=
∥
∥
∥
∥
∥
∥
λ(

1

p(t)

∞∑

j=0

p j t
j Vj (e0) − e0)

∥
∥
∥
∥
∥
∥

p

L p

=
∥
∥
∥
∥
∥
∥
λ

1

p(t)

∞∑

j=0

p j t
j s j

∥
∥
∥
∥
∥
∥

p

L p

,

holds and one can get limt→R− ‖λ 1
p(t)

∞∑
j=0

p j t j s j‖p
L p

= 0 f or every λ > 0 by taking

limit as t → R−. Similarly

Vj (e1; x) = (1 + s j )Uj (e1; x)

and it is known that lim j→∞ ρϕ[λ(Uj (e1) − e1)] = 0, f or every λ > 0 [4]. Since
the Abel method is regular, one can again get that

lim
t→R− ρϕ

[

λ(
1

p(t)

∞∑

j=0

p j t
j Vj (e1) − e1)

]

= lim
t→R−

∥
∥
∥
∥λ

(
1

p(t)

∞∑

j=0

p j t
j Vj (e1) − e1

)∥
∥
∥
∥

p

L p

≤ 2p lim
t→R−

∥
∥
∥
∥λ

(
1

p(t)

∞∑

j=0

p j t
jU j (e1) − e1

)∥
∥
∥
∥

p

L p



Approximation by positive linear operators in modular... 1305

≤ 2p lim
t→R−

1

p(t)

∞∑

j=0

p j t
j
∥
∥
∥
∥λ(Uj (e1) − e1)

∥
∥
∥
∥

p

L p

≤ 2p lim
t→R−

1

p(t)

∞∑

j=0

p j t
jρϕ[λ(Uj (e1) − e1)] = 0, f or every λ > 0.

Now

Vj (e2; x) = (1 + s j )Uj (e2; x),

and it is also known that lim j→∞ ρϕ[λ(Uj (e2) − e2)] = 0, f or every λ > 0. Since
the Abel method is regular, we have that

lim
t→R− ρϕ

[

λ(
1

p(t)

∞∑

j=0

p j t
j Vj (e2) − e2)

]

= lim
t→R−

∥
∥
∥
∥λ

(
1

p(t)

∞∑

j=0

p j t
j Vj (e2) − e2

)∥
∥
∥
∥

p

L p

≤ 2p lim
t→R−

∥
∥
∥
∥λ

(
1

p(t)

∞∑

j=0

p j t
jU j (e2) − e2

)∥
∥
∥
∥

p

L p

≤ 2p lim
t→R−

1

p(t)

∞∑

j=0

p j t
j
∥
∥
∥
∥λ(Uj (e2) − e2)

∥
∥
∥
∥

p

L p

≤ 2p lim
t→R−

1

p(t)

∞∑

j=0

p j t
jρϕ[λ(Uj (e2) − e2)] = 0, f or every λ > 0.

So we can say that the sequence V := {Vj } satisfies all assumptions of Theorem 1.

Remark 1 It is known that

– in the case of R = 1, p (t) = 1

1 − t
and for j ∈ N0, p j = 1 the power series

method coincides with Abel method which is a sequence-to-function transforma-
tion,

– in the case of R = ∞, p (t) = et and for j ∈ N0, p j = 1

j ! the power series

method coincides with Borel method.

We can therefore give all of the theorems of this paper forAbel andBorel convergences.
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