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SOME OPERATORS ARISING FROM SCHWARZ BVP IN

COMPLEMENTARY LOCAL MORREY-TYPE SPACES ON THE

UNIT DISC

V.S. GULIYEV, K. KOCA, R.CH. MUSTAFAYEV, T. ÜNVER

Abstract. In this paper, we prove the boundedness of a class of operators

arising from Schwarz BVP in complementary local Morrey-type spaces in the

unit disc of the complex plane.

1. Introduction

Let C be the complex plane and D = {z ∈ C : |z| < 1} be the unit disc in C.
The Schwarz boundary value problem (Schwarz BVP)

gz̄ = f in D, Re g = γ on ∂D, Im g (0) = c, (1.1)

is one of the major boundary value problems in complex analysis. It is uniquely
solvable for analytic functions [24], and for polyanalytic functions [7]. The solv-
ability of the Schwarz problem for some higher-order linear elliptic complex partial
differential equations were investigated in [3] and [2].

Cauchy-Riemann-Poisson-Pompeiu formula given by

g(z) =
1

2πi

∫
∂D
γ(ζ)

ζ + z

ζ − z
dζ

ζ
+ ic

− 1

2π

∫∫
D

(
f(ζ)

ζ

ζ + z

ζ − z
+
f(ζ)

ζ̄

1 + zζ̄

1− zζ̄

)
dξdη, z ∈ D, ζ = ξ + iη (1.2)

is the unique solution to the Schwarz BVP, where f ∈ L1(D), γ ∈ C(∂D,R), c ∈ R
(see [7]).

The domain integral appearing on the right-hand side of (1.2), denoted by T̃1,
is a modification of the Pompeiu operator

T1f(z) := − 1

π

∫∫
D
f(ζ)

dξdη

ζ − z
, z ∈ D,

which was studied by Vekua in [26]. The operator T̃1 is important for treating com-
plex first-order equations (see, for instance, [26, 11, 4, 5]). Iterating this operator
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Submitted June 20, 2016. Published November 20, 2016.
Communicated by Lars-Erik Persson.

130



131

with itself by the rule T̃kf(z) = T̃1(T̃k−1f(z)) generates the operators

T̃kf(z) :=
(−1)k

2π(k − 1)!

∫∫
D

(
ζ − z + ζ − z

)k−1

(
f (ζ)

ζ

ζ + z

ζ − z
+
f (ζ)

ζ̄

1 + zζ̄

1− zζ̄

)
dξdη

for k ∈ N with T̃0f(z) = f(z).
The two partial derivative operators ∂

∂z and ∂
∂z̄ are defined by

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
and

∂l

∂zl
=

∂

∂z

(
∂l−1

∂zl−1

)
,

∂l

∂z̄l
=

∂

∂z̄

(
∂l−1

∂z̄l−1

)
where z = x+ iy.

The operators T̃kf satisfy

∂l

∂z̄l
T̃kf = T̃k−lf, 1 ≤ l ≤ k, (1.3)

Re
∂l

∂z̄l
T̃kf = 0 on ∂D, 0 ≤ l ≤ k − 1, (1.4)

Im
∂l

∂z̄l
T̃kf(0) = 0, 0 ≤ l ≤ k − 1, (1.5)

see [3]. Note that ∂lzT̃k is a weakly singular integral operator for 0 ≤ l ≤ k − 1,
while

Πkf(z) :=
∂k

∂zk
T̃kf(z) =

(−1)kk

π

∫∫
D

[(
ζ − z
ζ − z

)k−1
f(ζ)

(ζ − z)2

+

(
ζ − z + ζ − z

1− zζ̄
ζ̄ − 1

)k−1
f(ζ)

(1− zζ̄)2

]
dξdη (1.6)

is a strongly singular integral operator. It is known that ‖Π1‖L2(D) = 1 (see [26, 11]).
Πk are shown to be bounded in the space Lp for 1 < p <∞ and in particular their
L2 norms are estimated in [1]. These operators are investigated by decomposing
them into two parts as Πk = T−k,k + Pk, where

T−k,kf(z) =
(−1)kk

π

∫∫
D

(
ζ − z
ζ − z

)k−1
f(ζ)

(ζ − z)2
dξdη, (1.7)

and

Pkf(z) =
(−1)kk

π

∫∫
D

(
ζ − z + ζ − z

1− zζ̄
ζ̄ − 1

)k−1
f(ζ)

(1− zζ̄)2
dξdη, (1.8)

which are investigated extensively in [6] and [1], respectively, and the boundedness
of T−k,k and Pk in Lp(D) are proved.

It is mentioned in [6] that the integral in (1.7) must be viewed as a Cauchy
principal value integral,

T−k,kf(z) = lim
ε→0

∫∫
Dε
K−k,k(z − ζ)w(ζ) dξdη, (1.9)
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where Dε is the domain D\{ζ : |ζ − z| ≤ ε}, and the limit is taken in the norm of
Lp(D). Here

K−k,k(z) :=
(−1)kk

π
z−k−1z̄k−1.

These integrals can be analyzed with the well-known theory of Calderón and Zyg-
mund [9, 10, 22] concerning singular integrals. The boundedness of Pk in Lp(D) was
proved in [1] using Schur’s test (see, for instance, [27]) and Forelli-Rudin lemma in
[12].

The well-known Morrey spaces Mp,λ introduced by C.B. Morrey in 1938 [19]
in relation to the study of partial differential equations, were widely investigated
during the last decades, including the study of classical operators of harmonic and
real analysis - maximal, singular and potential operators - in generalizations of
these spaces (so-called local Morrey-type spaces).The local Morrey-type spaces and
the complemenary local Morrey-type spaces introduced by Guliyev in the doctoral
thesis [16] (see also [17]). The main purpose of [16] (also of [17, 18]) is to give
some sufficient conditions for the boundedness of fractional integral operators and
singular integral operators in complementary local Morrey-type spaces

c

LMpθ,ω(G)
defined on homogeneous Lie groups G.

The research on complementary local Morrey-type spaces mainly includes the
study of classical operators in these spaces (see, for instance, [8]). However, recently
in a series of papers, authors started to study the structure of complementary local
Morrey-type spaces and relation of these spaces with other known function spaces
(see, for instance, [13, 14, 20]).

The aim of this paper is to study the boundedness of integral operators (1.6)
in

c

LMpθ,ω(D). Our main result is Theorem 5.1. This statement allows us to
obtain apriori estimate for the solution of Schwarz BVP (1.1) with γ = c = 0 in
c

LMpθ,ω(D) (see Theorem 5.3).
The paper is organized as follows. Some notations and definitions are given in

Section 2. Some local estimates of sublinear operators satisfying Soria-Weiss con-
dition (see (3.1) below) are obtained in Section 3 (see Theorem 3.1). The bound-
edness of such operators in complementary local Morrey-type spaces are proved in
Section 4 (see Theorem 4.1). Finally our main results are presented in Section 5.

2. Notations and Preliminaries

Now we make some conventions. Throughout the paper, we always denote by
c or C a positive constant which is independent of the main parameters, but it
may vary from line to line. However a constant with subscript such as c1 does not
change in different occurrences. By a . b, (b & a) we mean that a ≤ λb, where
λ > 0 depends on inessential parameters. If a . b and b . a, we write a ≈ b and say
that a and b are equivalent. For a measurable set E, χE denotes the characteristic
function of E. We define the Lebesgue measure of E by |E|. For 0 < ρ < 1, let
B(z, ρ) := {ζ ∈ D : |z − ζ| < ρ} be the open ball centered at z ∈ D of radius ρ and
c

B(z, ρ) :=
c

B(z, ρ).
The symbol M+ stands for the collection of all measurable functions on (0,∞)

which are non-negative, while M↓ is used to denote the subset of those functions
which are non-increasing on (0,∞).

For 0 < p ≤ ∞ and w a weight function on a measurable subset E of C,
that is, locally integrable real-valued non-negative function on E, let us denote by
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Lp,w(E) the weighted Lebesgue space defined as the set of all measurable functions
f : E → C for which the quantity

‖f‖Lp,w(E) =


(∫∫

E
|f(ζ)|pw(ζ) dξdη

) 1
p for p <∞,

ess sup
ζ∈E

|f(ζ)|w(ζ) for p =∞
(2.1)

is finite. When w ≡ 1, we write simply Lp(E) and ‖ · ‖Lp(E) instead of Lp,w(E) and
‖ · ‖Lp,w(E).

Recall the definition of weak Lebesgue space:

WLp(E) :=

{
f : E → C meas. : ‖f‖WLp(E) := sup

t>0
t |{z ∈ E : |f(z)| > t}|

1
p <∞

}
.

Convention 2.1. We adopt the following conventions:

• Throughout the paper we put 0 · ∞ = 0, ∞/∞ = 0 and 0/0 = 0.
• For a fixed p with p ∈ [1,∞], p′ denoted the dual exponent of p, namely,

p′ :=


∞ if p = 1,
p
p−1 if 1 < p <∞,
1 if p =∞.

(2.2)

Recall the following complete characterization of the weighted Hardy inequality
on the cone of non-increasing functions. We will use the notations:

U(t) :=

∫ t

0

u(x) dx, V (t) :=

∫ t

0

v(x) dx, W∗(t) :=

∫ ∞
t

w(x) dx, t > 0.

Theorem 2.2 ([15], Theorems 2.5, 3.15, 3.16). Let 0 < q, p ≤ ∞ and u, v, w be
weight functions on (0,∞). Then inequality

‖Hu(f)‖Lq.w(0,∞) ≤ c‖f‖Lp,v(0.∞), f ∈M↓, (2.3)

where

Hug(t) :=

∫ t

0

g(s)u(s) ds, g ∈M+,

with the best constant c holds if and only if the following holds:
(i) 1 < p ≤ q <∞ and A0 +A1 <∞, where

A0 : = sup
t>0

(∫ t

0

Uq(τ)w(τ) dτ

) 1
q

V −
1
p (t),

A1 : = sup
t>0

W
1
q
∗ (t)

(∫ t

0

(
U(τ)

V (τ)

)p′
v(τ) dτ

) 1
p′

,

and in this case c ≈ A0 +A1;
(ii) max{q, 1} < p <∞ and B0 +B1 <∞, where

B0 : =

(∫ ∞
0

V −
r
p (t)

(∫ t

0

Uq(τ)w(τ) dτ

) r
p

Uq(t)w(t) dt

) 1
r

,

B1 : =

(∫ ∞
0

W
r
p
∗ (t)

(∫ t

0

(
U(τ)

V (τ)

)p′
v(τ) dτ

) r
p′

w(t) dt

) 1
r

,

and in this case c ≈ B0 +B1;
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(iii) q < p ≤ 1 and B0 + C0 <∞, where

C0 : =

(∫ ∞
0

(
ess sup
τ∈(0,t)

Up(τ)

V (τ)

) r
p

W
r
p
∗ (t)w(t) dt

) 1
r

,

and in this case c ≈ B0 + C0;
(iv) p ≤ min{q, 1} <∞ and D0 <∞, where

D0 := sup
t>0

V −
1
p (t)

(∫ ∞
0

Uq(min{τ, t})w(τ) dτ

) 1
q

,

and in this case c = D0;
(v) p ≤ 1 and q =∞ and E0 <∞, where

E0 := ess sup
t>0

V −
1
p (t)

(
ess sup
τ>0

U(min{τ, t})w(τ)

)
,

and in this case c = E0;
(vi) 1 < p <∞ and q =∞ and F0 <∞, where

F0 := ess sup
t>0

w(t)

(∫ t

0

(∫ t

τ

u(y)V −1(y) dy

)p′
v(τ) dτ

) 1
p′

,

and in this case c = F0;
(vii) p =∞ and 0 < q <∞ and G0 <∞, where

G0 :=

(∫ ∞
0

(∫ t

0

u(y) dy

ess supτ∈(0,y) v(τ)

)q
w(t) dt

) 1
q

,

and in this case c = G0;
(viii) p = q =∞ and H0 <∞, where

H0 := ess sup
t>0

(∫ t

0

u(y) dy

ess supτ∈(0,y) v(τ)

)
w(t),

and in this case c = H0.

For the sake of completeness we recall the definition of spaces we are going to
use, and some properties of them.

Definition 2.3. Let 0 < p, θ ≤ ∞ and let ω be a non-negative measurable function
on (0, 1). We denote by

c

LMpθ,ω(D), the complementary local Morrey-type space,
the space of all measurable functions f on D with finite quasi-norm

‖f‖ cLMpθ,ω(D) = ‖ω(r)‖f‖Lp( cB(0,r))‖Lθ(0,1).

Definition 2.4. Let 0 < p, θ ≤ ∞ and let ω be a non-negative measurable function
on (0, 1). We denote by W

c

LMpθ,ω(D), the weak complementary local Morrey-type
space, the space of all measurable functions f on D with finite quasinorms

‖f‖W cLMpθ,ω(D) = ‖ω(r)‖f‖WLp( cB(0,r))‖Lθ(0,1).

Remark 2.5. In view of the inequalities

‖ω(r)‖f‖Lp( cB(0,r))‖Lθ(0,1) ≥ ‖ω(r)‖f‖Lp( cB(0,r))‖Lθ(0,t)

≥ ‖ω‖Lθ(0,t) ‖f‖Lp( cB(0,t)), t ∈ (0, 1),

‖ω(r)‖f‖WLp( cB(0,r))‖Lθ(0,1) ≥ ‖ω(r)‖f‖WLp( cB(0,r))‖Lθ(0,t)

≥ ‖ω‖Lθ(0,t) ‖f‖WLp( cB(0,t)), t ∈ (0, 1),
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it is clear that
c

LMpθ,ω(D) = W
c

LMpθ,ω(D) = {0} when ‖ω(r)‖Lθ(0,t) = +∞ for all t ∈ (0, 1).

Here {0} is the set of all functions equivalent to 0 on D.

Definition 2.6. We denote by
c

Ωθ the set of all non-negative measurable functions
ω on (0, 1) such that

0 < ‖ω‖Lθ(0,t) <∞, t ∈ (0, 1).

When considering
c

LMpθ,ω(D) and W
c

LMpθ,ω(D) we always assume that ω ∈
c

Ωθ.
We recall that the spaces

c

LMpθ,ω coincide with some weighted Lebesgue spaces.

Theorem 2.7. ([16, 17]) Let 1 ≤ p < +∞ and ω ∈ c

Ωp. Then

Lp,ω̃(|·|)(D) =
c

LMpp,ω(D),

and norms are equivalent, where

ω̃(τ) :=

∫ τ

0

ω(t)p dt.

3. Local Lp-estimates of sublinear operators

Suppose that T represents a linear or a sublinear operator, which satisfies

|Tf(z)| .
∫∫

D

|f(ζ|
|z − ζ|2

dξdη, (3.1)

for any f ∈ L1(D) and z 6∈ supp f with a constant independent of f and z.
We point out that the condition (3.1), when f is defined on Rn, was intro-

duced by Soria and Weiss in [21]. The Soria-Weiss condition is satisfied by many
interesting operators in harmonic analysis, such as the Calderón-Zygmund singu-
lar operators, Carleson’s maximal operators, Hardy-Littlewood maximal operators,
C. Fefferman’s singular multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s
oscillatory integrals, the Bochner-Riesz means and so on (cf. [21, 23, 22, 25]).

Theorem 3.1. Assume that T is a sublinear operator satisfying condition (3.1).
(i) Let 1 < p <∞ and T be bounded on Lp(D). If f is such that∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt <∞ for all τ ∈ (0, 1), (3.2)

then for any τ ∈ (0, 1) the following inequality holds with constant c > 0 independent
of f and τ :

‖Tf‖Lp( cB(0,τ)) ≤ cτ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt. (3.3)

(ii) Let 1 ≤ p <∞ and T be bounded from Lp(D) to WLp(D). If f satisfies condition
(3.2), then for any τ ∈ (0, 1) the following inequality holds with constant c > 0
independent of f and τ :

‖Tf‖WLp( cB(0,τ)) ≤ cτ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt. (3.4)
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Proof. Let 1 ≤ p < ∞. Applying Hölder’s inequality, in view of the monotonicity
of ‖f‖Lp( cB(0,t)), we get that∫∫

B(0,τ)

|f(ζ)| dξdη =

∞∑
n=0

∫∫
B(0,2−nτ)\B(0,2−n−1τ)

|f(ζ)| dξdη

≤
∞∑
n=0

|B(0, 2−nτ)|
1
p′

(∫∫
B(0,2−nτ)\B(0,2−n−1τ)

|f(ζ)|p dξdη

) 1
p

.
∞∑
n=0

(2−nτ)
2
p′ ‖f‖Lp( cB(0,2−n−1τ))

≈
∞∑
n=0

‖f‖Lp( cB(0,2−n−1τ))

∫ 2−n−1τ

2−n−2τ

t
2
p′−1

dt

.
∞∑
n=0

∫ 2−n−1τ

2−n−2τ

t
2
p′−1‖f‖Lp( cB(0,t)) dt

=

∫ τ/2

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt for all τ ∈ (0, 1). (3.5)

Hence, if f satisfies condition (3.2), then f ∈ Lloc
1 (D). On the other hand,

condition (3.2) implies that f ∈ Lp(
c

B(0, τ)), τ ∈ (0, 1). Consequently, if f satisfies
condition (3.2), then f ∈ L1(D).

Assume that T is bounded on Lp(D) for 1 < p <∞ or T is bounded from Lp(D)
to WLp(D) for 1 ≤ p <∞. First we prove that in both cases Tf(z) exists for a.a.
z ∈ D and for any f satisfying condition (3.2).

Let τ ∈ (0, 1). We write f = f1 + f2 with f1 = fχ cB(0,τ/2) and f2 = fχB(0,τ/2).

By condition (3.2) it is clear that f ∈ Lp(
c

B(0, τ/2)), so that f1 ∈ Lp(D). Conse-
quently, the Lp(D)-boundedness of T in the case (i) or the boundedness of T from
Lp(D) to WLp(D) in the case (ii) implies the existence of Tf1(z) for a.a. z ∈ D.

Now we prove existence of Tf2(z) for all z ∈ c

B(0, τ). Since z ∈ c

B(0, τ),
ζ ∈ B(0, τ/2) implies |z − ζ| ≥ |z| − |ζ| ≥ (1/2)|z|, noting that f2 ∈ L1(D), in view
of condition (3.1), we obtain that

|Tf2(z)| . |z|−2

∫∫
B(0,τ)

|f(ζ)| dξdη, z ∈
c

B(0, τ). (3.6)

This proves the existence of Tf2(z) for all z ∈ c

B(0, τ). Sublinearity of T implies
that |Tf(z)| ≤ |Tf1(z)|+ |Tf2(z)|, and the existence of Tf(z) for a.e. z ∈ c

B(0, τ)
follows from the existence of Tf1(z) and Tf2(z) for a.e. z ∈ c

B(0, τ). Since
D\{0} =

⋃
τ∈(0,1)(

c

B(0, τ)), we get the existence of Tf(z) for a.e. z ∈ D.

(i) Let 1 < p <∞ and T is bounded on Lp(D). To prove (3.3), we note that

‖Tf‖Lp( cB(0,τ)) ≤ ‖Tf1‖Lp( cB(0,τ)) + ‖Tf2‖Lp( cB(0,τ)). (3.7)

The boundedness of T on Lp(D) implies that

‖Tf1‖Lp( cB(0,τ)) ≤ ‖Tf1‖Lp(D) . ‖f1‖Lp(D) ≈ ‖f‖Lp( cB(0,τ/2)). (3.8)

Since

‖f‖Lp( cB(0,τ/2)) . τ
− 2
p′

∫ τ/2

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt, (3.9)
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by inequality (3.8), we get that

‖Tf1‖Lp( cB(0,τ)) . τ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt. (3.10)

On the other hand, by (3.6), we have that

‖Tf2‖Lp( cB(0,τ)) =

(∫∫
cB(0,τ)

|Tf2(z)|p dxdy

) 1
p

.

(∫∫
cB(0,τ)

(
|z|−2

∫∫
B(0,τ)

|f(ζ)| dξdη

)p
dxdy

) 1
p

=

(∫∫
cB(0,τ)

|z|−2p dxdy

) 1
p
(∫∫

B(0,τ)

|f(ζ)| dξdη

)

. τ−
2
p′

(∫∫
B(0,τ)

|f(ζ)| dξdη

)
.

By inequality (3.5), we arrive at

‖Tf2‖Lp( cB(0,τ)) . τ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt. (3.11)

Combining inequalities (3.7), (3.10) and (3.11), we get (3.3).
(ii) Let 1 ≤ p < ∞ and T be bounded from Lp(D) to WLp(D). To prove (3.4), we
note that

‖Tf‖WLp( cB(0,τ)) ≤ ‖Tf1‖WLp( cB(0,τ)) + ‖Tf2‖WLp( cB(0,τ)). (3.12)

The boundedness of T from Lp(D) to WLp(D) implies that

‖Tf1‖WLp( cB(0,τ)) ≤ ‖Tf1‖WLp(D) . ‖f1‖Lp(D) ≈ ‖f‖Lp( cB(0,τ/2)). (3.13)

By inequalities (3.13) and (3.9), we get that

‖Tf1‖WLp( cB(0,τ)) . τ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt. (3.14)

On the other hand, by (3.6), we have that

‖Tf2‖WLp( cB(0,τ)) ≤ ‖|z|−2‖WLp( cB(0,τ))

∫∫
B(0,τ)

|f(ζ)| dξdη

≤ τ−
2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt. (3.15)

Combining inequalities (3.12), (3.14) and (3.15), we get (3.4).
The proof is completed. �

4. Boundedness in complementary local Morrey-type spaces

The following statements hold true.

Theorem 4.1. Let 0 < θ1, θ2 ≤ ∞ and ωi ∈
c

Ωθi , i = 1, 2. Assume that T is a
sublinear operator satisfying condition (3.1).

(i) Let 1 < p <∞ and T be bounded on Lp(D). If
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(a) 1 < θ1 ≤ θ2 <∞, and

sup
0<t<1

(∫ t

0

ωθ22 (τ) dτ

) 1
θ2
(∫ t

0

ωθ11 (τ) dτ

)− 1
θ1

<∞, (4.1)

sup
0<t<1

(∫ 1

t

ωθ22 (τ)τ
− 2θ2

p′ dτ

) 1
θ2

×

×
(∫ t

0

τ
2θ′1
p′

(∫ τ

0

ωθ11 (s) ds

)−θ′1
ωθ11 (τ) dτ

) 1
θ′1
<∞; (4.2)

(b) max{θ2, 1} < θ1 <∞, 1/r = 1/θ2 − 1/θ1, and(∫ 1

0

(∫ t

0

ωθ11 (τ) dτ

)− r
θ1
(∫ t

0

ωθ22 (τ) dτ

) r
θ1

ωθ22 (t) dt

) 1
r

<∞, (4.3)

(∫ 1

0

(∫ 1

t

ωθ22 (τ)τ
− 2θ2

p′ dτ

) r
θ1

×

×
(∫ t

0

τ
2θ′1
p′

(∫ τ

0

ωθ11 (s) ds

)−θ′1
ωθ11 (τ) dτ

)− r
θ′1
ωθ22 (t)t

− 2θ2
p′ dt

) 1
r

<∞; (4.4)

(c) θ2 < θ1 ≤ 1, 1/r = 1/θ2 − 1/θ1, (4.3) holds and(∫ 1

0

(
ess sup
τ∈(0,t)

τ
2θ1
p′

(∫ τ

0

ωθ11 (s) ds

)−1) r
θ1

×

×
(∫ 1

t

ωθ22 (τ)τ
− 2θ2

p′ dτ

) r
θ1

ωθ22 (t)t
− 2θ2

p′ dt

) 1
r

<∞; (4.5)

(d) θ1 ≤ min{θ2, 1} <∞ and

sup
0<t<1

(∫ t

0

ωθ11 (s) ds

)− 1
θ1

×

×
(∫ 1

0

(
min

{
τ

2
p′ , t

2
p′

})θ2
ωθ22 (τ)τ

− 2θ2
p′ dτ

) 1
θ2

<∞; (4.6)

(e) θ1 =∞, 0 < θ2 <∞, and(∫ 1

0

(∫ t

0

y
2
p′−1

dy

ess supτ∈(0,y) ω1(τ)

)θ2
ωθ22 (t) t

− 2θ2
p′ dt

) 1
θ2

<∞; (4.7)

(f) θ1 ≤ 1, θ2 =∞, and

ess sup
0<t<1

(∫ t

0

ωθ11 (τ) dτ

)− 1
θ1
(

ess sup
0<τ<1

min

{
τ

2
p′ , t

2
p′

}
ω2(τ)τ

− 2
p′

)
<∞; (4.8)

(g) 1 < θ1 <∞, θ2 =∞, and

ess sup
0<t<1

ω2(t)t
− 2
p′×

×
(∫ t

0

(∫ t

τ

y
2
p′−1

(∫ y

0

ωθ11 (s) ds

)−1

dy

)θ′1
ωθ11 (τ) dτ

) 1
θ′1
<∞; (4.9)
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(h) θ1 = θ2 =∞, and

ess sup
0<t<1

(∫ t

0

y
2
p′−1

dy

ess supτ∈(0,y) ω1(τ)

)
ω2(t)t

− 2
p′ <∞, (4.10)

then there exists a constant c > 0 such that the inequality

‖Tf‖ cLMpθ2,ω2
(D) ≤ c‖f‖ cLMpθ1,ω1

(D) (4.11)

holds for all f ∈ c

LMpθ1,ω1
(D).

(ii) Let 1 ≤ p < ∞ and T be bounded from Lp(D) to WLp(D). If conditions (a) -
(h) hold, then

‖Tf‖W cLMpθ2,ω2
(D) ≤ c‖f‖ cLMpθ1,ω1

(D) (4.12)

holds for all f ∈ c

LMpθ1,ω1(D) with constant c > 0 independent of f .

Proof.
(i) Let 1 < p < ∞, T be bounded on Lp(D) and conditions (a) - (h) hold. Assume

that f ∈ c

LMpθ1,ω1
(D). In view of Theorem 3.1, we have that

‖Tf‖ cLMpθ2,ω2
(D) =

∥∥ω2(τ)‖Tf‖Lp( cB(0,τ))

∥∥
Lθ2 (0,1)

.

∥∥∥∥ω2(τ)τ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt

∥∥∥∥
Lθ2 (0,1)

.

Since conditions (a) - (h) hold, applying Theorem 2.2, we arrive at

‖Tf‖ cLMpθ2,ω2
(D) ≤ c

∥∥ω1(t)‖f‖Lp( cB(0,t))

∥∥
Lθ1 (0,1)

= c ‖f‖ cLMpθ1,ω1
(D).

(ii) Let 1 ≤ p <∞, T be bounded from Lp(D) to WLp(D) and conditions (a) - (h)

hold. Assume that f ∈ c

LMpθ1,ω1
(D). In view of Theorem 3.1 and Theorem 2.2,

we arrive at

‖Tf‖W cLMpθ2,ω2
(D) .

∥∥∥∥ω2(τ)τ
− 2
p′

∫ τ

0

t
2
p′−1‖f‖Lp( cB(0,t)) dt

∥∥∥∥
Lθ2 (0,1)

= c ‖f‖ cLMpθ1,ω1
(D).

�

Corollary 4.2. Let 1 < p < ∞ and ωi ∈
c

Ωp, i = 1, 2. Assume that T is a
sublinear operator satisfying condition (3.1), bounded on Lp(D).

If conditions

sup
0<t<1

(∫ t

0

ωp2(τ) dτ

) 1
p
(∫ t

0

ωp1(τ) dτ

)− 1
p

<∞ (4.13)

and

sup
0<t<1

(∫ 1

t

τ2(1−p)ωp2(τ) dτ

) 1
p
(∫ t

0

(∫ τ

0

ωp1(s) ds

)−p′
τ2ωp1(τ) dτ

) 1
p′

<∞ (4.14)

hold, then
‖Tf‖Lp,ω̃2(|·|)(D) ≤ c‖f‖Lp,ω̃1(|·|)(D),

with constant c > 0 independent of f . Here

ω̃i(t) :=

∫ t

0

ωi(τ)p dτ, i = 1, 2. (4.15)
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Proof. The statement follows from Theorems 4.1 and 2.7 when θ1 = θ2 = p. �

5. Main results

As it is mentioned in the introduction, the operators Πk, k ∈ N are bounded
on Lp(D), 1 < p < ∞. Our main result in this paper is to extend these results to
complementary local Morrey-type spaces.

Theorem 5.1. Let k ∈ N, 1 < p <∞, 0 < θ1, θ2 ≤ ∞ and ωi ∈
c

Ωθi , i = 1, 2. If
(a) - (h) hold then there exists a constant c > 0 such that the inequality

‖Πkf‖ cLMpθ2,ω2
(D) ≤ c2‖f‖ cLMpθ1,ω1

(D)

holds for all f ∈ c

LMpθ1,ω1(D).

Proof. First we will show that the operator Πk satisfies condition (3.1). The in-
equality ∣∣∣∣ z − ζ1− zζ̄

∣∣∣∣ < 1 if |z| < 1 and |ζ| < 1 (5.1)

yields that

|Πkf(z)| ≤ |T−k,kf(z)|+ |Pkf(z)|

≤ k

π

∫∫
D

|f(ζ)|
|ζ − z|2

dξdη +
k

π

∫∫
D

∣∣∣∣ζ − z + ζ − z
1− zζ̄

ζ̄ − 1

∣∣∣∣k−1 |f(ζ)|
|1− zζ̄|2

dξdη

≤ k

π

∫∫
D

|f(ζ)|
|ζ − z|2

dξdη +
k

π

∫∫
D

(
2

∣∣∣∣ z − ζ1− zζ̄

∣∣∣∣ |ζ|+ 1

)k−1 |f(ζ)|
|1− zζ̄|2

dξdη

≤ k

π

∫∫
D

|f(ζ)|
|ζ − z|2

dξdη +
k3k−1

π

∫∫
D

|f(ζ)|
|1− zζ̄|2

dξdη

≤ k

π

∫∫
D

|f(ζ)|
|ζ − z|2

dξdη +
k3k−1

π

∫∫
D

|f(ζ)|
|ζ − z|2

dξdη

.
∫∫

D

|f(ζ)|
|ζ − z|2

dξdη

for any f ∈ c

LMpθ1,ω1(D) and z 6∈ supp f .
Since the operator Πk is bounded on Lp(D), by Theorem 4.1, we get that

‖Πkf‖ cLMpθ2,ω2
(D) ≤ c‖f‖ cLMpθ1,ω1

(D).

The proof is completed. �

In view of Theorem 2.7, by Theorem 5.1, we immediately get the following
statement:

Corollary 5.2. Let k ∈ N, 1 < p <∞ and ωi ∈
c

Ωp, i = 1, 2. If conditions (4.13)
and (4.14) hold then

‖Πkf‖Lp,ω̃2(|·|)(D) ≤ c‖f‖Lp,ω̃1(|·|)(D),

with constant c > 0 independent of f , where ω̃i , i = 1, 2 are defined by (4.15).

Proof. Since the operator Πk is bounded in Lp(D) and satisfies condition (3.1), the
statement of Corollary 5.2 follows from Theorem 4.1. �
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Since the function T̃1f is the solution of the Schwarz BVP

gz̄ = f in D, Re g = 0 on ∂D, Im g (0) = 0, (5.2)

when f ∈ L1(D), by Theorem 5.1 and Corollary 5.2, respectively, we get the fol-
lowing a priori estimates for the derivative of the solution of (5.2).

Theorem 5.3. Let 1 < p < ∞, 0 < θ1, θ2 ≤ ∞ and ωi ∈
c

Ωθi , i = 1, 2. If (a) -
(h) hold, then for the solution of (5.2) the inequality

‖∂zg‖ cLMpθ2,ω2
(D) ≤ c‖f‖ cLMpθ1,ω1

(D)

holds for all f ∈ c

LMpθ1,ω1
(D) with a constant c > 0 independent of f .

Corollary 5.4. Let 1 < p < ∞ and ωi ∈
c

Ωp, i = 1, 2. If conditions (4.13) and
(4.14) hold, then for the solution of (5.2) the inequality

‖∂zg‖Lp,ω̃2(|·|)(D) ≤ c‖f‖Lp,ω̃1(|·|)(D),

holds for all f ∈ Lp,ω̃1(|·|)(D) with a constant c > 0 independent of f , where ω̃i, i =
1, 2 are defined by (4.15).
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