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A NEW STUDY ON THE ABSOLUTE SUMMABILITY FACTORS
OF FOURIER SERIES

HIKMET SEYHAN OZARSLAN AND SEBNEM YILDIZ

ABSTRACT. In this paper, we establish a new theorem on | A,py, |, summa-
bility factors of Fourier series using matrix transformation, which generalizes
a main theorem of Bor [6] on |N ’p"|k summability factors of Fourier series.
Also some new results have been obtained.

1. INTRODUCTION AND PRELIMINARIES

Let 3" a, be a given infinite series with partial sums (s,). Let A = (an,) be a
normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A
defines the sequence-to-sequence transformation, mapping the sequence s = (s,) to
As = (An(s)), where

An(s) =Y anvsy, n=0,1,.. (1.1)
v=0

Let (pn) be a sequence of positive numbers such that

Pn:ZpU—M)o as n—oo, (P_,=p_;=0, i>1). (1.2)
v=0

The sequence-to-sequence transformation

1 &
On = P vaSU (13)
™ v=0

defines the sequence (o,,) of the (N, p,) mean of the sequence (s,), generated by
the sequence of coefficients (p,) (see [10]). The series ) a, is said to be summable
N, pn o k> 1, if (see [I])

oo k—1
> (j”) 1Ac,_1|* < oo (1.4)

n

n=1
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The series ) a, is said to be summable |A|, ,k > 1, if (see[14])
an_l ‘AAn(s)‘k < 00, (1.5)
n=1

and also it is said to be summable |A, p,|, ,k > 1, if (see [13])

i (Z)k_l A4, ()| < o0 (1.6)

n=1

where
AA,(s) = Ap(s) — Ap_1(s). (L.7)

If we set p, = 1 for alln, |A, p, |, summability is the same as | A|, summability. Also,
if we take @y, = py/Py, then |A[, summability is the same as |R, p,|, summability
(see [3]). In the special case, when we take ay, = p,/Py, then |A, p, |, summability
is the same as |N , pn’k summability.

A sequence (\,) is said to be convex if A2\, > 0 for every positive integer n, where
A%)\, = A(AN,) and AN, = A\, — Api1-

Let f(t) be a periodic function with period 27, and integrable (L) over (—m,).
Without any loss of generality we may assume that the constant term in the Fourier
series of f(t) is zero, so that

' f#®)dt=0 (1.8)

—T

and

M8

ft) ~ Y (apcosnt + bysinnt) = Z Cn(t). (1.9)

n=1

2. KNOWN RESULTS

Many works dealing with |N ,Pn|,. summability factors of Fourier series have
been done

(see [2], [4)-19], [11]-[12]). Among them, in [5], Bor has proved the following theorem
concerning the |N , pnfk summability factors of Fourier series.

Theorem 2.1. If (),) is a convex sequence such that > p, A, < 0o, where (py,) is
a sequence of positive numbers such that P,, — co asn — co and Y .'_, P,Cy(t) =

O(P,), then the series > Cy,(t) Py, Ay, is summable |N,pn|k, k> 1.

I

Later on, Bor [6] has proved the following theorem, the conditions on the se-
quence (A,) is more general than in Theorem 2.1.
Theorem 2.2. If (\,) is a non-negative and non-increasing sequence such that
> pnAn < 00, where (p,) is a sequence of positive numbers such that P, — oo
asn — oo and Y »_, P,Cy(t) = O(P,), then the series Y C,(t)P,\, is summable

|N7pn|ka k Z 1
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3. MAIN RESULT

The aim of this paper is to generalize Theorem 2.2 for absolute matrix summa-
bility.
Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix A = (a,,), we associate two lower semimatrices A = (G,)
and A = (Gny) as follows:

n
Apy = § api, n,v=0,1,.. (31)
1=
and
(oo = Qoo = G0, Ono = Gny — Gn—1,0, N =1,2,... (3.2)

It may be noted that A and A are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An<5> = ianvsv = idn'uav (33)
v=0 v=0

and
AAn(s) =Y anvay. (3.4)
v=0

Now, we shall prove the following theorem.
Theorem 3.1. If A = (a,,) is a positive normal matrix such that

Gno =1, n=0,1, ..., (3.5)

Ap—1,p > Qpy, for n>v+1, (3.6)

nn = O <sz> (3.7)

and all the conditions of Theorem 2.2 are satisfied, then the series > C,,(¢) P, Ay, is
summable A, p,|,., k> 1.

It should be noted that, if we take a,, = f;z in above theorem, then we get Theorem
2.2.

We need the following lemma for the proof of our theorem.

Lemma 3.2 ([6]). If (\,) is a non-negative and non-increasing sequence such
that > pn A, is convergent, where (p,,) is a sequence of positive numbers such that
P, — 0o as n — oo, then P, )\, = O(1) as n — oo and Y P, A\, < 0.

4. PROOF OF THEOREM 3.1

Let T,,(t) denotes the A-transform of the series > C),(t) P, A,. Then, by (12) and
(13), we have

AL(t) = ) anCu(t)Pu)y.

v=1
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Applying Abel’s transformation to this sum, we get that

AL(t) = ) amCu(t)PoAy
v=1

n—1 v n
= > Ay(@noro) Y PrCr(t) + annn Y PoCy(t)
v=1 r=1

v=1

n—1

= 0(1) > Ay(ansAo) Py + O()ann A Py

n—1 n—1
= 0(1) {Z Av(&nv)/\vpv + Z én,v+1A)\vPv + ann)\npn}

v=1 v=1

= OM){Ln1(t) + Ln2(t) + Ins(t)}
Since
|In,1(t) + In’2(t) + In,?:(t)lk < 3k(|In’1(t)|k + |In>2(t)|k + |In,3(t)|k)7
to complete the proof of Theorem 3.1, it is sufficient to show that
s p o\ k-l
> < ”) L, ()" < o0, for r=1,23. (3.8)

Pn

n=1

First, by applying Holder’s inequality with indices & and k', where & > 1 and
% + k—l, =1, we have that

§<Z>k_l|fn7l(t)|k = 0(1)m+1 (")H {§|Av(am)Avpv}k

"o Pn
m+1 P k—1 (n—1 n—1 k-1
- om . (5*) {DAU(&M)AﬁPf}x{ZmU(am,n}
n=2 Pn v=1 v=1
m+1 P k—1 n—1
= oY () ek It
n=2 Pn v=1
m m—+1
v=1 n=v+1
= 0(1))_ MPla,,
v=1
_ 1 k pk Pv.
O( )ZZIAU " P
= O(l)Z(Pv)\v)k_lpv/\v
v=1
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by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Now, using Hoélder’s inequality, we have that

g(i)k_lung(m’“ - 0<1>§(P")k_1{§|am+l|PM}
]

m+1 P k—1n—1
= <n> |an 1)+1‘ |dn,v+1‘R)A)\v
Pn v=1
m+1 P k—1
= (n Z |an 1)+1|R)A>\v
m—+1
= O(l) Z P’UAAU Z |&n,1)+1|
v=1 n=v+1

m
= 0(1) ZPUA/\U =0(1) as m — oo,
v=1
by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Finally, since P, A, = O(1) as n — 00, as in I, 1(t), we have that

m k—1 m k—1
S (2) inatF = omo () akairs
o1 \Pn 1 \Pn
m Pn k—1 D k -
= o1 )Z(P A) T padn
n=1

= O(1) as m — 0.

This completes the proof of Theorem 3.1.

4. CONCLUSIONS

Corollary 5.1. If we take p,, = 1 for all values of n in Theorem 3.1, then we
get a result for dealing with |A|; summability factors of Fourier series.
Corollary 5.2. If we take a,, = —: in Theorem 3.1, then we get Theorem 2.2.
Corollary 5.3. If we take a,, = P and p,, = 1 for all values of n in Theorem 3.1,
then we get a result concerning the |C, 1|, summability factors of Fourier series.
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