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A NEW STUDY ON THE ABSOLUTE SUMMABILITY FACTORS

OF FOURIER SERIES

HIKMET SEYHAN ÖZARSLAN AND ŞEBNEM YILDIZ

Abstract. In this paper, we establish a new theorem on | A, pn |k summa-

bility factors of Fourier series using matrix transformation, which generalizes
a main theorem of Bor [6] on

∣∣N̄, pn
∣∣
k

summability factors of Fourier series.
Also some new results have been obtained.

1. Introduction and Preliminaries

Let
∑
an be a given infinite series with partial sums (sn). Let A = (anv) be a

normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A
defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (1.1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (1.2)

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv (1.3)

defines the sequence (σn) of the (N̄ , pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [10]). The series

∑
an is said to be summable∣∣N̄ , pn∣∣k, k ≥ 1, if (see [1])

∞∑
n=1

(
Pn
pn

)k−1

|∆σn−1|k <∞. (1.4)
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The series
∑
an is said to be summable |A|k , k ≥ 1, if (see[14])

∞∑
n=1

nk−1
∣∣∆̄An(s)

∣∣k <∞, (1.5)

and also it is said to be summable |A, pn|k , k ≥ 1, if (see [13])

∞∑
n=1

(
Pn
pn

)k−1 ∣∣∆̄An(s)
∣∣k <∞ (1.6)

where

∆̄An(s) = An(s)−An−1(s). (1.7)

If we set pn = 1 for all n, |A, pn|k summability is the same as |A|k summability. Also,
if we take anv = pv/Pn, then |A|k summability is the same as |R, pn|k summability
(see [3]). In the special case, when we take anv = pv/Pn, then |A, pn|k summability

is the same as
∣∣N̄ , pn∣∣k summability.

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where
∆2λn = ∆(∆λn) and ∆λn = λn − λn+1.
Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π).
Without any loss of generality we may assume that the constant term in the Fourier
series of f(t) is zero, so that ∫ π

−π
f(t)dt = 0 (1.8)

and

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =

∞∑
n=1

Cn(t). (1.9)

2. KNOWN RESULTS

Many works dealing with
∣∣N̄ , pn∣∣k summability factors of Fourier series have

been done
(see [2], [4]-[9], [11]-[12]). Among them, in [5], Bor has proved the following theorem
concerning the

∣∣N̄ , pn∣∣k summability factors of Fourier series.

Theorem 2.1. If (λn) is a convex sequence such that
∑
pnλn <∞, where (pn) is

a sequence of positive numbers such that Pn →∞ as n→∞ and
∑n
v=1 PvCv(t) =

O(Pn), then the series
∑
Cn(t)Pnλn is summable

∣∣N̄ , pn∣∣k, k ≥ 1.

Later on, Bor [6] has proved the following theorem, the conditions on the se-
quence (λn) is more general than in Theorem 2.1.
Theorem 2.2. If (λn) is a non-negative and non-increasing sequence such that∑
pnλn < ∞, where (pn) is a sequence of positive numbers such that Pn → ∞

as n→∞ and
∑n
v=1 PvCv(t) = O(Pn), then the series

∑
Cn(t)Pnλn is summable∣∣N̄ , pn∣∣k, k ≥ 1.
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3. MAIN RESULT

The aim of this paper is to generalize Theorem 2.2 for absolute matrix summa-
bility.
Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv)

and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (3.1)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (3.2)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (3.3)

and

∆̄An(s) =

n∑
v=0

ânvav. (3.4)

Now, we shall prove the following theorem.
Theorem 3.1. If A = (anv) is a positive normal matrix such that

ano = 1, n = 0, 1, ..., (3.5)

an−1,v ≥ anv, for n ≥ v + 1, (3.6)

ann = O

(
pn
Pn

)
(3.7)

and all the conditions of Theorem 2.2 are satisfied, then the series
∑
Cn(t)Pnλn is

summable |A, pn|k, k ≥ 1.
It should be noted that, if we take anv = pv

Pn
in above theorem, then we get Theorem

2.2.
We need the following lemma for the proof of our theorem.
Lemma 3.2 ([6]). If (λn) is a non-negative and non-increasing sequence such
that

∑
pnλn is convergent, where (pn) is a sequence of positive numbers such that

Pn →∞ as n→∞, then Pnλn = O(1) as n→∞ and
∑
Pn∆λn <∞.

4. PROOF OF THEOREM 3.1
Let Tn(t) denotes the A-transform of the series

∑
Cn(t)Pnλn. Then, by (12) and

(13), we have

∆̄In(t) =

n∑
v=1

ânvCv(t)Pvλv.
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Applying Abel’s transformation to this sum, we get that

∆̄In(t) =

n∑
v=1

ânvCv(t)Pvλv

=

n−1∑
v=1

∆v(ânvλv)

v∑
r=1

PrCr(t) + ânnλn

n∑
v=1

PvCv(t)

= O(1)

n−1∑
v=1

∆v(ânvλv)Pv +O(1)annλnPn

= O(1)

{
n−1∑
v=1

∆v(ânv)λvPv +

n−1∑
v=1

ân,v+1∆λvPv + annλnPn

}
= O(1) {In,1(t) + In,2(t) + In,3(t)} .

Since

|In,1(t) + In,2(t) + In,3(t)|k ≤ 3k(|In,1(t)|k + |In,2(t)|k + |In,3(t)|k),

to complete the proof of Theorem 3.1, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1

|In,r(t)|k <∞, for r = 1, 2, 3. (3.8)

First, by applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′
= 1, we have that

m+1∑
n=2

(
Pn
pn

)k−1

|In,1(t)|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

|∆v(ânv)|λvPv

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

|∆v(ânv)|λkvP kv

}
×

{
n−1∑
v=1

|∆v(ânv)|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

|∆v(ânv)|λkvP kv

= O(1)

m∑
v=1

λkvP
k
v

m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

λkvP
k
v avv

= O(1)

m∑
v=1

λkvP
k
v

pv
Pv

= O(1)

m∑
v=1

(Pvλv)
k−1

pvλv

= O(1)

m∑
v=1

pvλv = O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Now, using Hölder’s inequality, we have that

m+1∑
n=2

(
Pn
pn

)k−1

|In,2(t)|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

|ân,v+1|kPv∆λv

}

×

{
n−1∑
v=1

Pv∆λv

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1 n−1∑
v=1

|ân,v+1|k−1|ân,v+1|Pv∆λv

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

|ân,v+1|Pv∆λv

= O(1)

m∑
v=1

Pv∆λv

m+1∑
n=v+1

|ân,v+1|

= O(1)

m∑
v=1

Pv∆λv = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Finally, since Pnλn = O(1) as n→∞, as in In,1(t), we have that

m∑
n=1

(
Pn
pn

)k−1

|In,3(t)|k = O(1)

m∑
n=1

(
Pn
pn

)k−1

aknnλ
k
nP

k
n

= O(1)

m∑
n=1

(
Pn
pn

)k−1(
pn
Pn

)k
λknP

k
n

= O(1)

m∑
n=1

(Pnλn)
k−1

pnλn

= O(1) as m→∞.

This completes the proof of Theorem 3.1.

4. CONCLUSIONS

Corollary 5.1. If we take pn = 1 for all values of n in Theorem 3.1, then we
get a result for dealing with |A|k summability factors of Fourier series.
Corollary 5.2. If we take anv = pv

Pn
in Theorem 3.1, then we get Theorem 2.2.

Corollary 5.3. If we take anv = pv
Pn

and pn = 1 for all values of n in Theorem 3.1,

then we get a result concerning the |C, 1|k summability factors of Fourier series.
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