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GALILEAN GEOMETRY OF CORRESPONDING SURFACES TO
PRODUCTION MODELS IN ECONOMICS

M. E. AYDIN1 AND S. A. SEPET2

Abstract. In this paper we study the curvature properties of the corresponding
surfaces in the Galilean 3-space G3 to some production models in economics such
as the generalized Cobb-Douglas, the generalized ACMS and the Allen production
functions. We classify such surfaces of null curvature in G3.

1. Introduction

In economics, a production function is a mathematical expression which denotes the
physical relations between the output generated by a firm, an industry or an economy
and the inputs that have been used. Explicitly, a production function is a map that
has non-vanishing first derivatives defined by

(1.1) f : Rn
+ −→ R+, (x1, x2, . . . , xn) 7−→ f (x1, x2, . . . , xn) ,

where f is the quantity of output, n is the number of inputs and x1, x2, . . . , xn are
the inputs (such as capital, labor, raw materials etc.).

Almost all economic theories presuppose a production function, either on the firm
level or the aggregate level. In this sense, the production function is one of the key
concepts of mainstream neoclassical theories. By assuming that the maximum output
technologically possible from a given set of inputs is achieved, economists using a
production function in analysis are abstracting from the engineering and managerial
problems inherently associated with a particular production process.

In order for the production functions to model economic reality, they are required to
have some properties (see e.g. [8, 31]). One of the most important of these properties
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is that the production function f is to be homogeneous, i.e. there exists a real number
p such that

(1.2) f (λx1, λx2, . . . , λxn) = λpf (x1, x2, . . . , xn) , λ ∈ R+,

which means that when the inputs are multiplied by the same factor, the output is
multiplied by some power of the factor.

If p < 1 (resp. p > 1) in (1.2), then the production function is said to have decreasing
(resp. increasing) return to scale. If p = 1, then it is said to have constant return to
scale.

The presence of increasing returns means that a one percent increase in the usage
levels of all inputs would result in a greater than one percent increase in output; the
presence of decreasing returns means that it would result in a less than one percent
increase in output. Constant returns to scale is the in-between case (cf. [11]).

For the production function given by (1.1), the elasticity of production with respect
to a certain factor xi is defined as

(1.3) Exi =
xi
f
fxi , fxi =

∂f

∂xi
, i ∈ {1, . . . , n} .

A. D. Vilcu and G. E. Vilcu [35] completely classified the homogeneous production
functions with constant proportional marginal rate of substitution.

The most famous production function is Cobb-Douglas (CD) production function,
introduced in 1928 by C. W. Cobb and P. H. Douglas [16]. In original form, it is given
as

Y = bLkC1−k,

where b presents the total factor productivity, Y the total production, L the labor
input and C the capital input.

The generalized CD production function of n variables is defined by

f (x1, x2, . . . , xn) = Axα1
1 x

α2
2 · · · xαnn ,

where A,α1, α2, . . . , αn > 0.
In 1961, K. J. Arrow, et al. [2] introduced a two-factor CES (constant elasticity of

substitution) production function given by

Y = A · (aKr + (1− a)Lr)
1
r ,

where Y is the output, A the factor productivity, a the share parameter, K and L
the primary production factors, r = (s− 1) /s and s = 1/ (1− r) is the elasticity of
substitution.

The generalized ACMS (or CES ) production function of n variables is given by

f (x1, x2, . . . , xn) = A (aρ1x
ρ
1 + aρ2x

ρ
2 + · · ·+ aρnx

ρ
n)

γ
p ,

where ρ 6= 0, ρ < 1, γ, A > 0, and αi > 0 for all i ∈ {1, . . . , n}.
Note that the generalized CD and the generalized ACMS production functions are

homogeneous of degree
∑n

i=1 αi and γ, respectively.
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The most common quantitative indices of production factor substitutability are
forms of the elasticity of substitution. R.G.D. Allen and J.R. Hicks [1] suggested two
generalizations of Hicks’ original two variable elasticity concept.

The first concept, called Hicks elasticity of substitution, is defined as follows.
Let f (x1, . . . , xn) be a production function. Then Hicks elasticity of substitution

of the i−th production variable with respect to the j−th production variable is given
by

Hij (x) = −

1

xifxi
+

1

xjfxj
fxixi
(fxi)

2 −
2fxixj
fxifxj

+
fxjxj(
fxj
)2 ,

where x = (x1, . . . , xn)∈Rn
+, i, j = 1, . . . , n, and i 6= j.

L. Losonczi [23] classified homogeneous production functions of 2 variables, having
constant Hicks elasticity of substitution. Then, the classification of L. Losonczi was
extended to n variables by B-Y. Chen [13].

The second concept, investigated by R.G.D. Allen and H. Uzawa [32], is the follow-
ing:

Let f (x1, . . . , xn) be a production function. Then the Allen elasticity of substitution
of the i−th production variable with respect to the j−th production variable is defined
by

Aij (x) = −x1fx1 + x2fx2 + · · ·+ xnfxn
xixj

Dij

D
, x ∈ Rn

+, i, j = 1, . . . , n, i 6= j,

where D is the determinant of the bordered Hessian matrix

H (f) =


0 fx1 · · · fxn
fx1 fx1x1 · · · fx1xn
...

... · · · ...
fxn fx1xn · · · fxnxn


and Dij is the co-factor of the element fxixj in the determinant D (D 6= 0 is as-
sumed). The authors in [6] called such matrices the Allen’s matrix and classified some
production functions by using the singularity of the Allen matrices [3–6].

It is a simple calculation to show that in the case of two variables Hicks elasticity
of substitution coincides with Allen elasticity of substitution.

In economics, goods that are completely substitutable with each other are called
perfect substitutes. Mathematically, a production function is a perfect substitute if it
is of the form:

f (x1, . . . , xn) =
n∑
i=1

aixi,

where a1, . . . , an are nonzero constants [15].
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On the other hand, G. E. Vilcu [33] established an interesting link between some
fundamental notions in the theory of production functions and the differential geome-
try of corresponding hypersurfaces to the graphs of such functions in the Euclidean
(n+ 1)−spaces En+1. The author proved that the generalized CD production func-
tion has constant return to scale if and only if the corresponding hypersurface is
developable. The author joint with A. D. Vilcu [34] generalized this result to the case
of the generalized CES production function.

Later, X. Wang and Y. Fu [36] obtained a non-existence result for flat graph
hypersurfaces of the generalized CD production functions and also proved that a
graph hypersurface of the generalized ACMS production function is minimal in En+1

if and only if it is a perfect substitute.
Most recently, B.-Y. Chen, et al. [10,17] investigated the graph hypersurfaces of the

production models via the isotropic geometry. For further study of graph hypersurfaces
of production functions we refer the reader to [3–6,9–15].

The present paper deals with the curvature properties of the corresponding surfaces
in the Galilean 3-space G3 to some production models in economics such as the
generalized CD, the generalized ACMS and the Allen production functions. We
classify such surfaces with null Gaussian and mean curvature in G3.

2. Basics on Galilean Geometry

For later use, we provide a brief review of Galilean geometry from [7,18,19,21,25,
27–30,37].

The Galilean geometry is one model of the real Cayley-Klein geometries which has
projective signature (0, 0,+,+). The absolute figure of the Galilean geometry is an
ordered triple {ω, f, I}, where ω is the ideal (absolute) plane, f a line in ω and I is
the fixed eliptic involution of the points of f . The homogeneous coordinates in G3 is
introduced in such a way that the ideal plane ω is given by x0 = 0, the ideal line f
by x0 = x1 = 0 and the elliptic involution by

(0 : 0 : x2 : x3) −→ (0 : 0 : x3 : −x2) .
By means of the affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x : y : z), the

similarity group H8 of the Galilean space G3 has the following form

x̄ = a+ bx

ȳ = c+ dx+ r (cos θ) y + r (sin θ) z

z̄ = e+ fx+ r (− sin θ) y + r (cos θ) z,

where a, b, c, d, e, f , r, and θ are real numbers. In particular, for b = r = 1, the
group becomes the group of isometries (proper motions), B6 ⊂ H8, of the Galilean
space G3.

A plane is called Euclidean if it contains f , otherwise it is called isotropic, i.e. the
planes x = c, where c is a constant, are Euclidean, in particular the plane ω. Other
planes are isotropic.
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We introduce the metric relations with respect to the absolute figure. The Galilean
distance between the points Pi = (ui, vi, wi), (i = 1, 2), is given by

d (P1, P2) =

{
|u2 − u1| , if u1 6= 0 or u2 6= 0,√

(v2 − v1)2 + (w2 − w1)
2, if u1 = 0 and u2 = 0.

TheGalilean scalar product between two vectorsX = (x1, x2, x3) andY = (y1, y2, y3)
is given by

X ·Y =

{
x1y1, if x1 6= 0 or y1 6= 0,
x2y2 + x3y3, if x1 = 0 and y1 = 0.

In this sense, the Galilean norm of a vector X is ‖X‖ =
√
X ·X. A vector X =

(x1, x2, x3) is called isotropic if x1 = 0, otherwise it is called non-isotropic.
The cross product in the sense of Galilean space is

X×G Y =

(
0,−

∣∣∣∣x1 x3
y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2
y1 y2

∣∣∣∣) .
Let D be an open subset of R2 and M2 a surface in G3 parameterized by

(2.1) r : D −→ G3, (u, v) 7−→ r (x, y) = (x, y, z (x, y)) ,

where z is a smooth and real-valued function on D. Such surfaces are well-known
Monge surfaces and always admissible (i.e. without Euclidean tangent planes).

The Gaussian curvature K and the mean curvature H of M2 in G3 are given by

(2.2) K =
zxxzyy − z2xy(
1 + (zy)

2)2 and H =
zyy

2
(
1 + (zy)

2) 3
2

.

A surface in G3 is said to be minimal (resp. flat) if its mean curvature (resp. Gaussian
curvature) vanishes.

Notice that a surface of the form (2.1) corresponds to the graph of the function
z (x, y) and it is flat if and only if the function z (x, y) satisfies the homogeneous
Monge-Ampère equation, i.e. zxxzyy − z2xy = 0.

3. Corresponding Surfaces to Production Functions

In this section, we focus on the curvature properties of the corresponding graph
surfaces to some production functions such as the CD, the ACMS, the Allen production
functions.

We consider such surfaces into separate subsections.

3.1. Corresponding surfaces to CD production functions. Let Q be a gener-
alized CD production function of 2 variables given by

(3.1) Q : R2
+ −→ R+, (k, l) 7−→ Q (k, l) = Akαlβ, A, α, β > 0,

where k and l respectively denotes the capital input and the labor input.
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From (3.1), the generalized CD production function has constant return to scale
if and only if α + β = 1. Further, it has increasing return to scale (resp. decreasing
return to scale) if and only if α + β > 1 (resp. α + β < 1).

For the generalized CD production given by (3.1), the elasticities of production
with respect to k and l are respectively

(3.2) Ek =
∂Q/∂k

Q/k
= α and El =

∂Q/∂l

Q/l
= β.

The corresponding graph surface in G3 to the generalized CD production function
is parameterized by

r (k, l) =
(
k, l, Akαlβ

)
,

which called Cobb-Douglas (CD) surface.
The Gaussian curvature of the CD surface is of the form

(3.3) K =
Q2αβ

k2l2
1− (α + β)(
1 +

(
β
l
Q
)2)2 .

From (3.3), if the CD surface has vanishing Gaussian curvature (K = 0), then Q has
constant return to scale. Moreover, the last equality implies that Q has increasing
return to scale (resp. decreasing return to scale) if and only if the CD surface has
negative (resp. positive) the Gaussian curvature.

Theorem 3.1. For a generalized CD production function Q, we have the following:
(A) Q has constant return to scale if and only if the CD surface has vanishing

Gaussian curvature in G3,
(B) Q has increasing return to scale (resp. decreasing return to scale) if and only

if the CD surface has negative (resp. positive) Gaussian curvature in G3.

Remark 3.1. Theorem 3.1 is the Galilean version of the Theorem 3.1 of [33]. Also
statement (A) of Theorem 3.1 is a special case of the Theorem A of [14].

Now we investigate the minimality of the CD surfaces in G3. For this purpose, the
mean curvature of the CD surface is given by

(3.4) H =
Aβ (β − 1) kαlβ−2

2
(

1 +
(
β
l
Q
)2) 3

2

.

If the CD surface is minimal, then we have from (3.4), β = 1. This yields from (3.2)
that the generalized CD production function has constant elasticity of production 1
with respect to the input l.

Also, it follows from (3.4) that the CD surface has positive (resp. negative) mean
curvature if and only if the generalized CD production function has constant elasticity
of production El < 1 (resp. El > 1) with respect to the input l.

Theorem 3.2. For a generalized CD production function Q, we have the following
statements:
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(A) Q has constant elasticity of production El = 1 with respect to the labor input
if and only if the corresponding CD surface in G3 is minimal;

(B) Q has constant elasticity of production El = β, 0 < β < 1 (resp. β > 1) with
respect to the labor input if and only if the corresponding CD surface G3 has
positive (resp. negative) mean curvature.

A minimal CD surface corresponds to the generalized CD production function of
the form Q (k, l) = Akαl. So it always has the increasing return to scale since α > 0.

Corollary 3.1. A generalized CD production function has always increasing return
to scale if the corresponding CD surface in G3 is minimal.

Remark 3.2. X. Wang and Y. Fu [36] obtained a non-existence result for the minimal
CD hypersurfaces in En+1. In our framework, this does not hold, i.e. there exist
minimal CD surfaces in G3.

Remark 3.3. Since α, β > 0 for a generalized CD production function, there does not
exist a CD surface of both curvature 0 in G3.

3.2. Corresponding surfaces to ACMS production functions. The generalized
form of the ACMS production function depending on 2−inputs is given by

Q : R2
+ −→ R+, (k, l) 7−→ Q (k, l) = A (αρkρ + βρlρ)

γ
ρ ,

where A > 0, ρ < 1, ρ 6= 0, α, β, γ > 0 and k, l are the capital input and the labor
input, respectively.

Since the generalized ACMS production function Q is homogeneous of degree γ,
the elasticity of scale of Q is γ.

The corresponding surface to the generalized ACMS production function is of the
form

r (k, l) =
(
k, l, A (αρkρ + βρlρ)

γ
ρ

)
,

which we call ACMS surface.
The Gaussian curvature of such a surface is of the form

(3.5) K =
A2γ2aρβρ (kl)ρ−2 (ρ− 1) (αρkρ + βρlρ)2

γ
ρ
−2 (γ − 1)(

1 +
(
Aγβρlρ−1 (αρkρ + βρlρ)

γ
ρ
−1
)2)2 .

From (3.5), we get the following result.

Theorem 3.3. For a generalized ACMS production function Q, we have the following:
(A) Q has constant return to scale if and only if the ACMS surface has vanishing

Gaussian curvature (K = 0) in G3,
(B) Q has increasing return to scale (resp. decreasing return to scale) if and only

if the ACMS surface has negative (positive) the Gaussian curvature in G3.

Remark 3.4. Theorem 3.3 is the Galilean version of the Theorem 3.2 of [34]. Also
statement (A) of Theorem 3.3 is a special case of Theorem A of [14].
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The mean curvature of the ACMS surface is

(3.6) H =
Aγβρlρ−2 (αρkρ + βρlρ)

γ
ρ
−2 ((ρ− 1)αρkρ + (γ − 1) βρlρ)

2

(
1 +

(
Aγβρlρ−1 (αρkρ + βρlρ)

γ
ρ
−1
)2) 3

2

.

Considering (3.6) gives that the ACMS surface is minimal if and only if ρ = γ = 1.
This yields that the generalized ACMS production function is a perfect substitute, i.e.
is the form of

Q (k, l) = α1k + α2l

for some positive constants α1, α2. Therefore we have the following.

Theorem 3.4. A generalized ACMS production function is a perfect substitute if and
only if the ACMS surface in G3 is minimal.

From (3.6), if γ < 1 then the ACMS surface has negative mean curvature since
ρ < 1. Hence the next result can be given.

Corollary 3.2. A generalized ACMS production function has decreasing return to
scale if and only if the ACMS surface has negative mean curvature.

3.3. Corresponding surfaces to Allen production functions. An Allen produc-
tion function with 2−inputs is defined by [20]

(3.7) Q : R2
+ −→ R+, (k, l) 7−→ Q (k, l) = A

(
αk2 + 2βkl + γl2

) 1
2 ,

where A,α, β, γ > 0, and k and l respectively denotes the capital input and the labor
input.

The corresponding surface to the Allen production function is of the form

r (k, l) =
(
k, l, A

(
αk2 + 2βkl + γl2

) 1
2

)
,

which we call Allen surface.

Remark 3.5. Note that the Allen production function Q is homogeneous of degree
1 and has constant return to scale. Moreover it is easily seen that Q satisfies the
homogeneous Monge-Ampère equation QkkQll −Q2

kl = 0 and thus the Allen surface
in G3 is flat.

Now, let us assume that the Allen surface is minimal in G3. Thus, we derive from
(2.2)

0 =
(αγ − β2) k2

αk2 + 2βkl + γl2

and αγ − β2 = 0. Then it follows from (3.7) that the Allen production function Q
can be rewritten as

Q (k, l) = A (λx+ µy) , λ, µ > 0,

which yields that Q is a perfect substitute.
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Theorem 3.5. An Allen production function is a perfect substitute if and only if the
corresponding surface is minimal in G3.
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