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We study the continuity properties of the generalized fractional integral operator 𝐼
𝜌
on the generalized local Morrey spaces 𝐿𝑀{𝑥0}

𝑝,𝜑

and generalized Morrey spaces𝑀
𝑝,𝜑

. We find conditions on the triple (𝜑
1
, 𝜑

2
, 𝜌) which ensure the Spanne-type boundedness of 𝐼

𝜌

from one generalized local Morrey space 𝐿𝑀
{𝑥0}

𝑝,𝜑1
to another 𝐿𝑀{𝑥0}

𝑞,𝜑2
, 1 < 𝑝 < 𝑞 < ∞, and from 𝐿𝑀

{𝑥0}

1,𝜑1
to the weak space𝑊𝐿𝑀

{𝑥0}

𝑞,𝜑2
,

1 < 𝑞 < ∞. We also find conditions on the pair (𝜑, 𝜌) which ensure the Adams-type boundedness of 𝐼
𝜌
from 𝑀

𝑝,𝜑1/𝑝
to 𝑀

𝑞,𝜑1/𝑞
for

1 < 𝑝 < 𝑞 < ∞ and from 𝑀
1,𝜑

to 𝑊𝑀
𝑞,𝜑1/𝑞

for 1 < 𝑞 < ∞. In all cases the conditions for the boundedness of 𝐼
𝜌
are given in terms

of Zygmund-type integral inequalities on (𝜑
1
, 𝜑

2
, 𝜌) and (𝜑, 𝜌), which do not assume any assumption on monotonicity of 𝜑

1
(𝑥, 𝑟),

𝜑
2
(𝑥, 𝑟), and 𝜑(𝑥, 𝑟) in 𝑟.

1. Introduction

The theory of boundedness of classical operators of the real
analysis, such as the maximal operator, Riesz potential, and
the singular integral operators, from one weighted Lebesgue
space to another one is well studied by now. Along with
weighted Lebesgue spaces, Morrey-type spaces also play an
important role in the theory of partial differential equations.
Morrey spaces were first introduced by Morrey [1] in 1938 to
study local behavior properties of the solutions of second-
order elliptic partial differential equations. Furthermore,
there are important applications for the theory of partial
differential equations related to obtaining sharp a priori
estimates and studying regularity properties of solutions in
Morrey spaces. Recently, they proved to be useful also for
the Navier-Stokes equations [2, 3]. However no attempt has
been made to extend these results by using more generalized
Morrey-type spaces. For example, sharp regularity properties
of strong solutions to elliptic and parabolic equations with
VMO coefficients in terms of general Morrey-type spaces are
a good place to start the investigation.

For 𝑥 ∈ R𝑛 and 𝑟 > 0, we denote by 𝐵(𝑥, 𝑟) the
open ball centered at 𝑥 of radius 𝑟 and by ∁

𝐵(𝑥, 𝑟) denote its
complement. Let |𝐵(𝑥, 𝑟)| be the Lebesguemeasure of the ball
𝐵(𝑥, 𝑟).

Let 𝑓 ∈ 𝐿
loc
1
(R𝑛

). The fractional maximal operator 𝑀𝛼

and the Riesz potential 𝐼𝛼 are defined by

𝑀𝛼𝑓 (𝑥) = sup
𝑡>0

|𝐵 (𝑥, 𝑡)|
−1+𝛼/𝑛

∫
𝐵(𝑥,𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦, 0 ≤ 𝛼 < 𝑛,

𝐼𝛼𝑓 (𝑥) = ∫
R𝑛

𝑓 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
, 0 < 𝛼 < 𝑛.

(1)

If 𝛼 = 0, then 𝑀 ≡ 𝑀0 is the Hardy-Littlewood maximal
operator.

For a measurable function 𝜌 : (0,∞) → (0,∞) the gen-
eralized Riesz potential 𝐼𝜌 is defined by

𝐼𝜌𝑓 (𝑥) = ∫
R𝑛

𝜌 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛 𝑓 (𝑦) 𝑑𝑦 (2)
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for any suitable function 𝑓 on R𝑛. If 𝜌(𝑡) ≡ 𝑡
𝛼, 0 < 𝛼 < 𝑛,

then we get the Riesz potential operator 𝐼𝛼.
The generalized fractional integral operator 𝐼𝜌 was ini-

tially investigated in [4–6]. Nowadays many authors have
been culminating important observations about 𝐼𝜌 especially
in connection with Morrey spaces. Nakai [6] proved the
boundedness of 𝐼𝜌 from the generalized Morrey spaces𝑀1,𝜑1

to the spaces 𝑀1,𝜑2
for suitable functions 𝜑1, 𝜑2 satisfying

the doubling condition. The boundedness of 𝐼𝜌 from the
generalized Morrey spaces 𝑀𝑝,𝜑1

to the spaces 𝑀𝑞,𝜑2
is

studied by Eridani [7], Gunawan [8], Eridani et al. [9], Nakai
[10], and Eridani et al. [11]. Guliyev [12] proved the Spanne-
and Adams-type boundedness of 𝐼𝛼 in the spaces 𝑀𝑝,𝜑(R

𝑛
)

without any assumption on monotonicity of 𝜑.
In this study, by using the method given by Guliyev in

[13] (see also [12, 14]), we prove the Spanne-type boundedness
of the operator 𝐼𝜌 from one generalized local Morrey space
𝐿𝑀

{𝑥0}

𝑝,𝜑1
to another one 𝐿𝑀

{𝑥0}

𝑞,𝜑2
, 1 < 𝑝 < 𝑞 < ∞, and from

𝐿𝑀
{𝑥0}

1,𝜑1
to the weak space 𝑊𝐿𝑀

{𝑥0}

𝑞,𝜑2
, 1 < 𝑞 < ∞. We also

prove the Adams-type boundedness of the operator 𝐼𝜌 from
generalized Morrey space 𝑀

𝑝,𝜑1/𝑝
to another one 𝑀

𝑞,𝜑1/𝑞
for

1 < 𝑝 < 𝑞 < ∞ and from𝑀1,𝜑 to𝑊𝑀
𝑞,𝜑1/𝑞

for 1 < 𝑞 < ∞.
By 𝐴 ≲ 𝐵 we mean that 𝐴 ≤ 𝐶𝐵 with some positive

constant 𝐶 independent of appropriate quantities. If 𝐴 ≲ 𝐵

and 𝐵 ≲ 𝐴, we write 𝐴 ≈ 𝐵 and say that 𝐴 and 𝐵 are
equivalent.

2. Generalized Local Morrey Spaces 𝐿𝑀
{𝑥0}

𝑝,𝜑

Wefind it convenient to define the generalizedMorrey spaces
in the form as follows.

Definition 1. Let 𝜑(𝑥, 𝑟) be a positive measurable function on
R𝑛

× (0,∞) and 1 ≤ 𝑝 < ∞. We denote by𝑀𝑝,𝜑 ≡ 𝑀𝑝,𝜑(R
𝑛
)

the generalized Morrey space, the space of all functions 𝑓 ∈

𝐿
loc
𝑝
(R𝑛

) with finite quasinorm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝑝,𝜑

= sup
𝑥∈R𝑛,𝑟>0

𝜑 (𝑥, 𝑟)
−1

|𝐵 (𝑥, 𝑟)|
−1/𝑝 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥,𝑟))
. (3)

Also by 𝑊𝑀𝑝,𝜑 ≡ 𝑊𝑀𝑝,𝜑(R
𝑛
) we denote the weak general-

ized Morrey space of all functions 𝑓 ∈ 𝑊𝐿
loc
𝑝
(R𝑛

) for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑀𝑝,𝜑

= sup
𝑥∈R𝑛,𝑟>0

𝜑 (𝑥, 𝑟)
−1

|𝐵 (𝑥, 𝑟)|
−1/𝑝 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿𝑝(𝐵(𝑥,𝑟))

< ∞.

(4)

According to this definition, we recover the Morrey
space 𝑀𝑝,𝜆 and weak Morrey space 𝑊𝑀𝑝,𝜆 under the choice
𝜑(𝑥, 𝑟) = 𝑟

(𝜆−𝑛)/𝑝:

𝑀𝑝,𝜆 = 𝑀𝑝,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(𝑥,𝑟)=𝑟(𝜆−𝑛)/𝑝
,

𝑊𝑀𝑝,𝜆 = 𝑊𝑀𝑝,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(𝑥,𝑟)=𝑟(𝜆−𝑛)/𝑝
.

(5)

Definition 2. Let 𝜑(𝑥, 𝑟) be a positive measurable function
on R𝑛

× (0,∞) and 1 ≤ 𝑝 < ∞. We denote by 𝐿𝑀𝑝,𝜑 ≡

𝐿𝑀𝑝,𝜑(R
𝑛
) the generalized local (central) Morrey space, the

space of all functions 𝑓 ∈ 𝐿
loc
𝑝
(R𝑛

) with finite quasinorm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑀𝑝,𝜑

= sup
𝑟>0

𝜑 (0, 𝑟)
−1

|𝐵 (0, 𝑟)|
−1/𝑝 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(0,𝑟))
. (6)

Also by 𝑊𝐿𝑀𝑝,𝜑 ≡ 𝑊𝐿𝑀𝑝,𝜑(R
𝑛
) we denote the weak gen-

eralized local (central) Morrey space of all functions 𝑓 ∈

𝑊𝐿
loc
𝑝
(R𝑛

) for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝐿𝑀𝑝,𝜑

= sup
𝑟>0

𝜑 (0, 𝑟)
−1

|𝐵 (0, 𝑟)|
−1/𝑝 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿𝑝(𝐵(0,𝑟))
< ∞.

(7)

Definition 3. Let 𝜑(𝑥, 𝑟) be a positive measurable function on
R𝑛

× (0,∞) and 1 ≤ 𝑝 < ∞. For any fixed 𝑥0 ∈ R𝑛 we denote
by 𝐿𝑀

{𝑥0}

𝑝,𝜑
≡ 𝐿𝑀

{𝑥0}

𝑝,𝜑
(R𝑛

) the generalized local Morrey space,
the space of all functions 𝑓 ∈ 𝐿

loc
𝑝
(R𝑛

) with finite quasinorm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

𝑝,𝜑

=
󵄩󵄩󵄩󵄩𝑓(𝑥0 + ⋅)

󵄩󵄩󵄩󵄩𝐿𝑀𝑝,𝜑
. (8)

Also by𝑊𝐿𝑀
{𝑥0}

𝑝,𝜑
≡ 𝑊𝐿𝑀

{𝑥0}

𝑝,𝜑
(R𝑛

)we denote the weak gener-
alized local Morrey space of all functions 𝑓 ∈ 𝑊𝐿

loc
𝑝
(R𝑛

) for
which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝐿𝑀

{𝑥0}

𝑝,𝜑

=
󵄩󵄩󵄩󵄩𝑓(𝑥0 + ⋅)

󵄩󵄩󵄩󵄩𝑊𝐿𝑀𝑝,𝜑
< ∞. (9)

According to this definition, we recover the local Morrey
space 𝐿𝑀

{𝑥0}

𝑝,𝜆
and weak local Morrey space 𝑊𝐿𝑀

{𝑥0}

𝑝,𝜆
under

the choice 𝜑(𝑥0, 𝑟) = 𝑟
(𝜆−𝑛)/𝑝:

𝐿𝑀
{𝑥0}

𝑝,𝜆
= 𝐿𝑀

{𝑥0}

𝑝,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(𝑥0 ,𝑟)=𝑟
(𝜆−𝑛)/𝑝

,

𝑊𝐿𝑀
{𝑥0}

𝑝,𝜆
= 𝑊𝐿𝑀

{𝑥0}

𝑝,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(𝑥0 ,𝑟)=𝑟
(𝜆−𝑛)/𝑝

.

(10)

Furthermore, we have the following embeddings:

𝑀𝑝,𝜑 ⊂ 𝐿𝑀
{𝑥0}

𝑝,𝜑
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

𝑝,𝜑

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀𝑝,𝜑
,

𝑊𝑀𝑝,𝜑 ⊂ 𝑊𝐿𝑀
{𝑥0}

𝑝,𝜑
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝐿𝑀

{𝑥0}

𝑝,𝜑

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝑀𝑝,𝜑
.

(11)

Wiener [15, 16] looked for a way to describe the behavior
of a function at infinity. The conditions he considered are
related to appropriate weighted 𝐿𝑞 spaces. Beurling [17]
extended this idea and defined a pair of dual Banach spaces
𝐴𝑞 and𝐵𝑞󸀠 , where 1/𝑞+1/𝑞

󸀠
= 1. To be precise,𝐴𝑞 is a Banach

algebra with respect to the convolution, expressed as a union
of certain weighted 𝐿𝑞 spaces; the space 𝐵𝑞󸀠 is expressed as
the intersection of the corresponding weighted 𝐿𝑞󸀠 spaces.
Feichtinger [18] observed that the space 𝐵𝑞 can be described
by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑞

= sup
𝑘≥0

2
−𝑘𝑛/𝑞 󵄩󵄩󵄩󵄩𝑓𝜒𝑘

󵄩󵄩󵄩󵄩𝐿𝑞(R
𝑛)
, (12)

where 𝜒0 is the characteristic function of the unit ball {𝑥 ∈

R𝑛
: |𝑥| ≤ 1}, 𝜒𝑘 is the characteristic function of the annulus
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{𝑥 ∈ R𝑛
: 2

𝑘−1
< |𝑥| ≤ 2

𝑘
}, 𝑘 = 1, 2, . . .. By duality, the space

𝐴𝑞(R
𝑛
), called Beurling algebra now, can be described by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐴𝑞

=

∞

∑

𝑘=0

2
−𝑘𝑛/𝑞

󸀠 󵄩󵄩󵄩󵄩𝑓𝜒𝑘
󵄩󵄩󵄩󵄩𝐿𝑞(R

𝑛)
. (13)

Let 𝐵̇𝑞(R
𝑛
) and 𝐴̇𝑞(R

𝑛
) be the homogeneous versions of

𝐵𝑞(R
𝑛
) and 𝐴𝑞(R

𝑛
) by taking 𝑘 ∈ Z in (42) and (13) instead

of 𝑘 ≥ 0 there.
If 𝜆 < 0 or 𝜆 > 𝑛, then 𝐿𝑀

{𝑥0}

𝑝,𝜆
(R𝑛

) = Θ, whereΘ is the set
of all functions equivalent to 0 onR𝑛. Note that 𝐿𝑀𝑝,0(R

𝑛
) =

𝐿𝑝(R
𝑛
) and 𝐿𝑀𝑝,𝑛(R

𝑛
) = 𝐵̇𝑝(R

𝑛
):

𝐵̇𝑝,𝜇 = 𝐿𝑀𝑝,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(0,𝑟)=𝑟𝑛+𝑛𝑝𝜇
,

𝑊𝐵̇𝑝,𝜇 = 𝑊𝐿𝑀𝑝,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(0,𝑟)=𝑟𝑛+𝑛𝑝𝜇
,

𝜇 ∈ [−
1

𝑝
, 0] .

(14)

In order to study the relationship between central 𝐵𝑀𝑂

spaces and Morrey spaces, Alvárez et al. [19] introduced 𝜆-
central bounded mean oscillation spaces and central Morrey
spaces 𝐵̇𝑝,𝜇(R

𝑛
) ≡ 𝐿𝑀𝑝,𝑟𝑛+𝑛𝑝𝜇(R

𝑛
), 𝜇 ∈ [−1/𝑝, 0]. If 𝜇 < −1/𝑝

or 𝜇 > 0, then 𝐵̇𝑝,𝜇(R
𝑛
) = Θ. Note that 𝐵̇𝑝,−1/𝑝(R

𝑛
) = 𝐿𝑝(R

𝑛
)

and 𝐵̇𝑝,0(R
𝑛
) = 𝐵̇𝑝(R

𝑛
). Also define the weak central Morrey

spaces 𝑊𝐵̇𝑝,𝜇(R
𝑛
) ≡ 𝑊𝐿𝑀𝑝,𝑛+𝑛𝑝𝜇(R

𝑛
).

The classical result by Hardy-Littlewood-Sobolev states
that if 1 < 𝑝 < 𝑞 < ∞, then the operator 𝐼𝛼 is bounded
from 𝐿𝑝(R

𝑛
) to 𝐿𝑞(R

𝑛
) if and only if 𝛼 = 𝑛(1/𝑝 − 1/𝑞) and

for 𝑝 = 1 < 𝑞 < ∞, the operator 𝐼𝛼 is bounded from 𝐿1(R
𝑛
)

to𝑊𝐿𝑞(R
𝑛
) if and only if 𝛼 = 𝑛(1 − 1/𝑞). Spanne and Adams

studied boundedness of the Riesz potential in Morrey spaces.
Their results can be summarized as follows.

Theorem 4 (Spanne, but published by Peetre [20]). Let 0 <

𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, and 0 < 𝜆 < 𝑛 − 𝛼𝑝. Moreover, let
1/𝑝 − 1/𝑞 = 𝛼/𝑛 and 𝜆/𝑝 = 𝜇/𝑞. Then, for 𝑝 > 1, the operator
𝐼𝛼 is bounded from𝑀𝑝,𝜆 to𝑀𝑞,𝜇 and, for 𝑝 = 1, 𝐼𝛼 is bounded
from 𝑀1,𝜆 to 𝑊𝑀𝑞,𝜇.

Theorem 5 (Adams [21]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼,
0 < 𝜆 < 𝑛 − 𝛼𝑝, and 1/𝑝 − 1/𝑞 = 𝛼/(𝑛 − 𝜆). Then, for 𝑝 > 1,
the operator 𝐼𝛼 is bounded from 𝑀𝑝,𝜆 to 𝑀𝑞,𝜆 and, for 𝑝 = 1,
𝐼𝛼 is bounded from 𝑀1,𝜆 to 𝑊𝑀𝑞,𝜆.

Some authors [8, 12, 22–25] generalized Theorems 4 and
5 to generalized Morrey spaces and called them Spanne-type
and Adams-type results for 𝐼𝛼.

In [23] the following condition was imposed on 𝜑(𝑥, 𝑟):

𝑐
−1
𝜑 (𝑥, 𝑟) ≤ 𝜑 (𝑥, 𝑡) ≤ 𝑐𝜑 (𝑥, 𝑟) (15)

whenever 𝑟 ≤ 𝑡 ≤ 2𝑟, where 𝑐 ≥ 1 does not depend on 𝑡, 𝑟
and 𝑥 ∈ R𝑛, jointly with the condition

∫

∞

𝑟

𝑡
𝛼𝑝

𝜑 (𝑥, 𝑡)
𝑝 𝑑𝑡

𝑡
≤ 𝐶𝑟

𝛼𝑝
𝜑 (𝑥, 𝑟)

𝑝
, (16)

where 𝐶 > 0 does not depend on 𝑟 and 𝑥 ∈ R𝑛.

In [23] the following Spanne-type result was proved for 𝐼𝛼
on𝑀𝑝,𝜑.

Theorem 6. Let 1 < 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, 1/𝑞 = 1/𝑝 −

𝛼/𝑛, and 𝜑(𝑥, 𝑟) satisfy the conditions (15) and (16). Then the
operator 𝐼𝛼 is bounded from 𝑀𝑝,𝜑 to 𝑀𝑞,𝜑.

The following Spanne-type result for 𝐼𝛼 on 𝐿𝑀
{𝑥0}

𝑝,𝜑
, con-

taining results obtained in [23, 26], was proved in [12, 13] (see
also [14]).

Theorem 7. Let 𝑥0 ∈ R𝑛, 1 ≤ 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, 1/𝑞 =

1/𝑝 − 𝛼/𝑛, and (𝜑1, 𝜑2) satisfy the condition

∫

∞

𝑡

𝑟
𝛼
𝜑1 (𝑥0, 𝑟)

𝑑𝑟

𝑟
≤ 𝐶𝜑2 (𝑥0, 𝑡) , (17)

where 𝐶 does not depend on 𝑥0 and 𝑡. Then the operator 𝐼𝛼 is
bounded from 𝐿𝑀

{𝑥0}

𝑝,𝜑1
to 𝐿𝑀

{𝑥0}

𝑞,𝜑2
for 𝑝 > 1 and from 𝐿𝑀

{𝑥0}

1,𝜑1
to

𝑊𝐿𝑀
{𝑥0}

𝑞,𝜑2
for 𝑝 = 1.

FromTheorem 7 we get the following Spanne-type result
for 𝐼𝛼 on𝑀𝑝,𝜑.

Corollary 8. Let 1 ≤ 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, 1/𝑞 = 1/𝑝 − 𝛼/𝑛,
and (𝜑1, 𝜑2) satisfy the condition

∫

∞

𝑡

𝑟
𝛼
𝜑1 (𝑥, 𝑟)

𝑑𝑟

𝑟
≤ 𝐶𝜑2 (𝑥, 𝑡) , (18)

where 𝐶 does not depend on 𝑥 and 𝑡. Then the operator 𝐼𝛼 is
bounded from 𝑀𝑝,𝜑1

to 𝑀𝑞,𝜑2
for 𝑝 > 1 and from 𝑀1,𝜑1

to
𝑊𝑀𝑞,𝜑2

for 𝑝 = 1.

The following Spanne-type result for 𝐼𝛼 on𝑀𝑝,𝜑, contain-
ing results obtained in [12], was proved in [27].

Theorem 9. Let 1 ≤ 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, 1/𝑞 = 1/𝑝 − 𝛼/𝑛,
and (𝜑1, 𝜑2) satisfy the condition

∫

∞

𝑡

ess inf𝑟<𝑠<∞𝜑1 (𝑥, 𝑠) 𝑠
𝑛/𝑞

𝑟𝑛/𝑞+1
𝑑𝑟 ≤ 𝐶𝜑2 (𝑥, 𝑡) ,

(19)

where 𝐶 does not depend on 𝑥 and 𝑡. Then the operator 𝐼𝛼 is
bounded from 𝑀𝑝,𝜑1

to 𝑀𝑞,𝜑2
for 1 < 𝑝 < 𝑞 < ∞ and from

𝑀1,𝜑1
to 𝑊𝑀𝑞,𝜑2

for 1 < 𝑞 < ∞.

3. Some Weighted Inequalities

Let V be a nonnegative function on (0,∞). We denote by
𝐿∞,V(0,∞) the space of all functions 𝑔(𝑡), 𝑡 > 0, with finite
norm

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿∞,V(0,∞)

= sup
𝑡>0

V (𝑡) 󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨 (20)

and 𝐿∞(0,∞) ≡ 𝐿∞,1(0,∞). Let M(0,∞) be the set of all
Lebesgue-measurable functions on (0,∞) andM+

(0,∞) its
subset consisting of all nonnegative functions on (0,∞). We
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denote byM+
(0,∞; ↑) the cone of all functions inM+

(0,∞)

which are nondecreasing on (0,∞) and

A = {𝜑 ∈ M
+
(0,∞; ↑) : lim

𝑡→0+
𝜑 (𝑡) = 0} . (21)

The following theorem is valid.

Theorem 10. Let V1, V2 be nonnegative measurable functions
satisfying 0 < ‖V𝑗‖𝐿∞(𝑡,∞) < ∞, 𝑗 = 1, 2, for any 𝑡 > 0.

Then the identity operator 𝐼 is bounded from 𝐿∞,V1(0,∞)

to 𝐿∞,V2(0,∞) on the cone A if and only if
󵄩󵄩󵄩󵄩󵄩
V2

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩

−1

𝐿∞(⋅,∞)

󵄩󵄩󵄩󵄩󵄩𝐿∞(0,∞)
< ∞. (22)

Proof. If 𝐹, 𝐺 are nonnegative functions on (0,∞) and 𝐹 is
nondecreasing, then

ess sup
𝑡∈(0,∞)

𝐹 (𝑡) 𝐺 (𝑡) = ess sup
𝑡∈(0,∞)

𝐹 (𝑡) ess sup
𝑠∈(𝑡,∞)

𝐺 (𝑠) , 𝑡 ∈ (0,∞) .

(23)

Also if 𝐹, 𝐺 are nonnegative functions on (0,∞) and 𝐹 is
nonincreasing, then

ess sup
𝑡∈(0,∞)

𝐹 (𝑡) 𝐺 (𝑡) = ess sup
𝑡∈(0,∞)

𝐹 (𝑡) ess sup
𝑠∈(0,𝑡)

𝐺 (𝑠) , 𝑡 ∈ (0,∞) .

(24)

Therefore for all 𝜑 ∈ A

ess sup
𝑡>0

V (𝑡) 𝜑 (𝑡) = ess sup
𝑡>0

𝜑 (𝑡) 𝑆V (𝑡) , (25)

where
(𝑆𝑔) (𝑡) :=

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿∞(𝑡,∞)

, 𝑡 ∈ (0,∞) . (26)

First we prove sufficiency. Assume that condition (22)
holds. Then for all 𝜑 ∈ A

󵄩󵄩󵄩󵄩𝐼𝜑
󵄩󵄩󵄩󵄩𝐿∞,V2 (0,∞)

=
󵄩󵄩󵄩󵄩󵄩
(𝑆V1)

−1
𝑆V1𝜑

󵄩󵄩󵄩󵄩󵄩𝐿∞,V2 (0,∞)

≤ ess sup
𝑡>0

𝑆V1 (𝑡) 𝜑 (𝑡) ⋅
󵄩󵄩󵄩󵄩󵄩
(𝑆V1)

−1󵄩󵄩󵄩󵄩󵄩𝐿∞,V2 (0,∞)

=
󵄩󵄩󵄩󵄩󵄩
V2

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩

−1

𝐿∞(⋅,∞)

󵄩󵄩󵄩󵄩󵄩𝐿∞(0,∞)
ess sup

𝑡>0

V1 (𝑡) 𝜑 (𝑡)

(27)

by (25).
To prove necessity assume that 𝐼 is bounded from

𝐿∞,V1(0,∞) to 𝐿∞,V2(0,∞) on the cone A; that is,
󵄩󵄩󵄩󵄩𝐼𝜑

󵄩󵄩󵄩󵄩𝐿∞,V2 (0,∞)
≤ 𝑐

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿∞,V1 (0,∞)

, 𝜑 ∈ A, (28)

where 𝑐 > 0 is independent of 𝜑.
We note that (𝑆V1)

−1
𝜒
(1/𝑛,∞)

∈ A for all 𝑛 ∈ N and take
𝜑 = (𝑆V1)

−1
𝜒
(1/𝑛,∞)

. Observe that
󵄩󵄩󵄩󵄩󵄩
(𝑆V1)

−1
𝜒
(1/𝑛,∞)

󵄩󵄩󵄩󵄩󵄩𝐿∞,V1 (0,∞)
≤

󵄩󵄩󵄩󵄩󵄩
(𝑆V1)

−1󵄩󵄩󵄩󵄩󵄩𝐿∞,V1 (0,∞)

= ess sup
𝑡>0

V1 (𝑡) (ess sup
𝑡≤𝜏<∞

V1 (𝜏))
−1

≤ 1.

(29)

Also for all 𝜏 > 0 for sufficiently large 𝑛

󵄩󵄩󵄩󵄩󵄩
(𝑆V1)

−1
𝜒
(1/𝑛,∞)

󵄩󵄩󵄩󵄩󵄩𝐿∞,V2 (0,∞)

≥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ess sup
𝑡≤𝑠<∞

𝜒
(1/𝑛,∞)

(𝑠)(𝑆V1)
−1
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞,V2 (𝜏,∞)

=
󵄩󵄩󵄩󵄩󵄩
(𝑆1)

−1V2
󵄩󵄩󵄩󵄩󵄩𝐿∞(𝜏,∞)

;

(30)

hence
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑆1)

−1

V2
󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝜏,∞)

≤ 𝑐 (31)

for all 𝜏 > 0 and condition (22) follows.

We will use the following statement on the boundedness
of the weighted Hardy operator:

𝐻𝑤𝑔 (𝑡) := ∫

∞

𝑡

𝑔 (𝑠) 𝑤 (𝑠) 𝑑𝑠, 0 < 𝑡 < ∞, (32)

where 𝑤 is a weight.
The following theoremwas proved in [28] (see, also [29]).

Theorem 11. Let V1, V2, and 𝑤 be weights on (0,∞) and let
V1(𝑡) be bounded outside a neighborhood of the origin. The
inequality

ess sup
𝑡>0

V2 (𝑡)𝐻𝑤𝑔 (𝑡) ≤ 𝐶ess sup
𝑡>0

V1 (𝑡) 𝑔 (𝑡) (33)

holds for some 𝐶 > 0 for all nonnegative and nondecreasing 𝑔

on (0,∞) if and only if

𝐵 := sup
𝑡>0

V2 (𝑡) ∫
∞

𝑡

𝑤 (𝑠) 𝑑𝑠

ess sup
𝑠<𝜏<∞

V1 (𝜏)
< ∞. (34)

Moreover, the value 𝐶 = 𝐵 is the best constant for (33).

Remark 12. In (33) and (34) it is assumed that 1/∞ = 0 and
0 ⋅ ∞ = 0.

4. Spanne-Type Result for
the Operator 𝐼

𝜌
in 𝐿𝑀

{𝑥0}

𝑝,𝜑

We assume that

∫

∞

1

𝜌 (𝑡)

𝑡𝑛

𝑑𝑡

𝑡
< ∞, (35)

so that the fractional integrals 𝐼𝜌𝑓 are well defined, at least for
characteristic functions 1/|𝑥|2𝑛 of complementary balls:

𝑓 (𝑥) =
𝜒R𝑛\𝐵(0,1) (𝑥)

|𝑥|
2𝑛

. (36)

In addition, we will also assume that 𝜌 satisfies the growth
condition: there exist constants𝐶1 > 0 and 0 < 2𝑘1 < 𝑘2 < ∞

such that

sup
𝑟/2<𝑠≤3𝑟/2

𝜌 (𝑠)

𝑠𝑛
≤ 𝐶1 ∫

𝑘2𝑟

𝑘1𝑟

𝜌 (𝑡)

𝑡𝑛

𝑑𝑡

𝑡
, 𝑟 > 0. (37)
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This condition is weaker than the usual doubling condi-
tion for the function 𝜌(𝑡)/𝑡

𝑛: there exists a constant 𝐶2 > 0

such that
1

𝐶2

𝜌 (𝑡)

𝑡𝑛
≤

𝜌 (𝑟)

𝑟𝑛
≤ 𝐶2

𝜌 (𝑡)

𝑡𝑛
, (38)

whenever 𝑟 and 𝑡 satisfy 𝑟, 𝑡 > 0 and 1/2 ≤ 𝑟/𝑡 ≤ 2.
In the sequel for the generalized fractional integral

operator 𝐼𝜌 we always assume that 𝜌 satisfies the conditions
(37) and then denote the set of all such functions by 𝐺0. We
will write, when 𝜌 ∈ 𝐺0,

𝜌 (𝑟) := 𝐶𝑟
𝑛
∫

∞

𝑟

𝜌 (𝑡)

𝑡𝑛

𝑑𝑡

𝑡
. (39)

Remark 13. Typical examples of 𝜌(𝑡) that we envisage are, for
0 < 𝛼 < 𝑛,

𝜌 (𝑡) ≡

{{

{{

{

𝑡
𝛼 log(𝑒

𝑡
) , 0 < 𝑡 ≤ 1,

𝑡
𝛼

log (𝑒𝑡)
, 1 ≤ 𝑡 < ∞,

(40)

and, for 𝑐 > 0,

𝜌 (𝑡) ≡ {
𝑡
𝛼
, 0 < 𝑡 ≤ 1,

𝑒
𝑐
𝑒
−𝑐𝑡
2

, 1 ≤ 𝑡 < ∞.
(41)

The second one is used to control the Bessel potential (see also
[30]).

The following theorem was proved in [11].

Theorem 14. (1) Let 1 < 𝑝 < 𝑞 < ∞. Then the operator 𝐼𝜌

is bounded from 𝐿𝑝(R
𝑛
) to 𝐿𝑞(R

𝑛
) if and only if there exists

𝐶 > 0 such that for all 𝑟 > 0

𝜌 (𝑟) ≤ 𝐶𝑟
𝑛/𝑝−𝑛/𝑞

. (42)

(2) Let 1 < 𝑞 < ∞. Then the operator 𝐼𝜌 is bounded from
𝐿1(R

𝑛
) to 𝑊𝐿𝑞(R

𝑛
) if and only if there exists 𝐶 > 0 such that

for all 𝑟 > 0

𝜌 (𝑟) ≤ 𝐶𝑟
𝑛−𝑛/𝑞

. (43)

The following lemma is valid.

Lemma 15. Let 1 ≤ 𝑝 < ∞ and 𝜌(𝑡) satisfy the conditions
(35) and (37). If the condition (42) is fulfilled, then for 𝑝 > 1

the inequality
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵(𝑥0 ,𝑟))
≲

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,2𝑟))

+ 𝑟
𝑛/𝑞

∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝

𝑑𝑡

𝑡

(44)

holds for any ball 𝐵(𝑥0, 𝑟) and for all 𝑓 ∈ 𝐿
loc
𝑝
(R𝑛

).
If the condition (43) is fulfilled, then for𝑝 = 1 the inequality
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑞(𝐵(𝑥0 ,𝑟))
≲

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(𝐵(𝑥0 ,2𝑟))

+ 𝑟
𝑛/𝑞

∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛

𝑑𝑡

𝑡

(45)

holds for any ball 𝐵(𝑥0, 𝑟) and for all 𝑓 ∈ 𝐿
loc
1
(R𝑛

).

Proof. Let 1 < 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, and 1/𝑞 = 1/𝑝 − 𝛼/𝑛.
For arbitrary 𝑥0 ∈ R𝑛, set 𝐵 = 𝐵(𝑥0, 𝑟) for the ball centered
at 𝑥0 and of radius 𝑟. Write 𝑓 = 𝑓1 + 𝑓2 with 𝑓1 = 𝑓𝜒2𝐵 and
𝑓2 = 𝑓𝜒∁(2𝐵). Hence

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵)
≤

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓1

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵)
+
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓2

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵)
. (46)

Since 𝑓1 ∈ 𝐿𝑝(R
𝑛
), 𝐼𝜌𝑓1 ∈ 𝐿𝑞(R

𝑛
) and from condition

(42) we get the boundedness of 𝐼𝜌 from 𝐿𝑝(R
𝑛
) to 𝐿𝑞(R

𝑛
)

(see Theorem 14) and it follows that
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓1

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵)
≤

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓1

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(R
𝑛)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿𝑝(R
𝑛)

= 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(2𝐵)
,

(47)

where constant 𝐶 > 0 is independent of 𝑓.
It is clear that 𝑥 ∈ 𝐵, 𝑦 ∈

∁
(2𝐵) implies (1/2)|𝑥0 − 𝑦| ≤

|𝑥 − 𝑦| ≤ (3/2)|𝑥0 − 𝑦|. Then from conditions (35), (37) and
by Fubini’s theorem we have

∫
∁(2𝐵)

𝜌 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≲ ∫
∁(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 (∫

𝑘2|𝑥0−𝑦|

𝑘1|𝑥0−𝑦|

𝜌 (𝑡)

𝑡𝑛+1
𝑑𝑡) 𝑑𝑦

≈ ∫

∞

2𝑘1𝑟

(∫
2𝑘1𝑟<|𝑥0−𝑦|<𝑡

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦)

𝜌 (𝑡)

𝑡𝑛+1
𝑑𝑡

≲ ∫

∞

2𝑟

(∫
𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦)

𝜌 (𝑡)

𝑡𝑛+1
𝑑𝑡.

(48)

Applying Hölder’s inequality, we get

∫
∁(2𝐵)

𝜌 (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦 ≲ ∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡.

(49)

Moreover, for all 𝑝 ∈ [1,∞), the inequality

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓2

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵)
≲ 𝑟

𝑛/𝑞
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡 (50)

is valid. Thus

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵)
≲

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(2𝐵)

+ 𝑟
𝑛/𝑞

∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡.

(51)

Let 𝑝 = 1. From the weak (1, 𝑞) boundedness of 𝐼𝜌 and
(43) it follows that

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓1

󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑞(𝐵)
≤

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓1

󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑞(R
𝑛)

≲
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿1(R
𝑛)

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿1(2𝐵)
.

(52)

Then from (50) and (52) we get the inequality (45).

The following theorem is one of the main results of this
paper.
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Theorem 16. Let 𝑥0 ∈ R𝑛, 1 ≤ 𝑝 < ∞, and the function
𝜌 satisfy the conditions (35), (37), and (42). Let also (𝜑1, 𝜑2)

satisfy the conditions

ess inf
𝑡<𝑠<∞

𝜑1 (𝑥0, 𝑠) 𝑠
𝑛/𝑝

≤ 𝐶𝜑2 (𝑥0,
𝑡

2
) 𝑡

𝑛/𝑞
,

∫

∞

𝑟

(ess inf
𝑡<𝑠<∞

𝜑1 (𝑥0, 𝑠) 𝑠
𝑛/𝑝

)
𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡 ≤ 𝐶𝜑2 (𝑥0, 𝑟) ,

(53)

where 𝐶 does not depend on 𝑥0 and 𝑟. Then the operator 𝐼𝜌 is
bounded from 𝐿𝑀

{𝑥0}

𝑝,𝜑1
to 𝐿𝑀

{𝑥0}

𝑞,𝜑2
for 𝑝 > 1 and from 𝐿𝑀

{𝑥0}

1,𝜑1
to

𝑊𝐿𝑀
{𝑥0}

𝑞,𝜑2
for 𝑝 = 1. Moreover, for 𝑝 > 1,

󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

𝑞,𝜑2

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

𝑝,𝜑1

, (54)

and, for 𝑝 = 1,
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑀
{𝑥0}

𝑞,𝜑2

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

1,𝜑1

. (55)

Proof. By Lemma 15 andTheorems 10 and 11 we have, for 𝑝 >

1,
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

𝑞,𝜑2

≲ sup
𝑟>0

𝜑2 (𝑥0, 𝑟)
−1

𝑟
−𝑛/𝑞 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,2𝑟))

+ sup
𝑟>0

𝜑2 (𝑥0, 𝑟)
−1

∫

∞

𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡

≈ sup
𝑟>0

𝜑1 (𝑥0, 𝑟)
−1

𝑟
−𝑛/𝑝 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑟))

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

𝑝,𝜑1

,

(56)

and, for 𝑝 = 1,
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑀
{𝑥0}

𝑞,𝜑2

≲ sup
𝑟>0

𝜑2 (𝑥0, 𝑟)
−1

𝑟
−𝑛/𝑞 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿1(𝐵(𝑥0 ,2𝑟))

+ sup
𝑟>0

𝜑2 (𝑥0, 𝑟)
−1

∫

∞

𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(𝐵(𝑥0 ,𝑡))

𝜌 (𝑡)

𝑡𝑛+1
𝑑𝑡

≈ sup
𝑟>0

𝜑1 (𝑥0, 𝑟)
−1

𝑟
−𝑛 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿1(𝐵(𝑥0 ,𝑟))

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑀
{𝑥0}

1,𝜑1

.

(57)

Corollary 17. Let 1 ≤ 𝑝 < ∞, the function 𝜌 satisfies the
conditions (35), (37), and (42). Let also (𝜑1, 𝜑2) satisfy the
conditions

ess inf
𝑡<𝑠<∞

𝜑1 (𝑥, 𝑠) 𝑠
𝑛/𝑝

≤ 𝐶𝜑2 (𝑥,
𝑡

2
) 𝑡

𝑛/𝑞
,

∫

∞

𝑟

(ess inf
𝑡<𝑠<∞

𝜑1 (𝑥, 𝑠) 𝑠
𝑛/𝑝

)
𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡 ≤ 𝐶𝜑2 (𝑥, 𝑟) ,

(58)

where 𝐶 does not depend on 𝑥 and 𝑟. Then the operator 𝐼𝜌 is
bounded from 𝑀𝑝,𝜑1

to 𝑀𝑞,𝜑2
for 𝑝 > 1 and from 𝑀1,𝜑1

to
𝑊𝑀𝑞,𝜑2

for 𝑝 = 1.

In the case𝜌(𝑡) = 𝑡
𝛼 fromTheorem 16we get new Spanne-

type result on generalized local Morrey spaces.

Corollary 18. Let 𝑥0 ∈ R𝑛, 0 < 𝛼 < 𝑛, 1 ≤ 𝑝 < 𝑞 < ∞, and
1/𝑝 − 1/𝑞 = 𝛼/𝑛. Let also (𝜑1, 𝜑2) satisfy the condition

∫

∞

𝑟

(ess inf
𝑡<𝑠<∞

𝜑1 (𝑥0, 𝑠) 𝑠
𝑛/𝑝

)
𝑑𝑡

𝑡𝑛/𝑞+1
𝑑𝑡 ≤ 𝐶𝜑2 (𝑥0, 𝑟) , (59)

where𝐶 does not depend on 𝑟. Then the operator 𝐼𝛼 is bounded
from 𝐿𝑀

{𝑥0}

𝑝,𝜑1
to 𝐿𝑀

{𝑥0}

𝑞,𝜑2
for 𝑝 > 1 and from 𝐿𝑀

{𝑥0}

1,𝜑1
to𝑊𝐿𝑀

{𝑥0}

𝑞,𝜑2

for 𝑝 = 1.

Also in the cases 𝜌(𝑡) = 𝑡
𝛼 and 𝜑(𝑥, 𝑡) = 𝑡

(𝜆−𝑛)/𝑝, 0 <

𝜆 < 𝑛, fromTheorem 16 we get local Morrey space variant of
Theorem 4.

Corollary 19. Let 𝑥0 ∈ R𝑛, 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, and
0 < 𝜆 < 𝑛−𝛼𝑝. Moreover, let 1/𝑝−1/𝑞 = 𝛼/𝑛 and 𝜆/𝑝 = 𝜇/𝑞.
Then, for 𝑝 > 1, the operator 𝐼𝛼 is bounded from 𝐿𝑀

{𝑥0}

𝑝,𝜆
to

𝐿𝑀
{𝑥0}

𝑞,𝜆
and, for 𝑝 = 1, 𝐼𝛼 is bounded from 𝐿𝑀

{𝑥0}

1,𝜆
to𝑊𝐿𝑀

{𝑥0}

𝑞,𝜆
.

5. Adams-Type Result for
the Operator 𝐼

𝜌
in 𝑀

𝑝,𝜑

The following Adams-type result was proved in [31] (see also
[12]).

Theorem 20. Let 1 ≤ 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, and 𝑞 > 𝑝 and let
𝜑(𝑥, 𝑡) satisfy the conditions

sup
𝑟<𝑡<∞

𝜑 (𝑥, 𝑡) ≤ 𝐶𝜑 (𝑥, 𝑟) , (60)

∫

∞

𝑟

𝑡
𝛼
𝜑 (𝑥, 𝑡)

1/𝑝 𝑑𝑡

𝑡
≤ 𝐶𝑟

−𝛼𝑝/(𝑞−𝑝)
, (61)

where 𝐶 does not depend on 𝑥 ∈ R𝑛 and 𝑟 > 0.
Then the operator 𝐼𝛼 is bounded from𝑀

𝑝,𝜑1/𝑝
to𝑀

𝑞,𝜑1/𝑞
for

𝑝 > 1 and from 𝑀1,𝜑 to 𝑊𝑀
𝑞,𝜑1/𝑞

for 𝑝 = 1.

The followingTheorem was proved in [32].

Theorem 21. Let 1 ≤ 𝑝 < ∞ and (𝜑1, 𝜑2) satisfies the
condition

sup
𝑟<𝑡<∞

𝜑1 (𝑥, 𝑡) ≤ 𝐶𝜑2 (𝑥, 𝑟) , (62)

where 𝐶 does not depend on 𝑥 and 𝑟. Then, for 𝑝 > 1, the
Hardy-Littlewoodmaximal operator𝑀 is bounded from𝑀𝑝,𝜑1

to 𝑀𝑝,𝜑2
and, for 𝑝 = 1, 𝑀 is bounded from 𝑀1,𝜑1

to 𝑊𝑀1,𝜑2
.

The following theorem is a main result of this paper
on Adams-type estimate for generalized fractional integral
operator 𝐼𝜌. In the case 𝜌(𝑡) = 𝑡

𝛼 we get Theorem 20 from
this theorem.
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Theorem 22. Let 1 ≤ 𝑝 < ∞, 𝑞 > 𝑝, and 𝜌(𝑡) satisfy the
conditions (37) and (42). Let also 𝜑(𝑥, 𝑡) satisfy the condition
(60) and

∫

∞

𝑟

𝜑 (𝑥, 𝑡)
1/𝑝 𝜌 (𝑡)

𝑡
𝑑𝑡 ≤ 𝐶𝜌 (𝑟)

−𝑝/(𝑞−𝑝)
, (63)

where 𝐶 does not depend on 𝑥 ∈ R𝑛 and 𝑟 > 0.
Then the operator 𝐼𝜌 is bounded from𝑀

𝑝,𝜑1/𝑝
to𝑀

𝑞,𝜑1/𝑞
for

𝑝 > 1 and from 𝑀1,𝜑 to 𝑊𝑀
𝑞,𝜑1/𝑞

for 𝑝 = 1.

Proof. Let 𝑥0 ∈ R𝑛, 1 < 𝑝 < ∞, 0 < 𝛼 < 𝑛/𝑝, 𝑞 > 𝑝, and
𝑓 ∈ 𝑀

𝑝,𝜑1/𝑝
. Write 𝑓 = 𝑓1 + 𝑓2, where 𝐵 = 𝐵(𝑥, 𝑟), 𝑓1 = 𝑓𝜒2𝐵,

and 𝑓2 = 𝑓𝜒∁(2𝐵). Then we have

𝐼𝜌𝑓 (𝑥) = 𝐼𝜌𝑓1 (𝑥) + 𝐼𝜌𝑓2 (𝑥) . (64)

For 𝐼𝜌𝑓1(𝑦), 𝑦 ∈ 𝐵(𝑥, 𝑟), following Hedberg’s trick (see, e.g.,
[33, page 354]), we obtain

󵄨󵄨󵄨󵄨󵄨
𝐼𝜌𝑓1 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐵(𝑥,2𝑟)

𝜌 (
󵄨󵄨󵄨󵄨𝑦 − 𝑧

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

≈

0

∑

𝑘=−∞

∫
𝐵(𝑥,2𝑘+1𝑟)\𝐵(𝑥,2𝑘𝑟)

𝜌 (
󵄨󵄨󵄨󵄨𝑦 − 𝑧

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

≲

0

∑

𝑘=−∞

∫

(2
𝑘+1

−1)𝑘2𝑟

(2𝑘+1−1)𝑘1𝑟

𝜌 (𝑠)

𝑠𝑛+1
𝑑𝑠∫

𝐵(𝑥,2𝑘+1𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

≈ 𝑀𝑓 (𝑥)

0

∑

𝑘=−∞

∫

(2
𝑘+1

−1)𝑘2𝑟

(2𝑘+1−1)𝑘1𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠

= 𝑀𝑓 (𝑥) ∫

𝑘2𝑟

0

𝜌 (𝑠)

𝑠
𝑑𝑠

= 𝑀𝑓 (𝑥) 𝜌 (𝑘2𝑟)

≲ 𝑀𝑓 (𝑥) 𝜌 (𝑟) .

(65)

For 𝐼𝜌𝑓2(𝑦), 𝑦 ∈ 𝐵(𝑥, 𝑟), from (49) we have

󵄨󵄨󵄨󵄨󵄨
𝐼𝜌𝑓2 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≲ ∫
∁
𝐵(𝑥,2𝑟)

𝜌 (
󵄨󵄨󵄨󵄨𝑦 − 𝑧

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

≲ ∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡.

(66)

Then from condition (63) and inequality (66) for all 𝑦 ∈

𝐵(𝑥, 𝑟) we get

󵄨󵄨󵄨󵄨󵄨
𝐼𝜌𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≲ 𝜌 (𝑟)𝑀𝑓 (𝑥) + ∫

∞

𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥,𝑡))

𝜌 (𝑡)

𝑡𝑛/𝑝+1
𝑑𝑡

≤ 𝜌 (𝑟)𝑀𝑓 (𝑥) +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
𝑝,𝜑
1/𝑝

∫

∞

𝑟

𝜑 (𝑥, 𝑡)
1/𝑝 𝜌 (𝑡)

𝑡
𝑑𝑡

≲ 𝜌 (𝑟)𝑀𝑓 (𝑥) + 𝜌 (𝑟)
−𝑝/(𝑞−𝑝) 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
𝑝,𝜑
1/𝑝

.

(67)

Hence choosing 𝜌(𝑟) = (‖𝑓‖𝑀
𝑝,𝜑
1/𝑝

/𝑀𝑓(𝑥))
(𝑞−𝑝)/𝑞 for all

𝑦 ∈ 𝐵(𝑥, 𝑟), we have
󵄨󵄨󵄨󵄨󵄨
𝐼𝜌𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨
≲ (𝑀𝑓 (𝑥))

𝑝/𝑞 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

1−𝑝/𝑞

𝑀
𝑝,𝜑
1/𝑝

. (68)

Consequently the statement of the theorem follows in view
of the boundedness of the maximal operator 𝑀 in 𝑀

𝑝,𝜑1/𝑝

provided by Theorem 21 in virtue of condition (60). If 1 <

𝑝 < 𝑞 < ∞, then
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝑀
𝑞,𝜑
1/𝑞

= sup
𝑥∈R𝑛,𝑡>0

𝜑 (𝑥, 𝑡)
−1/𝑞

𝑡
−𝑛/𝑞 󵄩󵄩󵄩󵄩󵄩

𝐼𝜌𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐵(𝑥,𝑡))

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−𝑝/𝑞

𝑀
𝑝,𝜑
1/𝑝

sup
𝑥∈R𝑛,𝑡>0

𝜑 (𝑥, 𝑡)
−1/𝑞

𝑡
−𝑛/𝑞 󵄩󵄩󵄩󵄩𝑀𝑓

󵄩󵄩󵄩󵄩

𝑝/𝑞

𝐿𝑝(𝐵(𝑥,𝑡))

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−𝑝/𝑞

𝐿𝑀
𝑝,𝜑
1/𝑝

( sup
𝑥∈R𝑛,𝑡>0

𝜑 (𝑥, 𝑡)
−1/𝑝

𝑡
−𝑛/𝑝 󵄩󵄩󵄩󵄩𝑀𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥,𝑡))
)

𝑝/𝑞

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−𝑝/𝑞

𝑀
𝑝,𝜑
1/𝑝

󵄩󵄩󵄩󵄩𝑀𝑓
󵄩󵄩󵄩󵄩

𝑝/𝑞

𝑀
𝑝,𝜑
1/𝑝

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
𝑝,𝜑
1/𝑝

,

(69)

and if 1 < 𝑞 < ∞, then
󵄩󵄩󵄩󵄩󵄩
𝐼𝜌𝑓

󵄩󵄩󵄩󵄩󵄩𝑊𝑀
𝑞,𝜑
1/𝑞

= sup
𝑥∈R𝑛,𝑡>0

𝜑 (𝑥, 𝑡)
−1/𝑞

𝑡
−𝑛/𝑞 󵄩󵄩󵄩󵄩󵄩

𝐼𝜌𝑓
󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑞(𝐵(𝑥,𝑡))

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−1/𝑞

𝑀1,𝜑
sup

𝑥∈R𝑛,𝑡>0

𝜑 (𝑥, 𝑡)
−1/𝑞

𝑡
−𝑛/𝑞 󵄩󵄩󵄩󵄩𝑀𝑓

󵄩󵄩󵄩󵄩

1/𝑞

𝑊𝐿1(𝐵(𝑥,𝑡))

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−1/𝑞

𝑀1,𝜑
( sup
𝑥∈R𝑛,𝑡>0

𝜑 (𝑥, 𝑡)
−1

𝑡
−𝑛 󵄩󵄩󵄩󵄩𝑀𝑓

󵄩󵄩󵄩󵄩𝑊𝐿1(𝐵(𝑥,𝑡))
)

1/𝑞

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−1/𝑞

𝑀1,𝜑

󵄩󵄩󵄩󵄩𝑀𝑓
󵄩󵄩󵄩󵄩

1/𝑞

𝑊𝑀1,𝜑

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀1,𝜑
.

(70)

Thus the proof of the theorem is completed.
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