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Abstract. We shall investigate the boundedness of the intrinsic square func-
tions and their commutators on generalized weighted Orlicz–Morrey spaces
MΦ,ϕ

w (Rn). In all the cases, the conditions for the boundedness are given in
terms of Zygmund-type integral inequalities on weights ϕ without assuming
any monotonicity property of ϕ(x, ·) with x fixed.

1. Introduction

In the present paper, we are concerned with the intrinsic square functions,
which Wilson introduced initially [24, 25]. For 0 < α ≤ 1, let Cα be the family
of Lipschitz functions φ : Rn → R of order α with the homogeneous norm 1 such
that the support of φ is contained in the closed ball {x : |x| ≤ 1}, and that∫

Rn φ(x)dx = 0. For (y, t) ∈ Rn+1
+ and f ∈ L1,loc(Rn), set

Aαf(t, y) ≡ sup
φ∈Cα

|f ∗ φt(y)|,
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where φt ≡ t−nφ
( ·

t

)
. Let β be an auxiliary parameter. Then we define the

varying-aperture intrinsic square (intrinsic Lusin) function of f by the formula;

Gα,β(f)(x) ≡

(∫∫
Γβ(x)

(Aαf(t, y))2dydt

tn+1

) 1
2

,

where Γβ(x) ≡ {(y, t) ∈ Rn+1
+ : |x− y| < βt}. Write Gα(f) = Gα,1(f) .

Everywhere in the sequel, B(x, r) stands for the ball in Rn of radius r centered
at x and we let |B(x, r)| be the Lebesgue measure of the ball B(x, r); |B(x, r)| =
vnr

n, where vn is the volume of the unit ball in Rn. We recall generalized weighted
Orlicz–Morrey spaces, on which we work in the present paper.

Definition 1.1 (Generalized weighted Orlicz–Morrey Space). Let ϕ be a positive
measurable function on Rn × (0,∞), let w be non-negative measurable function
on Rn and Φ any Young function. Denote by MΦ,ϕ

w (Rn) the generalized weighted
Orlicz–Morrey space, the space of all functions f ∈ LΦ,loc

w (Rn) such that

‖f‖MΦ,ϕ
w

≡ sup
x∈Rn,r>0

ϕ(x, r)−1 Φ−1
(
w(B(x, r))−1

)
‖f‖LΦ

w(B(x,r)),

where ‖f‖LΦ
w(B(x,r)) ≡ inf

{
λ > 0 :

∫
B(x,r)

Φ
(
|f(x)|

λ

)
w(x) dx ≤ 1

}
.

According to this definition, we recover the generalized weighted Morrey space
Mp,ϕ

w (Rn) by the choice Φ(r) = rp, 1 ≤ p < ∞. If Φ(r) = rp, 1 ≤ p < ∞ and

ϕ(x, r) = r−
λ
p , 0 ≤ λ ≤ n, then MΦ,ϕ

w (Rn) coincides with the weighted Morrey
space Mp,ϕ

w (Rn) and if ϕ(x, r) = Φ−1(w(B(x, r)−1)), then MΦ,ϕ
w (Rn) coincides

with the weighted Orlicz space LΦ
w(Rn). When w = 1, then LΦ

w(Rn) is abbreviated
to LΦ(Rn). The space LΦ(Rn) is the classical Orlicz space.

Our first theorem of the present paper is the following one:

Theorem 1.2. Let α ∈ (0, 1] and 1 < p0 ≤ p1 < ∞. Let Φ be a Young function
which is lower type p0 and upper type p1. Namely,

Φ(st0) ≤ Ct0
p0Φ(s), Φ(st1) ≤ Ct1

p1Φ(s)

for all s > 0 and 0 < t0 ≤ 1 ≤ t1 < ∞. Assume that w ∈ Ap0 and that the
measurable functions ϕ1, ϕ2 : Rn × (0,∞) → (0,∞) and Φ satisfy the condition;∫ ∞

r

ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
w(B(x0, s))−1

)Φ−1
(
w(B(x0, t))

−1
)dt

t
≤ C ϕ2(x, r), (1.1)

where C does not depend on x and r. Then Gα is bounded from MΦ,ϕ1
w (Rn) to

MΦ,ϕ2
w (Rn).

Theorem 1.2 extends the result below due to Liang, Nakai, Yang and Zhou.

Theorem 1.3. [13] Let α ∈ (0, 1] and 1 < p0 ≤ p1 < ∞. Let Φ be a Young
function which is lower type p0 and upper type p1. Then Gα is bounded from
LΦ(Rn) to itself.

The function Gα,β(f) is independent of any particular kernel, such as the Pois-
son kernel. It dominates pointwise the classical square function (Lusin area inte-
gral) and its real-variable generalizations. Although the function Gα,β(f) depends
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on kernels with uniform compact support, there is pointwise relation between
Gα,β(f) with different β:

Gα,β(f)(x) ≤ β
3n
2

+αGα(f)(x) .

See [24] for details.
The intrinsic Littlewood–Paley g-function is defined by

gαf(x) ≡
(∫ ∞

0

(Aαf(t, x))2dt

t

) 1
2

.

Also, the intrinsic g∗λ,α function is defined by

g∗λ,αf(x) ≡

(∫∫
Rn+1

+

(
t

t + |x− y|

)nλ

(Aαf(t, y))2dydt

tn+1

) 1
2

.

About this intrinsic Littlewood–Paley g-function, we shall prove the following
boundedness property:

Theorem 1.4. Let α ∈ (0, 1], 1 < p0 ≤ p1 < ∞ and λ ∈
(

3 +
2α

n
,∞
)

. Let also

Φ be a Young function which is lower type p0 and upper type p1. Assume that
w ∈ Ap0 and that the functions ϕ1, ϕ2 : Rn × (0,∞) → (0,∞) and Φ satisfy the
condition (1.1). Then g∗λ,α is bounded from MΦ,ϕ1

w (Rn) to MΦ,ϕ2
w (Rn).

In [24], the author proved that the functions Gαf and gαf are pointwise com-
parable. Thus, as a consequence of Theorem 1.2, we have the following result:

Corollary 1.5. Let α ∈ (0, 1] and 1 < p0 ≤ p1 < ∞. Let also Φ be a Young
function which is lower type p0 and upper type p1. Assume in addition that
w ∈ Ap0 and that the functions ϕ1, ϕ2 : Rn × (0,∞) → (0,∞) and Φ satisfy the
condition (1.1). Then gα is bounded from MΦ,ϕ1

w (Rn) to MΦ,ϕ2
w (Rn).

Let b be a locally integrable function on Rn. Setting

Aα,bf(t, y) ≡ sup
φ∈Cα

∣∣∣∣∫
Rn

[b(y)− b(z)]φt(y − z)f(z)dz

∣∣∣∣ ,
we can define the commutators [b, Gα], [b, gα] and [b, g∗λ,α] by;

[b, Gα]f(x) ≡
(∫∫

Γ(x)

(Aα,bf(t, y))2dydt

tn+1

) 1
2

[b, gα]f(x) ≡
(∫ ∞

0

(Aα,bf((t, x))2dt

t

) 1
2

[b, g∗λ,α]f(x) ≡

(∫∫
Rn+1

+

(
t

t + |x− y|

)λn

(Aα,bf(t, y))2dydt

tn+1

) 1
2

,

respectively. A function f ∈ L1,loc(Rn) is said to be in BMO(Rn) [9] if

‖f‖∗ ≡ sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)|dy < ∞,
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where fB(x,r) ≡
1

|B(x, r)|

∫
B(x,r)

f(y)dy.

About the boundedness of [b, Gα] on Orlicz spaces, we shall invoke the following
result:

Theorem 1.6. [13] Let α ∈ (0, 1], 1 < p0 ≤ p1 < ∞ and b ∈ BMO(Rn). Let Φ
be a Young function which is lower type p0 and upper type p1 and w ∈ Ap0. Then
[b, Gα] is bounded on LΦ

w(Rn).

About the commutator above, we shall prove the following boundedness prop-
erty in the present paper:

Theorem 1.7. Suppose that we are given parameters α, p0, p1 and functions
b, w, ϕ, ϕ2 with the following properties:

(1) α ∈ (0, 1], 1 < p0 ≤ p1 < ∞,
(2) b ∈ BMO(Rn)
(3) Φ is a Young function which is lower type p0 and upper type p1.
(4) w ∈ Ap0,
(5) ϕ1, ϕ2 and Φ satisfy the condition;∫ ∞

r

(
1 + ln

t

r

)
ess inf
t<s<∞

ϕ1(x, s)Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, s))−1

) dt

t
≤ C ϕ2(x, r), (1.2)

where C does not depend on x and r.

Then the operator [b, Gα] is bounded from MΦ,ϕ1
w (Rn) to MΦ,ϕ2

w (Rn).

In [24], the author proved that the functions Gαf and gαf are pointwise com-
parable. From the definition of the commutators, the same can be said for [b, Gα]
and [b, gα]. Thus, as a consequence of Theorem 1.2, we have the following result:

Corollary 1.8. Let α ∈ (0, 1], 1 < p0 ≤ p1 < ∞ and b ∈ BMO(Rn). Let Φ be a
Young function which is lower type p0 and upper type p1. Assume w ∈ Ap0 and
that the functions ϕ1, ϕ2 and Φ satisfy the condition (1.2), then [b, gα] is bounded
from MΦ,ϕ1

w (Rn) to MΦ,ϕ2
w (Rn).

Remark 1.9. By going through an argument similar to the above proofs and that
of Theorem 1.4, we can also show the boundedness of [b, g∗λ,α]. We omit the
details.

Here let us make a historical remark. Wilson [24] proved that Gα is bounded on
Lp(Rn) for 1 < p < ∞ and 0 < α ≤ 1. After that, Huang and Liu [7] studied the
boundedness of intrinsic square functions on weighted Hardy spaces. Moreover,
they characterized the weighted Hardy spaces by intrinsic square functions. In
[22] and [23], Wang and Liu obtained some weak type estimates on weighted
Hardy spaces. In [21], Wang considered intrinsic functions and commutators
generated by BMO functions on weighted Morrey spaces. In [26], Wu proved
the boundedness of intrinsic square functions and their commutators inspired by
the ideas of Guliyev [3, 4]. In [13], Liang et al. studied the boundedness of
these operators on Musielak–Orlicz Morrey spaces. Orlicz–Morrey spaces were
initially introduced and studied by Nakai in [16]. Also for the boundedness of the
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operators of harmonic analysis on Orlicz–Morrey spaces, see also [1, 16, 20]. Our
definition of Orlicz–Morrey spaces (see [1]) is different from those by Nakai [16]
and Sawano et al. [20] used recently in [2].

Here and below, we use the following notations: By A . B we mean that
A ≤ CB with some positive constant C independent of relevant quantities. If
A . B and B . A, we write A ≈ B and say that A and B are equivalent.

Finally, we describe how we organize the present paper. In Section 2 we recall
some preliminary facts such as Young functions and John–Nirenberg inequality.
Section 3 is devoted to the proof of Theorems 1.2 and 1.4. We prove Theorem
1.7 in Section 4.

2. Preliminaries

As is well known, classical Morrey spaces stemmed from Morrey’s observa-
tion for the local behavior of solutions to second order elliptic partial differential
equations [15]. We recall its definition:

Mp,λ(Rn) =

{
f ∈ Lp,loc(Rn) : ‖f‖Mp,λ

:= sup
x∈Rn, r>0

r−
λ
p ‖f‖Lp(B(x,r)) < ∞

}
,

where 0 ≤ λ ≤ n, 1 ≤ p < ∞. The scale Mp,λ(Rn) covers the Lp(Rn) in the sense
that Mp,0(Rn) = Lp(Rn).

We are thus oriented to a generalization of the parameters p and λ.

2.1. Young functions and Orlicz spaces. We next recall the definition of
Young functions.

Definition 2.1. A function Φ : [0, +∞) → [0,∞] is called a Young function, if
Φ is convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→+∞
Φ(r) = ∞.

The convexity and the condition Φ(0) = 0 force any Young function to be
increasing. In particular, if there exists s ∈ (0, +∞) such that Φ(s) = +∞, then
it follows that Φ(r) = +∞ for r ≥ s.

Let Y be the set of all Young functions Φ such that

0 < Φ(r) < +∞ for 0 < r < +∞
If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in [0, +∞) and
bijective from [0, +∞) to itself.

Orlicz spaces, introduced in [17, 18], also generalize Lebesgue spaces. They
are useful tools in harmonic analysis and these spaces are applied to many other
problems in harmonic analysis. For example, the Hardy–Littlewood maximal
operator is bounded on Lp(Rn) for 1 < p < ∞, but not on L1(Rn). Using Orlicz
spaces, we can investigate the boundedness of the maximal operator near p = 1
more precisely.

In the present paper we are concerned with the weighted setting.

Definition 2.2 (Weighted Orlicz Space). For a Young function Φ and a non-
negative measurable function w on Rn, the set

LΦ
w(Rn) ≡

{
f ∈ LΦ,loc

w (Rn) :

∫
Rn

Φ(k|f(x)|)w(x)dx < +∞ for some k > 0

}
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is called the weighted Orlicz space. The local weighted Orlicz space LΦ,loc
w (Rn) is

defined as the set of all functions f such that fχ
B
∈ LΦ

w(Rn) for all balls B ⊂ Rn

and this space is endowed with the natural topology.

Note that LΦ
w(Rn) is a Banach space with respect to the norm

‖f‖LΦ
w
≡ inf

{
λ > 0 :

∫
Rn

Φ
( |f(x)|

λ

)
w(x)dx ≤ 1

}
.

See [19, Section 3, Theorem 10] for example. In particular, we have∫
Rn

Φ
( |f(x)|
‖f‖LΦ

w

)
w(x)dx ≤ 1.

If Φ(r) = rp, 1 ≤ p < ∞, then LΦ
w = Lp

w(Rn) with norm coincidence. If
Φ(r) = 0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ

w = L∞
w (Rn).

For a Young function Φ and 0 ≤ s ≤ +∞, let

Φ−1(s) ≡ inf{r ≥ 0 : Φ(r) > s} (inf ∅ = +∞).

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. We also note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < +∞. (2.1)

A Young function Φ is said to satisfy the ∆2-condition, denoted by Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r) for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y . A Young function Φ is said to satisfy
the ∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1. The function Φ(r) = r satisfies the ∆2-condition and it fails the
∇2-condition. If 1 < p < ∞, then Φ(r) = rp satisfies both the conditions. The
function Φ(r) = er− r−1 satisfies the ∇2-condition but it fails the ∆2-condition.

Definition 2.3. A Young function Φ is said to be of upper type p (resp. lower
type p) for some p ∈ [0,∞), if there exists a positive constant C such that, for
all t ∈ [1,∞) (resp. t ∈ [0, 1] ) and s ∈ [0,∞),

Φ(st) ≤ CtpΦ(s).

Remark 2.4. If Φ is lower type p0 and upper type p1 with 1 < p0 ≤ p1 < ∞, then
Φ ∈ ∆2 ∩∇2. Conversely if Φ ∈ ∆2 ∩∇2, then Φ is lower type p0 and upper type
p1 with 1 < p0 ≤ p1 < ∞; see [11] for example.

About the norm ‖f‖MΦ,ϕ
w

, we have the following equivalent expression: If Φ

satisfies the ∆2-condition, then the norm ‖f‖MΦ,ϕ
w

is equivalent to the norm

‖f‖
M

Φ,ϕ
(w)

≡ inf
{

λ > 0 : sup
x∈Rn,r>0

ϕ(x, r)−1 Φ−1
(
w(B(x, r))−1

)
×
∫

B(x,r)

Φ
( |f(x)|

λ

)
w(x)dx ≤ 1

}
.
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See [14, p. 416]. The latter was used in [14, 16, 20], see also references therein. For

Φ and Φ̃, we have the following estimate, whose proof is similar to [12, Lemmas
4.2]. So, we omit the details.

Lemma 2.5. Let 0 < p0 ≤ p1 < ∞ and let C̃ be a positive constant. Suppose that
we are given a non-negative measurable function w on Rn and a Young function
Φ which is lower type p0 and upper type p1. Then there exists a positive constant
C such that for any ball B of Rn and µ ∈ (0,∞)∫

B

Φ

(
|f(x)|

µ

)
w(x)dx ≤ C̃

implies that ‖f‖LΦ
w(B) ≤ Cµ.

For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) ≡
{

sup{rs− Φ(s) : s ∈ [0,∞)} if r ∈ [0,∞),
+∞ if r = +∞.

The complementary function Φ̃ is also a Young function and it satisfies
˜̃
Φ = Φ.

Here we recall three examples.

Example 2.6.

(1) If Φ(r) = r, then Φ̃(r) = 0 for 0 ≤ r ≤ 1 and Φ̃(r) = +∞ for r > 1.

(2) If 1 < p < ∞, 1/p + 1/p′ = 1 and Φ(r) = rp/p, then Φ̃(r) = rp′/p′.

(3) If Φ(r) = er− r−1, then a calculation shows Φ̃(r) = (1+ r) log(1+ r)− r.

Note that Φ ∈ ∇2 if and only if Φ̃ ∈ ∆2. It is also known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0. (2.2)

Note that Young functions satisfy the properties;

Φ(αt) ≤ αΦ(t)

for all 0 ≤ α ≤ 1 and 0 ≤ t < ∞, and

Φ(βt) ≥ βΦ(t)

for all β > 1 and 0 ≤ t < ∞.
The following analogue of the Hölder inequality is known, see [11, 19].

Theorem 2.7. For a non-negative measurable function w on Rn, a Young func-

tion Φ and its complementary function Φ̃, the following inequality is valid for all
measurable functions f and g: ‖fg‖L1(Rn) ≤ 2‖f‖LΦ

w
‖w−1g‖LeΦ

w
.

An analogy of Theorem 2.7 for weak type spaces is available. If we define

‖f‖WLΦ
w
≡ sup

λ>0
λ‖χ{|f |>λ}‖LΦ

w
,

we can prove the following by a direct calculation:

Corollary 2.8. Let Φ be a Young function and let B be a measurable set in Rn.
Then ‖χ

B
‖WLΦ

w
= ‖χ

B
‖LΦ

w
= 1

Φ−1(w(B)−1)
.
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In the next sections where we prove our main estimates, we need the following
lemma, which follows from Theorem 2.7.

Corollary 2.9. For a non-negative measurable function w on Rn, a Young func-
tion Φ and a ball B = B(x, r), the following inequality is valid:

‖f‖L1(B) ≤ 2
∥∥∥ 1

w

∥∥∥
LeΦ

w(B)
‖f‖LΦ

w(B).

Lemma 2.10. Let α ∈ (0, 1] and 1 < p0 ≤ p1 < ∞. Let also Φ be a Young
function which is lower type p0 and upper type p1. Assume in addition w ∈ Ap0.
For a ball B = B(x, r), the following inequality is valid:

‖f‖L1(B) . |B|Φ−1
(
w(B)−1

)
‖f‖LΦ

w(B).

Proof. We know that M is bounded on LΦ
w(B); see [10]. Thus,

‖f‖L1(B)

|B|
‖χB‖LΦ

w(B) ≤ ‖Mf‖LΦ
w(B) . ‖f‖LΦ

w(B).

So, Lemma 2.10 is proved. �

2.2. Weighted Hardy operator. We will use the following statement on the
boundedness of the weighted Hardy operator

H∗
wg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [6]. In (2.3) and (2.4) below, it will be

understood that 1
∞ = 0 and 0 · ∞ = 0.

Theorem 2.11. Let v1, v2 and w be weights on (0,∞). Assume that v1 is bounded
outside a neighborhood of the origin. Then the inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t) (2.3)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ)
< ∞. (2.4)

Moreover, the value C = B is the best constant for (2.3).

2.3. John-Nirenberg inequality. When we deal with commutators generated
by BMO functions, we need the following fundamental estimates.

Lemma 2.12. (The John–Nirenberg inequality [9]) Let b ∈ BMO(Rn).

(1) There exist constants C1, C2 > 0 independent of b, such that

|{x ∈ B : |b(x)− bB| > β}| ≤ C1|B|e−C2β/‖b‖∗ , ∀B ⊂ Rn

for all β > 0.
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(2) The following norm equivalence holds:

‖b‖∗ ≈ sup
x∈Rn,r>0

(
1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|pdy

) 1
p

for 1 < p < ∞.
(3) There exists a constant C > 0 such that∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t, (2.5)

where C is independent of b, x, r and t.

3. Intrinsic square functions in MΦ,ϕ
w (Rn)

The following lemma generalizes Guliyev’s lemma [3, 4] for Orlicz spaces:

Lemma 3.1. Let α ∈ (0, 1] and 1 < p0 ≤ p1 < ∞. Let Φ be a Young function
which is lower type p0 and upper type p1. Assume that the weight belongs to the
class w ∈ Ap0. Then for the operator Gα the following inequality is valid:

‖Gαf‖LΦ
w(B) .

∫ ∞

2r

‖f‖LΦ(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t

for all f ∈ LΦ,loc
w (Rn), B = B(x0, r), x0 ∈ Rn and r > 0.

Proof. With the notation 2B = B(x0, 2r), we decompose f as

f = f1 + f2, f1(y) ≡ f(y)χ2B(y), f2(y) ≡ f(y)χC(2B)(y).

We have

‖Gαf‖LΦ
w(B) ≤ ‖Gαf1‖LΦ

w(B) + ‖Gαf2‖LΦ
w(B)

by the triangle inequality. Since f1 ∈ LΦ
w(Rn), it follows from Theorem 1.3 that

‖Gαf1‖LΦ
w(B) ≤ ‖Gαf1‖LΦ

w(Rn) . ‖f1‖LΦ
w(Rn) = ‖f‖LΦ

w(2B). (3.1)

So, we can control f1.
Now let us estimate ‖Gαf2‖LΦ

w(B). Let x ∈ B = B(x0, r) and write out Gαf2(x)
in full:

Gα(f)(x) ≡

(∫∫
Γ(x)

(
sup
φ∈Cα

|f2 ∗ φt(y)|
)2

dydt

tn+1

) 1
2

. (3.2)

Let (y, t) ∈ Γ(x). We next write the convolution f2 ∗ φt(y) out in full:

|f2 ∗ φt(y)| =
∣∣∣∣t−n

∫
|y−z|≤t

φ

(
y − z

t

)
f2(z)dz

∣∣∣∣ . 1

tn

∫
|y−z|≤t

|f2(z)|dz.

Recall that the support of f is contained in C(2B). Keeping this in mind, let
z ∈ B(y, t) ∩ C(2B). Since (y, t) ∈ Γ(x), we have

|z − x| ≤ |z − y|+ |y − x| ≤ 2t. (3.3)

Another geometric observation shows

r = 2r − r ≤ |z − x0| − |x0 − x| ≤ |x− z|.
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Thus, we obtain

2t ≥ r (3.4)

from (3.3). So, putting together (3.2)–(3.4), we obtain

Gαf2(x) .

(∫ ∫
Γ(x)

∣∣∣∣t−n

∫
|y−z|≤t

|f2(z)|dz

∣∣∣∣2 dydt

tn+1

) 1
2

≤

(∫
t>r/2

∫
|x−y|<t

(∫
|z−x|≤2t

|f(z)|dz

)2
dydt

t3n+1

) 1
2

.

(∫
t>r/2

(∫
|z−x|≤2t

|f(z)|dz

)2
dt

t2n+1

) 1
2

.

We make another geometric observation:

|z − x| ≥ |z − x0| − |x0 − x| ≥ 1

2
|z − x0|. (3.5)

By Minkowski’s inequality, we obtain

Gαf2(x) .
∫

Rn

(∫
t>

|z−x|
2

dt

t2n+1

) 1
2

|f(z)|dz.

Thanks to (3.5), we have

Gαf2(x) .
∫
|z−x0|>2r

|f(z)|
|z − x|n

dz

.
∫
|z−x0|>2r

|f(z)|
|z − x0|n

dz

=

∫
|z−x0|>2r

|f(z)|
(∫ +∞

|z−x0|

dt

tn+1

)
dz

=

∫ ∞

2r

(∫
B(x0,t)

|f(z)|dz

)
dt

tn+1
.

If we invoke Lemma 2.10, then we obtain

Gαf2(x) .
∫ ∞

2r

‖f‖LΦ
w(B(x0,t))Φ

−1
(
w(B(x0, t))

−1
)dt

t
. (3.6)

Moreover,

‖Gαf2‖LΦ
w(B) .

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
.

Thus, it follows from (3.1) and (3.6) that

‖Gαf‖LΦ
w(B) . ‖f‖LΦ

w(2B) +

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
. (3.7)
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On the other hand, by (2.2) we get

Φ−1
(
w(B(x0, r))

−1
)

≈ Φ−1
(
w(B(x0, r))

−1
)
rn

∫ ∞

2r

dt

tn+1

.
∫ ∞

2r

Φ−1
(
w(B(x0, t))

−1
)dt

t

and hence

‖f‖LΦ
w(2B) .

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
. (3.8)

Thus, it follows from (3.7) and (3.8) that

‖Gαf‖LΦ
w(B) .

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
.

So, we are done. �

With this preparation, we can prove Theorem 1.2

Proof. Fix x ∈ Rn. Write

v1(r) ≡ ϕ1(x, r)−1, v2(r) ≡
1

ϕ2(x, r)Φ−1(w(B(x0, r))−1)
,

g(r) ≡ ‖f‖LΦ
w(B(x0,r)), ω(r) ≡ Φ−1(w(B(x0, r))

−1)

r
.

We omit a routine produce of truncation to justify the application of Theorem
2.11. By Lemma 3.1 and Theorem 2.11, we have

‖Gαf‖
M

Φ,ϕ2
w (Rn)

. sup
x∈Rn, r>0

1

ϕ2(x, r)

∫ ∞

r

‖f‖LΦ
w(B(x0,t))Φ

−1
(
w(B(x0, t))

−1
)dt

t

. sup
x∈Rn, r>0

1

ϕ1(x, r)
Φ−1

(
w(B(x0, r))

−1
)
‖f‖LΦ

w(B(x0,r))

= ‖f‖MΦ,ϕ1 .

So we are done. �

The following lemma is an easy consequence of the monotonicity of the norm
‖ · ‖LΦ

w
and Wilson’s estimate;

Gα,β(f)(x) ≤ β
3n
2

+αGα(f)(x) (x ∈ Rn),

which was proved in [24].

Lemma 3.2. For j ∈ Z+, denote

Gα,2j(f)(x) ≡
(∫ ∞

0

∫
|x−y|≤2jt

(Aαf(t, y))2dydt

tn+1

) 1
2

Let Φ be a Young function and 0 < α ≤ 1. Then we have

‖Gα,2j(f)‖LΦ
w

. 2j( 3n
2

+α)‖Gα(f)‖LΦ
w
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for all f ∈ LΦ
w(Rn).

Now we can prove Theorem 1.4. We write g∗λ,α(f)(x) out in full:

[g∗λ,α(f)(x)]2 =

∫∫
Γ(x)

+

∫∫
{Γ(x)

(
t

t + |x− y|

)nλ

(Aαf(t, y))2dydt

tn+1
:= I + II.

As for I, a crude estimate suffices;

I ≤
∫∫

Γ(x)

(Aαf(t, y))2dydt

tn+1
≤ (Gαf(x))2. (3.9)

Thus, the heart of the matters is to control II. We decompose the ambient space
Rn:

II ≤
∞∑

j=1

∫ ∞

0

∫
2j−1t≤|x−y|≤2jt

(
t

t + |x− y|

)nλ

(Aαf(t, y))2dydt

tn+1

.
∞∑

j=1

∫ ∞

0

∫
2j−1t≤|x−y|≤2jt

2−jnλ(Aαf(t, y))2dydt

tn+1

.
∞∑

j=1

∫∫
Γ

2j (x)

(Aαf(t, y))2

2jnλ

dydt

tn+1
:=

∞∑
j=1

(Gα,2j(f)(x))2

2jnλ
. (3.10)

Thus, putting together (3.9) and (3.10), we obtain

‖g∗λ,α(f)‖
M

Φ,ϕ2
w

. ‖Gαf‖
M

Φ,ϕ2
w

+
∞∑

j=1

2−
jnλ
2 ‖Gα,2j(f)‖

M
Φ,ϕ2
w

. (3.11)

By Theorem 1.2, we have

‖Gαf‖
M

Φ,ϕ2
w (Rn)

. ‖f‖
M

Φ,ϕ1
w (Rn)

. (3.12)

In the sequel, we will estimate ‖Gα,2j(f)‖
M

Φ,ϕ2
w

. We divide ‖Gα,2j(f)‖LΦ
w(B) into

two parts:

‖Gα,2j(f)‖LΦ
w(B) ≤ ‖Gα,2j(f1)‖LΦ

w(B) + ‖Gα,2j(f2)‖LΦ
w(B), (3.13)

where f1(y) ≡ f(y)χ2B(y) and f2(y) ≡ f(y) − f1(y). For ‖Gα,2j(f1)‖LΦ
w(B), by

Lemma 3.2 and (3.8), we have (see also, [5, p. 47, (5.4)])

‖Gα,2j(f1)‖LΦ
w(B) . 2j( 3n

2
+α)‖Gα(f1)‖LΦ

w(Rn)

. 2j( 3n
2

+α)‖f‖LΦ
w(2B)

. 2j( 3n
2

+α)

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
. (3.14)
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For ‖Gα,2j(f2)‖LΦ
w(B), we first write the quantity out in full:

Gα,2j(f2)(x) =

(∫∫
Γ

2j (x)

(Aαf(t, y))2dydt

tn+1

) 1
2

=

(∫∫
Γ

2j (x)

(
sup
φ∈Cα

|f ∗ φt(y)|
)2

dydt

tn+1

) 1
2

.

A geometric observation shows that

Gα,2j(f2)(x) .

(∫∫
Γ

2j (x)

(∫
|z−y|≤t

|f2(z)|dz

)2
dydt

t3n+1

) 1
2

.

Since |z − x| ≤ |z − y|+ |y − x| ≤ 2j+1t, we get

Gα,2j(f2)(x) .

(∫∫
Γ

2j (x)

(∫
|z−x|≤2j+1t

|f2(z)|dz

)2
dydt

t3n+1

) 1
2

.

(∫ ∞

0

(∫
|z−x|≤2j+1t

|f2(z)|dz

)2
2jndt

t2n+1

) 1
2

. 2
jn
2

∫
Rn

(∫ ∞

|z−x|
2j+1

|f2(z)|2

t2n+1
dt

) 1
2

dz . 2
3jn
2

∫
CB(x0,2r)

|f(z)|dz

|z − x|n
.

A geometric observation shows

|z − x| ≥ |z − x0| − |x0 − x| ≥ |z − x0| −
1

2
|z − x0| =

1

2
|z − x0|.

Thus, we have

Gα,2j(f2)(x) . 2
3jn
2

∫
|z−x0|>2r

|f(z)|
|z − x0|n

dz.

By Fubini’s theorem and Lemma 2.10, we obtain

Gα,2j(f2)(x) . 2
3jn
2

∫
|z−x0|>2r

|f(z)|
(∫ ∞

|z−x0|

dt

tn+1

)
dz

. 2
3jn
2

∫ ∞

2r

(∫
|z−x0|<t

|f(z)| dt

tn+1

)
dz

. 2
3jn
2

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))Φ

−1
(
w(B(x0, t))

−1
)dt

t
.

So,

‖Gα,2j(f2)‖LΦ
w(B) . 2

3jn
2

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
. (3.15)

Combining (3.13), (3.14) and (3.15), we have

‖Gα,2j(f)‖LΦ
w(B) . 2j( 3n

2
+α)

∫ ∞

2r

‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
.
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Consequently, we obtain

‖Gα,2jf‖
M

Φ,ϕ2
w (Rn)

. 2j( 3n
2

+α) sup
x0∈Rn

r>0

∫ ∞

r

Φ−1
(
w(B(x0, t))

−1
)‖f‖LΦ

w(B(x,t))

ϕ2(x0, r)

dt

t
.

Thus by Theorem 2.11 we have

‖Gα,2jf‖
M

Φ,ϕ2
w (Rn)

. 2j( 3n
2

+α) sup
x0∈Rn

r>0

Φ−1
(
w(B(x0, r))

−1
)

ϕ1(x0, r)
‖f‖LΦ

w(B(x,r))

= 2j( 3n
2

+α)‖f‖
M

Φ,ϕ1
w (Rn)

. (3.16)

Since λ > 3 +
2α

n
, by (3.11), (3.12) and (3.16), we can conclude the proof of the

theorem.

4. Commutators of the intrinsic square functions in MΦ,ϕ
w (Rn)

We start with a characterization of the BMO norm.

Lemma 4.1. Let 0 < p0 ≤ p1 < ∞. Let b ∈ BMO(Rn) and Φ be a Young
function which is lower type p0 and upper type p1. Then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
w(B(x, r))−1

) ∥∥b− bB(x,r)

∥∥
LΦ

w(B(x,r))
.

Proof. By Hölder’s inequality, we have

‖b‖∗ . sup
x∈Rn,r>0

Φ−1
(
w(B(x, r))−1

) ∥∥b− bB(x,r)

∥∥
LΦ

w(B(x,r))
.

Now we show that

sup
x∈Rn,r>0

Φ−1
(
w(B(x, r))−1

) ∥∥b− bB(x,r)

∥∥
LΦ

w(B(x,r))
. ‖b‖∗.

Without loss of generality, we may assume that ‖b‖∗ = 1; otherwise, we replace
b by b/‖b‖∗. By the fact that Φ is lower type p0 and upper type p1 and (2.1) it
follows that∫

B(x,r)

Φ

(
|b(y)− bB(x,r)|Φ−1

(
|B(x, r)|−1

)
‖b‖∗

)
dy

=

∫
B(x,r)

Φ
(
|b(y)− bB(x,r)|Φ−1

(
|B(x, r)|−1

))
dy

.
1

|B(x, r)|

∫
B(x,r)

[
|b(y)− bB(x,r)|p0 + |b(y)− bB(x,r)|p1

]
dy . 1.

By Lemma 2.5 we get the desired result. �

Remark 4.2. Note that a counterpart to Lemma 4.1 for the variable exponent
Lebesgue space Lp(·) case was obtained in [8].
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Lemma 4.3. Let α ∈ (0, 1], 1 < p0 ≤ p1 < ∞ and b ∈ BMO(Rn). Let Φ be a
Young function which is lower type p0 and upper type p1. Then the inequality

‖[b, Gα]f‖LΦ
w(B(x0,r))

.
‖b‖∗

Φ−1
(
w(B(x0, r))−1

) ∫ ∞

2r

(
1 + ln

t

r

)
‖f‖LΦ

w(B(x0,t))Φ
−1
(
w(B(x0, t))

−1
)dt

t

holds for any ball B(x0, r) and for any f ∈ LΦ,loc
w (Rn).

Proof. For an arbitrary x0 ∈ Rn, set B ≡ B(x0, r) for the ball centered at x0

and of radius r. Write f = f1 + f2 with f1 ≡ fχ
2B

and f2 ≡ fχ
C (2B)

. We

have ‖[b, Gα]f‖LΦ
w(B) ≤ ‖[b, Gα]f1‖LΦ

w(B) + ‖[b, Gα]f2‖LΦ
w(B) by the triangle in-

equality. From Theorem 1.6, the boundedness of [b, Gα] in LΦ
w(Rn) it follows

that ‖[b, Gα]f1‖LΦ
w(B) ≤ ‖[b, Gα]f1‖LΦ

w(Rn) . ‖b‖∗ ‖f1‖LΦ
w(Rn) = ‖b‖∗ ‖f‖LΦ

w(2B). For
‖[b, Gα]f2‖LΦ

w(B), we write it out in full

[b, Gα]f2(x) =

(∫∫
Γ(x)

sup
φ∈Cα

∣∣∣∣∫
Rn

[b(y)− b(z)]φt(y − z)f2(z)dz

∣∣∣∣2 dydt

tn+1

) 1
2

.

We then divide it into two parts:

[b, Gα]f2(x) ≤

(∫∫
Γ(x)

sup
φ∈Cα

∣∣∣∣∫
Rn

[b(y)− bB]φt(y − z)f2(z)dz

∣∣∣∣2 dydt

tn+1

) 1
2

+

(∫∫
Γ(x)

sup
φ∈Cα

∣∣∣∣∫
Rn

[bB − b(z)]φt(y − z)f2(z)dz

∣∣∣∣2 dydt

tn+1

) 1
2

:= A + B.

First, for the quantity A, we proceed as follows:

A =

(∫∫
Γ(x)∩Rn×[r,∞)

|b(y)− bB|2 sup
φ∈Cα

∣∣∣∣∫
Rn

φt(y − z)f2(z)dz

∣∣∣∣2 dydt

tn+1

) 1
2

.

(∫∫
Γ(x)∩Rn×[r,∞)

|b(y)− bB|2
(

1

tn

∫
B(x,t)

|f(z)| dz

)2
dydt

tn+1

) 1
2

.

Note that ∫
B(x,t)

|f(z)| dz . |B(x, t)|Φ−1(w(B(x, t)−1)‖f‖LΦ
w(B(x,t)).
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Thus, by virtue of the embedding `2(N) ↪→ `1(N), we obtain

A .

(∫∫
Γ(x)∩Rn×[r,∞)

|b(y)− bB|2Φ−1(w(B(x, t)−1)2‖f‖LΦ
w(B(x,t))

2dydt

tn+1

) 1
2

.

(∫ ∞

r

Φ−1(w(B(x, t)−1)2 log

(
2 +

t

r

)2

‖f‖LΦ
w(B(x,t))

2 dt

t

) 1
2

.

(
∞∑

j=1

Φ−1(w(B(x, 2jr)−1)2 log
(
2 + 2j

)2 ‖f‖LΦ
w(B(x,2jr))

2

) 1
2

.
∞∑

j=1

Φ−1(w(B(x, 2jr)−1) log
(
2 + 2j

)
‖f‖LΦ

w(B(x,2jr))

.
∫ ∞

r

Φ−1(w(B(x, t)−1) log

(
2 +

t

r

)
‖f‖LΦ

w(B(x,t))

dt

t
.

For the quantity B, since |y−x| < t, we have |x−z| < 2t. Thus, by Minkowski’s
inequality, we have a pointwise estimate:

B ≤

(∫∫
Γ(x)

∣∣∣∣∫
B(x,2t)

|bB − b(z)||f2(z)|dz

∣∣∣∣2 dydt

t3n+1

) 1
2

.

(∫ ∞

0

∣∣∣∣∫
B(x,2t)

|bB − b(z)||f2(z)|dz

∣∣∣∣2 dt

t2n+1

) 1
2

.
∫

CB(x0,2r)

|bB − b(z)||f(z)|
|x− z|n

dz.

Thus, we have

‖B‖LΦ
w(B) .

∥∥∥∫
C(2B)

|b(z)− bB|
|x0 − z|n

|f(z)|dz
∥∥∥

LΦ
w(B)

.

Since |z − x| ≥ 1

2
|z − x0|, we obtain

‖B‖LΦ
w(B) .

1

Φ−1
(
w(B(x0, r))−1

) ∫
C(2B)

|b(z)− bB|
|x0 − z|n

|f(z)|dz

≈
1

Φ−1
(
w(B(x0, r))−1

) ∫
C(2B)

|b(z)− bB||f(z)|
∫ ∞

|x0−z|

dt

tn+1
dz

≈
1

Φ−1
(
w(B(x0, r))−1

) ∫ ∞

2r

(∫
2r≤|x0−z|≤t

|b(z)− bB||f(z)|dz

)
dt

tn+1

.
1

Φ−1
(
w(B(x0, r))−1

) ∫ ∞

2r

(∫
B(x0,t)

|b(z)− bB||f(z)|dz

)
dt

tn+1
.
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We decompose the matters by using the triangle inequality:

‖B‖LΦ
w(B) .

1

Φ−1
(
w(B(x0, r))−1

) ∫ ∞

2r

(∫
B(x0,t)

|b(z)− bB(x0,t)||f(z)|dz

)
dt

tn+1

+

∫ ∞

2r

|bB − bB(x0,t)|
Φ−1

(
w(B(x0, r))−1

) (∫
B(x0,t)

|f(z)|dz

)
dt

tn+1

Applying Hölder’s inequality, by Lemma 4.1 and (2.5) we get

‖B‖LΦ
w(B) .

∫ ∞

2r

∥∥|b− bB(x0,t)|w(·)−1
∥∥

LeΦ
w(B)

‖f‖LΦ
w(B(x0,t))dt

tn+1Φ−1
(
w(B(x0, r))−1

)
+

∫ ∞

2r

|bB − bB(x0,t)|‖f‖LΦ
w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t

. ‖b‖∗
∫ ∞

2r

(
1 + ln

t

r

)
‖f‖LΦ

w(B(x0,t))

Φ−1
(
w(B(x0, t))

−1
)

Φ−1
(
w(B(x0, r))−1

) dt

t
.

Summing ‖A‖LΦ
w(B) and ‖B‖LΦ

w(B), we obtain

‖[b, Gα]f2‖LΦ
w(B)

.
‖b‖∗

Φ−1
(
w(B(x0, r))−1

) ∫ ∞

2r

(
1 + ln

t

r

)
‖f‖LΦ

w(B(x0,t))Φ
−1
(
w(B(x0, t))

−1
)dt

t
.

Finally,

‖[b, Gα]f‖LΦ
w(B) . ‖b‖∗ ‖f‖LΦ

w(2B)

+
‖b‖∗

Φ−1
(
w(B(x0, r))−1

) ∫ ∞

2r

(
1 + ln

t

r

)
‖f‖LΦ

w(B(x0,t))Φ
−1
(
w(B(x0, t))

−1
)dt

t
,

and the statement of Lemma 4.3 follows by (3.8). �

Finally, Theorem 1.7 follows by Lemma 4.3 and Theorem 2.11 in the same
manner as in the proof of Theorem 1.2.
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