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1. Introduction

In classical differential geometry; a general helix in the Euclidean 3-space,
E3, is a curve with constant slope which means that it makes a constant
angle with a fixed direction (the axis of the helix). A classical result stated
by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845
(see for details [14, 18] ) is: A necessary and sufficient condition that a curve
be a general helix is that the ratio of curvature to torsion be constant. In
particular circular helices where both curvatures and torsion are constant so
as plane curve where the torsion vanish identically provide two subclasses
of general helices.

The Lancret theorem was revisited and solved by BARROS [4] in three
dimensional real space forms by using the notion of Killing vector fields
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along curves. Characterizations for helices and Cornu spirals in those back-
grounds were also obtained by ARROYO, BARROS and GARAY in [1].

For general helices in semi-Riemannian settings, including Lorentzian
ones, we refer the reader to [5, 6, 7, 8, 9].

Recently, IzumivA and TAKEUCHI in [10], have introduced the concept
of slant helix in Euclidean 3-space. A slant helix in Euclidean space E? was
defined by the property that the principal normal makes a constant angle
with a fixed direction. Moreover, Izumiya and Takeuchi showed that v is a
slant helix if and only if the geodesic curvature of the principal normal of a
space curve -y is a constant function.

In [12], KuLA and YAYLI studied the spherical images under both tan-
gent and binormal indicatrices of slant helices and obtained that the spheri-
cal images of a slant helix are spherical helix. In [13], the authors charac-
terize slant helices by certain differential equations verified for each one
of obtained spherical indicatrix in FEuclidean 3-space. Recently, ALl and
LoPEz in [2], have studied slant helix in Minkowski 3-space. They showed
that the spherical indicatrix of a slant helix in E$ are helices. Also in [3],
ALl and TURGUT, studied the position vector of a timelike slant helix in
E3,

In this paper, we consider a spacelike curve in Minkowski 3-space and
we obtained its spherical indicatrix and their Frenet apparatus. Finally, we
obtain some certain differential equations for a space like curve to be a slant
helix by the help of spherical indicatrix of the curve and well known results
obtained by ALI and LOPEZ in [2].

2. Preliminaries

The Minkowski 3—space E:f is the Euclidean 3-space E3 equipped with
indefinite flat metric given by g = —da? + dz + dx3, where (21,22, 73)
is a rectangular coordinate system of E$. Recall that a vector v € E}
can be spacelike if g(v,v) > 0 or v = 0, timelike if g(v,v) < 0 and null
(lightlike) if g(v,v) = 0 and v # 0. The norm of a vector v is given by
[lv]| = V/|g(v,v)| and two vectors v and w are said to be orthogonal if
g(v,w) = 0. An arbitrary curve a(s) in E$ can locally be spacelike, timelike
or null (lightlike), if all its velocity vectors o'(s) are spacelike, timelike
or null, respectively. Spacelike or a timelike curve « has unit speed, if
g(d/(s),d/(s)) = £1. A null curve « is parameterized by pseudo-arc s, if
g(a"(s),a”(s)) = 1 (see [15]). For a non-null unit speed space curve a(s)
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in the space E} with non-null normals, the following Frenet formulae are
given in [6, 9]

T'(s) = 3(s)N(s),
(2.1) N'(s) = —epe13¢(s)T(s) +7(s)B(s),
B'(s) = —e1e27(s) N (s),

where g(T'(s),T(s)) = eo = £1, g(N(s),N(s)) = e1 = £1 and g(B(s),
B(s)) = e = £1.

If v is a pseudo null curve, i.e. « is a spacelike curve with a null principal
normal vector IV, then the following Frenet formulas hold (see [16])

T'(s) = =(s)N(s),
"(s) = (8) (s),
B'(s) = —s(s)T(s) —7(s) B(s),

where T'(s) = o/(s), N(s) = &'(s) and g(T,T) = 1,9(N,N) = g(B,B) =
0,9(T,N)=g(T, B)=0,9(N,B) = 1.

For a pseudo null curve, ¢ can take only two values: 2 = 0 when « is a
straight line, or s =1 in all other cases.

If o is a null curve then the following Frenet formulas hold (see [16, 19])

=

(2.2)

T'(s) = #(s)N(s),
(2.3) N'(s) = 7(s)T(s) —»(s) B(s),
B'(s)= —7(s)N(s),

where ¢(7.,7) = 0, g(N,N) = 1, g(B,B) = 0, g(I,N) = g(N,B) = 0,
g(T,B) = 1.

For a null curve, s = 0 can take only two values: » = 0 when « is a
straight line, or s =1 in all other cases (see [16, 19]).

It is well known that, the pseudo - Riemannian sphere with radius r =
1 and centered at origin is defined by S? = {p €E3:g(p,p) = 1}, the
pseudohyperbolic space with radius » = 1 and centered at origin is defined
by H = {p €k :g(p,p) = —1} are the hyperquadrics with dimension 2
and index 1 and with dimension 2 and index 0, respectively (see [15]).

3. Spherical indicatrix of a spacelike curve in Minkowski
3-space
In Fuclidean geometry, the spherical indicatrix of a space curve defined
as follows:
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Let a be a unit speed regular curve in Euclidean 3-space with Frenet
vectors t, n and b. The unit tangent vectors along the curve a generate
a curve (t) on the sphere of radius 1 about the origin. The curve (t) is
called the spherical indicatrix of ¢ or more commonly, (¢) is called tangent
indicatrix of the curve a. If @ = «(s) is a natural representation of «,
then (t) = t(s) will be a representation of (¢). Similarly one considers the
principal normal indicatrix (n) = n(s) and binormal indicatrix (b) = b(s).
It is clear that, this definition is related with spherical curve (see [18]).

In Minkowski 3-space E3, the definition of spherical indicatrix of a space
curve is similar with the Euclidean case but richer than Euclidean case. For
example, if position vector of a spacelike curve is a spacelike then the curve
lies on the pseudo-Riemannian sphere S%, if its position vector is a timelike
then the curve lies on pseudohyperbolic space H3. In Minkowski space, for
the characterizations of spherical curves, we refer the papers of PETROVIC-
TORGASEV and SUCUROVIC [16, 17] and INoGUCHI and LEE [11].

In this section, we investigate the Frenet apparatus of the tangent indica-
trix, principal normal indicatrix and binormal indicatrix of a spacelike curve
with spacelike, timelike and null principal normal vectors in Minkowski 3-
space. We will give only some theorems with their proofs. Because the
others can easily prove that, using the similar method. Here, by D we
denote the covariant differentiation of E3.

We will give to "Lemma 3.1” and "Lemma 3.2” as unproved, since we
will use in next sections.

Lemma 3.1. Let a be a unit speed spacelike curve with space principal
normal vector in E}. Geodesic curvature of the spherical image of spacelike

principal normal indicatriz (N) of « is o1 = ﬁ (%)/ and geodesic
curvature of the spherical image of timelike principal normal indicatriz (N)

2 T\ 2

of a is o9 = where 2 — 32 does not vanish.

(r2—»2)3/2 (;) ’
Lemma 3.2. Let a be a unit speed spacelike curve with space principal
normal vector in E3. Geodesic curvature of the spherical image of timelike
2
s

372 (f{)/, where 72 + 52

principal normal indicatriz (N) of « is o3 = e

does not vanish.
In the next three theorems, we obtain Frenet formulae of tangent in-

dicatriz B, principal normal indicatriz v and binormal indicatriz § of the
spacelike curve o with spacelike principal normal vector in [E3.
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Proposition 3.1. Let o be a unit speed spacelike curve with spacelike
principal normal vector in B} with Frenet vectors T, N, B and curvatures
s, 7. If the Frenet frame of the tangent indicatriz B of the space curve o is
{T3,Ng,Bg}, then we have the Frenet-Serret formulae:

(3.1) DTgTﬁ = %5N/3,DT[3N5 = —%5T5 + Tng,DTBB/g = T/gN/g,

where
Tz = N,
1
3.2 Ng=——(—T+71B),
(3:2) = e )
1
Bg=———(—71T+ »B
P e D ( )
e(>2—72) . %(1), . .
and »g = is the curvature of 3, 73 = —(%271;2) is the torsion
of B.

Theorem 3.1. Let o be a unit speed spacelike curve with spacelike prin-
cipal normal vektor in E:{’ with Frenet vectors T, N, B and curvatures s, T.
If the Frenet frame of the principal normal indicatriz v of the space curve
a is {Ty, Ny, B}, then we have the Frenet-Serret formulae for three cases:

Case 1. If s> > 72, v is a spacelike curve.

a. If -1 <oy <1, Frenet frame of v is {Ty, Ny, B}, then we have the
Frenet-Serret formulae:

(3.3a)  Dp T, =N, Dp,N, = —,T, +7,B,, Dr,B, =1,N,,

where
1
T, = — (—=»T+71B),
w2 —T
1 oL T o1 )
34a) N, = _ T-N+—-2% _p).
( ) K \/1—0%< V2 — 72 w2 — 72

) (—TT — o1V 2 — 12N + %B) )

Moreover, the curvature of v is 3, = /1 — a% and the torsion of v is
1 /
o
V2 —12(1 — 0?) !

Ty =
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b. Ifo < —1 or1 < o1, Frenet frame of v is {T,, N, By}, then we have
the Frenet-Serret formulae:

(3.3b) Dr, T, = »,Ny, Dy, Ny = 50,1, + 7,B, Dr,By = 74N,
where

(=»T+71B),

T
’Y \/77_2
N—i—iB),

T
N. T —
(3.4b) 7T \/01 1 < \/%2 — 72 w2 — 12

By = 1;( — (=77 = o1v/5> = 72N + =B).

Moreover, the curvature of v is », = Voi —1 and the torsion of v is

T = 1 o'
1= Vo Ot
Case IL. If 5<7?, v is a timelike curve Frenet frame of 7y is {T, N, By},
then we have the Frenet-Serret formulae:

(35)  DpT, =N, D N, =,T, +7,B,, Dr,B, = —7,N,,

where
T, = ! T B
YT 7_2_%2 (_% +T )?
1 TOY #09 )
3.6 N, = T+N- 222 _pB).
(36) 7 \/1+J% (\/7'2—%2 T2 — 32

1
B, = ) (TT—O'Q\/TQ—%QN—%B>.

VTR =)
Moreover, the curvature of 7y is », = /1 + o3 and the torsion of 7y is

1 /
(X
ViE— 21402 °

Ty = —

Case IIL. If s =12, v is a null curve and »y =0 so0 that «y is a null
straight line.

Proof. Case 1: If ? > 72, v is a spacelike curve.
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a. For —1 < o1 < 1. Let s be arc-parameter of o and s, be the
arc-parameter of

(3.7) Y (5,) = N (s).
Differentiating (3.7) with respect to s and by using Frenet formulas given
. dy dsy _ dN(s)
1n (31), we get E " ds ds
dsy
(3.8) T, (57) 2 = () T (s) + 7 () B (s)

and we have

2
(3.9) 9 (T (32). T (s)) = (j—) (2 (s) = 72 (s)).

Using the Eq.(3.9) we can easily show that g (T (s,),T, (sy)) =1 and

dsy

o = 72 (s) — 72 (s).

So, we can rewrite the Eq.(3.8)
1

B10)  Ty(s) = e ()T () 4 9B (5).

Differentiating (3.10) with respect to s

dT, (s —7 (L) 52 2 (Z) 52
(3.11) 2 (5) . (”)2 5T (s)=N (s)+—; ) 5B (s)
dsy (5% () =72 (s)) (5% () =72 (s))
From the norm of dT;T(j”)
dT, (s-)
%=
Ty (sv)
If we consider N, (sy) = des(:) , we can write
Ty
1 o7 o\ %
3.12) N = — T(s) — N(s)+ —=DB(s) | .
(312) %, () = ey (- 2T - N0 + 2
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Now we know that B, (sy) = T, (sy) x N, (sy) and using the equations
(3.10), (3.12) we show that

B, (s4) = ! (— — o1V x? —12N(s) + »B( ))
VI=oDG2 =)

where we can easily see that g(Ny(sy), Ny(sy)) = 1 and g(By(s4), By(sy)) =

—1, that is, N, is spacelike vector and B, is timelike vector. So, v is

a spacelike curve with spacelike principal normal and timelike binormal.

Moreover, the Frenet formulas of v is given by Dr T, = »yN,, Dr, N, =

—»y T, + 7By, Dr, B, = 7,N,. By using the equality of Dy, T, = dT;S(j”)
sy N, with the Eq. (3.11) and (3.12), we get s, = /1 — o%. Similarly,
from the equation Dy, N, = —3, T, + 7B, we can easily see that 7, =

\/ﬁa . )01

b. The proof of (b) is obvious.

Case 2: If »? < 72, v is a timelike curve. By using the method in the
Case (1) the proof of Case (2) is obvious.

Case 3: If 52 (s) = 72 (s), v is a null curve, using the Eq.(3.9) we can
easily show that g (7% (s,), Ty (sy)) = 0.

Differentiating (3.8) with respect to s and using Frenet formulas of ~
null curve s, N, (s5) d;g . ds” + T, (sy) % =~/ (8)T (5) — 3 (s) N (s) +
7 (s) B (s) + 72 (s) N (s) or

S 2 25
(3.13) N, (s) (%) LT, (s,) % — ()T () +7 () B(s).

From the last equation we have
ds, \? d’s
g (wvw () () 1) T
ds.\ 2 d?%s 2 2 ds\*
2y Ny (54) <d—;> + T (s4) ﬁ) = ()" = (), %'QY (d—;> =0,

where d_ # 0. So, we get s, = 0, that is, v is a null straight line. These
complete the proof. O

Corollary 3.1. If a is a spacelike general helixz with spacelike principal
normal vector and non-zero curvatures s, T in B3 then the principal normal
indicatriz of o is null-geodesic lying in pseudo sphere S?.
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Proposition 3.2. Let o be a unit speed spacelike curve with spacelike
principal normal vector in B} with Frenet vectors T, N, B and curvatures
», 7. If Frenet frame of the binormal indicatriz & of the space curve « is
{T}s, Ns, Bs}, then we have the Frenet-Serret formulae:

(3.14) Dr,Ts = »5N5, D1yNs = — 515 + 17585, D1y Bs = 75 N5,
where
Ts = N, )
(3.15) Ns = E(T—TQ) (=T +7B),
Bs = 5 (%2 —72) (77T + %B)
e(2—?) 2(Z)

and x5 = is the curvature of §, 75 = P o)) is the torsion of 0.

In the next three theorems, we obtain Frenet formulae of tangent in-
dicatrixz B, principal normal indicatriz v and binormal indicatriz § of the
spacelike curve a with timelike principal normal vector in E3.

Proposition 3.3. Let a be a unit speed spacelike curve with timelike
principal normal vector in E} with Frenet vectors T, N, B and curvatures
s, 7. If the Frenet frame of the tangent indicatriz B of the space curve o is
{Tg, Nﬁ,BB}, then we have the Frenet-Serret formulae:

(3.16) DTBTB = %5N5, DT[;NB = %5T5 + T/gB/g, DTBBB = —TgNg,

where
Tg =N,
_ 1
_ 1
Bs = o=y (T +#B)
and g = 7”(%?—72) is the curvature of B, 73 = —% is the torsion of (.

Theorem 3.2. Let a be a unit speed spacelike curve with timelike prin-
cipal normal vector in Ez{’ with Frenet vectors T, N, B and curvatures s, T.



10 1. GOK, S. KAYA NURKAN, K. ILARSLAN, L. KULA and M. ALTINOK 10

a. If —1 < o3 < 1 and the Frenet frame of the principal normal indica-
triz v of the space curve « is {Tw N, B7}7 then we have the Frenet-Serret
formulae:

(3.18&) DTA,T'Y = %'YN’W DT’YN'Y = %’YT’Y + T’YB’Y’ DTﬂ,ny = T’YN’Y’

where
T, - (T4rB)
= > TB),
T a2+ 12
1 TO3 %03
3.19 N, = T+ N — B
(3.192) i M(%Q—I—TQ * 2% + 72 )’
1
_ T 2 2N _
B7_¢(1—a§)(%2+72)< 7T — o3/ 72 + 72N %B).

Moreover, the curvature of v is 2y = /1 —o§ and the torsion of ~ is
1

/
T = —F7————01q.
i (1—02)(2+72) 3

b. If o3 < —1 or 1 < o3 and the Frenet frame of the principal normal
indicatriz v of a space curve « is {TV,NW Bv}, then we have the Frenet-
Serret formulae:

(3.18b) -DT,YT'y = %’YN’Y’ DTH/I\I,y = —%’yT’y + T’YB’Y’ DTﬂ,ny = T’YN’Y’

where
T, = — (T +1B)
= > TB),
T V2 F 2
1 TO3 no3
3.19b N, = T+ N — B
1
_ e 2 2N _
B, \/(0—2—1)(%2+72)< 7T — o3v/ 72 + 72N %B).

Moreover, the curvature of 7y is s, = \/og — 1 and the torsion of v is
1 /
o
Vo3 - D62+ )

Proposition 3.4. Let o be a unit speed spacelike curve with timelike
principal normal vector in E} with Frenet vectors T, N, B and curvatures

Ty =
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s, T. If the Frenet frame of the binormal indicatriz 0 of the space curve o
is {Ts5,Ng,Bgs}, then we have the Frenet-Serret formulae:

(3.20) DT5T5 = 25N, DT5N5 = »5T5 + 75Bs, DT5B5 = —715Ny,

where
Ts = N,
1
Ns=——— (T + 7B),
(3.21) (%2 =+ 7'2) ( )
1
Bs=—— (7T — %B)
GE+ )
(52472) . 2(Z) . .
and x5 = Y-——= s the curvature of §, 75 = R 18 the torsion of 9.

In the next three theorems, we obtain Frenet formulae of tangent in-
dicatriz 3, principal normal indicatriz v and binormal indicatriz § of the
spacelike curve o with null principal normal vector in E3.

Theorem 3.3. Let a be a unit speed spacelike curve with null prin-
cipal normal vector in Ez{’ with Frenet vectors T, N, B and curvatures s,
7. If the Frenet frame of the tangent indicatriz 8 of the space curve o is
{Tg, N, Bﬁ}, then the tangent indicatriz B of o is a null straight line.

Theorem 3.4. Let a be a unit speed spacelike curve with null principal
normal vector in E:f with Frenet vectors T, N, B and curvatures », 7. If the
Frenet frame of the principal normal indicatriz v of the space curve a is
{T«,, N, Bv} , then the principal normal indicatriz v of the space curve o
1s a null straight line.

Proof. Let a be a spacelike curve with null principal normal vector
and the Frenet frame of the tangent indicatrix v of a space curve « is
{Ty,N,,B,}. In this case, we can easily show that

(3.23) g(Ty (54), Ty (sy)) = 0.

Differentiating this equationT’, (s,) ‘Zs—g =—x(s)T (s)+7 (s) B(s) with

respect to s and using Frenet formulas of v null curve we found s, N, (s,) dsy,

ds
B LT, (5y) T3 = —5¢ (5) T (s) — 562 (s) N (5) + 7 (s) B(s) + 72 (s) N (s)

or

2
(3.24) 2y N (8) (%) + T, (sy) g2 72 (s) N (s).
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From the last equation we have

2
d*s,

ds.\ 2
) <%’YN’Y (s4) (d—;> + Ty (54) 152

ds,\ 2 d’s ds,\*
%'YN’Y (S»y) (d—;> + T'Y (S,Y) ﬁ) = O, %,QY (d—;> = O,
where ddig # 0. So, we get », = 0, that is, 7 is a null straight line. These

complete the proof. O

Proposition 3.5. Let a be a unit speed spacelike curve with null prin-
cipal normal vector in E:{’ with Frenet vectors T, N, B and curvatures s,
7. If the Frenet frame of the binormal indicatriz 0 of the space curve « is
{T's, Ns, Bs}, then we have the Frenet-Serret formulae:

(3.25)  Dp,T5 = »5Ns, Dr;Ns= —»5T5+ 175B5, Dr;Bs = 75N,
where
T;=—T—7B,
1 T’
(3.26) Ns=-T—--N-(1+2)B,
T T

/

1
Bs=T+ (1—T—|—T—>N+—B.
T T
Moreover, the curvature of § is x5 = T and the torsion of 0

T 4er! + (1 —r+ 7-?’) <T3+T27’—7—”T—|—(T’)2)

T T2

Ty = — ,
—% (1—1—%—:—2)

4. Characterizations of spacelike slant helices in Minkowski
3-space
In Minkowski 3-space, slant helix and its properties was studied by ALI
and LOPEZ in [2]. They proved the following theorems:

Theorem 4.1. Let o be a spacelike slant heliz with spacelike princi-
pal normal vector. In this case, the spherical image on pseudosphere S?
of the tangent indicatriz 8 of a and the binormal indicatriz § of a are a
pseudospherical helices (see [2]).
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Theorem 4.2. Let « be a spacelike curve with spacelike principal normal
vector in B3. Then « is a slant helix if and only if function of geodesic
curvature of the spherical image on pseudosphere S7 of the principal normal
indicatriz (N) of a is

P T\’
(4.1) on (s) = <(€(%2 _ 7.2))3/2 (;) ) (s)

1,2 =750,
-1 2 =740

2

constant. Where € = { } and everywhere »* — % does

not vanish (see [2]).

In this section, by using the above results, we obtain certain differential
equations for a spacelike curve a with spacelike principal normal vector to
be a slant helix in E$ according to the tangent vector field Ty, principal
normal vector field Ng and binormal vector field Bg of the curve [ which
is the tangent indicatriz of the curve a.

Theorem 4.3. Let a be a unit speed spacelike curve with spacelike prin-
cipal normal vector and Frenet vectors T', N, B and non-zero curvatures »
and T in E:f The curve o is a spacelike slant helix with spacelike principal
normal vector if and only if tangent vector field Ty of the curve B satisfies
one of the following equations:

2
%I %1/ %I
5
(4.2) D7, Ts— 3%—ZD%BT5 Sy (i) — x5 ¢ Dp, T3 =0 or
2
7_/ 7_l/ 7_/
5 5 5

(4.3) D3,Ts - 3%D%ﬁTﬂ -2 -3 <%> + Xo75 ¢ D, T =0,

where \f ER (A =1—p?), Mg €eR (N =1— %), € Ry and g, 15 are
curvature and torsion of the curve 3, respectively.

Proof. Suppose that « is a spacelike slant helix with spacelike principal
normal vector. Thus the tangent indicatrix 8 of « is a spherical helix

then we have f—g = p, i € Rg, where s3 and 75 are curvature functions

of B. From (3.1), we have Dr,Ts = 53Ng. By differentiating two times of
D, T = »3Ng with respect to sg, we get D%BTg = —2%5%/6T5—%2DTBT5—|—
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#5Ng + 5Dy N + 25573 B + 5575 D1, Bg. By using the Frenet equations
in (3.1), we get (4.2) easily. Also using the relation »g = p7g, u € Ry we
get the equation (4.3).

Conversely let us assume that (4.2) holds. From (3.1), we have

1 3
4.4 Bs=—Dp N, —1T%3.
(4.4) p= 5+ ol
Differentiating the last equality with respect to sg, we have
1 g
Dy,Bs = —— { D} Ty — 3—2D3 T,
T8 %ﬁ’rﬁ{ TP %3 Tz B
2
%// %/
B B 2 2
INEANT 75, %5 (28 )
(22— [ 2 22 (2 ) D+ (22 T
+%§<Tﬁ> 1 (%ﬁ+%,?é 75 BTG )
Using equations (3.1) and (4.2) in (4.5) we get (f—g)/ =0 and }Tt—g = ﬁ
(non-zero constant). Thus, from (3.1) and (3.2), we obtain o, = ;—‘; =

constant. According to the Theorem 4.2., « is a spacelike slant heliz in E3.
The similar proof can be done by using the equation (4.3).
O
For the next two theorems, we omit their proofs since they can be done
easily with similar way with above proof.

Theorem 4.4. Let a be a unit speed spacelike curve with spacelike prin-
cipal normal vector and Frenet vectors T', N, B and non-zero curvatures »
and T in E:l" The curve a is a spacelike slant helix with spacelike principal
normal vector if and only if the principal normal vector field Ng of the curve
B satisfies one of the following equations:

/

2 »3 2
(46) DTBNﬁ_ %_ﬁDTﬁNB—i—)\Q%ﬁNﬁ =0 or
i’
(4.7) D%, Ng — %DTﬁNﬁ — Mi75Ns =0,

where \j ER A1 =1—p?), o €R (Mg =1— %), € Ry and s, T3 are
curvature and torsion of the curve B, respectively.
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Theorem 4.5. Let o be a unit speed spacelike curve with spacelike prin-
cipal normal vector and Frenet vectors T', N, B and non-zero curvatures »
and T in E3.  The curve a is a spacelike slant heliz with spacelike princi-
pal normal vector if and only if the binormal vector field Bg of the tangent
indicatriz B of the curve a satisfies one of the following equations:

3 5 o s 25\ 9
7_/ 7_// 7_/ 2
49) D3 Bs—3-L2D% By~ {2 —3( L) 4 X72tDr,Bs=0
(4.9) Dz, Bg A Tﬁ+2Tﬁ 75 Bs = 0,
where \f ER A =1—p?), Mg €eR (N =1— %), € Ry and g, 15 are
curvature and torsion of the curve 3, respectively.

Remark 4.1. By similar way with above theorems, If we use eq. (3.3a),
(3.3b), (3.5) and (3.14), than we can easily find that differential equations
for principal normal indicatrix v and principal binormal indicatrix 0 of the
curve «, respectively.

Also, AL1 and LOPEZ in [2] proved the following theorems:

Theorem 4.6. Let o be a spacelike curve with timelike principal normal
vector. Then « is a slant heliz if and only if the function of geodesic curva-
ture of the spherical image on pseudohyperbolic space HZ of the principal
normal indicatriz (N) of « is

72 T\/
(4.19) o (s) = (W (;) > (s).

constant (see [2]).

Theorem 4.7. Let o be a spacelike slant helix with timelike principal
normal vector. In this case, the spherical image on pseudohyperbolic space
HZ of the tangent indicatriz 3 of a and the binormal indicatriz § of o are
a pseudohyperbolic helices (see [2]).

In the next three theorems, we obtain the differential equations of a
spacelike curve o with timelike principal normal vector to be a slant helix
in E} according to the tangent vector field Tp, principal normal vector
field Ng and binormal vector field Bg of the curve B which is the tangent
indicatriz of the curve a. We omit their proofs since they are similar with
the proof of Theorem 4.3.
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Theorem 4.8. Let a be a unit speed spacelike curve with timelike prin-
cipal normal vector curve with Frenet vectors T, N, B and with non-zero
curvatures 3 and T in E3. The curve o is a spacelike slant heliz with time-
like principal normal vector if and only if tangent vector field Tg of the
curve B satisfies one of the following equations:

3 5 o g 25\ 2
(4.20) DT[BTﬂ_S%_ﬂDT[BTﬁ_{%_ﬂ —3<%—6> +)\1%6}DT6T520 or

3 5 o 75 75\’ 2
(4.21) DTBTg—S%DTBTg— {%_3<%> —)\QTE}DTBTB =0,
where AMjand \g ER A\ =1—p%, Ag=1— N%, p € Ro) and »g and 75 are
curvature and torsion of the curve 3.

Theorem 4.9. Let a be a unit speed spacelike curve with timelike prin-
cipal normal vector curve with Frenet vectors T, N, B and with non-zero
curvatures » and T in E3. The curve « is a spacelike slant heliz with time-
like principal normal vector if and only if the principal normal vector field
Ng of the curve 8 satisfies one of the following equations:

/

V1
(4.22) D%, Ng — %—’BDTﬁNg — A53Ng =0 or
5

/

-
(4.23) D3, Nj — iDTBNﬁ + MTENg =0,

where AMjand \g ER A\ =1—p%, Ag=1— N%, p € Ro) and »g and 75 are
curvature and torsion of the curve 3.

Theorem 4.10. Let a be a unit speed spacelike curve with timelike
principal normal vector curve with Frenet vectors T', N, B and with non-
zero curvatures s and T in E3. The curve « is a spacelike slant heliz with
timelike principal normal vector if and only if the binormal vector field Bg
of the tangent indicatrixz 5 of the curve a satisfies one of the following
equations:

3 2B o 5\ 2
(4'24) DTﬁBﬁ - S_DTBBﬂ - Y — — +/\1%5 DTBBgzo or
<z

7_/ 7 7_/ 2
(4.25) D}, Bg— 3£D%BB5 - {—5 - (—5) - /\QTE}DTBBg =0,
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where Ajand \g €ER (A =1 —p?, Ay =1— M—lg, p € Ry) and »g and 73 are
curvature and torsion of the curve (.

Remark 4.2. By similar way with above theorem, If we use eq. (3.18a),
(3.18b) and (3.20), than we can easily find that differential equations for
principal normal indicatrix v and principal binormal indicatrix § of the
curve «, respectively.

5. Example

In this section we give an example of spacelike slant helix in Minkowski
3-space and draw its pictures and its tangent, binormal indicatrices by using
Mathematica.

We consider a spacelike slant helix « is deﬁned by a1 (s ) = 1 sin(17s),
s (s) = 335 sin(25s) + 22 sin(9s), ag(s) = — 495 cos(25s) + 25 cos(9s).
Since its position vector is a spacelike vector, the curve « lie on the
circular hyperboloid of one sheet (pseudosphere) with the equation — ( 92”2)2
15

= 1. From [20], the curve « is closed. The picture of the

2

(235‘5) (225)

curve « is rendered in Figure 1.

rrvaviklivaryes

Figure 1: Spacelike slant helix a.

The parametrization of the tangent indicatrix 8 = (B1, B2, 83) of the
spacelike slant helix avis 81 (s) = 33 cos(17s), Ba(s) = 1% cos(25s)+22 cos(9s),
Bs(s) = & sin(25s) — 22sin(9s). The picture of the helix 3 is rendered in
Figure 2.
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Figure 2: Tangent indicatrix 8 = (B1, B2, f3) of the spacelike slant helix a.

The parametrization of the binormal indicatrix § = (d1,d2,03) of the
spacelike slant helix a is 6 (s) = % sin(17s), da2(s) = 1% sin(25s)+ %—g sin(9s),
d3(s) = —2 cos(25s) + 22 cos(9s).

The picture of the helix § is rendered in Figure 3.

Figure 3: Binormal indicatrix 0 = (41, d2,03) of the spacelike slant helix a.
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