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We consider generalized Orlicz-Morrey spaces 𝑀
Φ,𝜑

(R𝑛
) including their weak versions 𝑊𝑀

Φ,𝜑
(R𝑛

). In these spaces we prove the
boundedness of the Riesz potential from 𝑀

Φ,𝜑1
(R𝑛

) to 𝑀
Ψ,𝜑2

(R𝑛
) and from 𝑀

Φ,𝜑1
(R𝑛

) to 𝑊𝑀
Ψ,𝜑2

(R𝑛
). As applications of those

results, the boundedness of the commutators of the Riesz potential on generalized Orlicz-Morrey space is also obtained. In all the
cases the conditions for the boundedness are given either in terms of Zygmund-type integral inequalities on (𝜑

1
, 𝜑
2
), which do not

assume any assumption on monotonicity of 𝜑
1
(𝑥, 𝑟), 𝜑

2
(𝑥, 𝑟) in 𝑟.

1. Introduction

The theory of boundedness of classical operators of the real
analysis, such as the maximal operator, fractional maximal
operator, Riesz potential, and the singular integral operators,
and so forth, has been extensively investigated in various
function spaces. Results on weak and strong type inequalities
for operators of this kind in Lebesgue spaces are classical
and can be found for example in [1–3]. This boundedness
extended to several function spaces which are generalizations
of 𝐿

𝑝
-spaces, for example, Orlicz spaces, Morrey spaces,

Lorentz spaces, Herz spaces, and so forth.
Orlicz spaces, introduced in [4, 5], are generalizations of

Lebesgue spaces 𝐿
𝑝
. They are useful tools in harmonic analy-

sis and its applications. For example, the Hardy-Littlewood
maximal operator is bounded on 𝐿

𝑝
for 1 < 𝑝 < ∞,

but not on 𝐿
1
. Using Orlicz spaces, we can investigate the

boundedness of the maximal operator near 𝑝 = 1 more
precisely (see [6–8]).

It is well known that the Riesz potential 𝐼
𝛼
of order 𝛼 (0 <

𝛼 < 𝑛) plays an important role in harmonic analysis, PDE,
and potential theory (see [2]). Recall that 𝐼

𝛼
is defined by

𝐼
𝛼
𝑓 (𝑥) = ∫

R𝑛

𝑓 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦, 𝑥 ∈ R

𝑛
. (1)

The classical result by Hardy-Littlewood-Sobolev states
that, if 1 < 𝑝 < 𝑞 < ∞, then the operator 𝐼

𝛼
is bounded from

𝐿
𝑝
(R𝑛) to 𝐿

𝑞
(R𝑛) if and only if 𝛼 = 𝑛((1/𝑝) − (1/𝑞)) and, for

𝑝 = 1 < 𝑞 < ∞, the operator 𝐼
𝛼
is bounded from 𝐿

1
(R𝑛) to

𝑊𝐿
𝑞
(R𝑛) if and only if 𝛼 = 𝑛(1 − (1/𝑞)). For boundedness of

𝐼
𝛼
on Morrey spaces 𝑀

𝑝,𝜆
(R𝑛), see Peetre (Spanne) [9] and

Adams [10].
The boundedness of 𝐼

𝛼
from Orlicz space 𝐿

Φ
(R𝑛) to

𝐿
Ψ
(R𝑛) was studied by O’Neil [11] and Torchinsky [12]

under some restrictions involving the growths and certain
monotonicity properties of Φ and Ψ. Moreover Cianchi [6]
gave a necessary and sufficient condition for the boundedness
of 𝐼

𝛼
from𝐿

Φ
(R𝑛) to𝐿

Ψ
(R𝑛) and from𝐿

Φ
(R𝑛) toweakOrlicz

space 𝑊𝐿
Ψ
(R𝑛), which contain results above.

In [13] the authors study the boundedness of the maximal
operator𝑀 and the Calderón-Zygmund operator𝑇 from one
generalized Orlicz-Morrey space 𝑀

Φ,𝜑
1

(R𝑛) to 𝑀
Φ,𝜑
2

(R𝑛)

and from𝑀
Φ,𝜑
1

(R𝑛) to the weak space 𝑊𝑀
Φ,𝜑
2

(R𝑛).
Our definition of Orlicz-Morrey spaces (see Section 3) is

different from that of Sawano et al. [14] and Nakai [15, 16].
The main purpose of this paper is to find sufficient

conditions on general Young functions Φ,Ψ and functions
𝜑
1
, 𝜑

2
which ensure the boundedness of the Riesz potential

𝐼
𝛼
from one generalized Orlicz-Morrey spaces 𝑀

Φ,𝜑
1

(R𝑛) to
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another 𝑀
Ψ,𝜑
2

(R𝑛) and from 𝑀
Φ,𝜑
1

(R𝑛) to weak generalized
Orlicz-Morrey spaces 𝑊𝑀

Ψ,𝜑
2

(R𝑛) and the boundedness of
the commutator of the Riesz potential [𝑏, 𝐼

𝛼
] from𝑀

Φ,𝜑
1

(R𝑛)

to𝑀
Ψ,𝜑
2

(R𝑛).
In the next section we recall the definitions of Orlicz and

Morrey spaces and give the definition of Orlicz-Morrey and
generalized Orlicz-Morrey spaces in Section 3. In Section 4
and Section 5 the results on the boundedness of the Riesz
potential and its commutator on generalized Orlicz-Morrey
spaces are obtained.

By 𝐴 ≲ 𝐵 we mean that 𝐴 ≤ 𝐶𝐵 with some positive
constant 𝐶 independent of appropriate quantities. If 𝐴 ≲ 𝐵

and 𝐵 ≲ 𝐴, we write 𝐴 ≈ 𝐵 and say that 𝐴 and 𝐵 are
equivalent.

2. Some Preliminaries on Orlicz and
Morrey Spaces

In the study of local properties of solutions of partial dif-
ferential equations, together with weighted Lebesgue spaces,
Morrey spaces 𝑀

𝑝,𝜆
(R𝑛) play an important role; see [17].

Introduced by Morrey Jr. [18] in 1938, they are defined by the
norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀
𝑝,𝜆

:= sup
𝑥,𝑟>0

𝑟
−𝜆/𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝
(𝐵(𝑥,𝑟))

, (2)

where 0 ≤ 𝜆 ≤ 𝑛, 1 ≤ 𝑝 < ∞. Here and everywhere in the
sequel 𝐵(𝑥, 𝑟) stands for the ball in R𝑛 of radius 𝑟 centered
at 𝑥. Let |𝐵(𝑥, 𝑟)| be the Lebesgue measure of the ball 𝐵(𝑥, 𝑟)
and |𝐵(𝑥, 𝑟)| = V

𝑛
𝑟
𝑛, where V

𝑛
is the volume of the unit ball in

R𝑛.
Note that 𝑀

𝑝,0
= 𝐿

𝑝
(R𝑛) and 𝑀

𝑝,𝑛
= 𝐿

∞
(R𝑛). If 𝜆 < 0

or 𝜆 > 𝑛, then 𝑀
𝑝,𝜆

= Θ, where Θ is the set of all functions
equivalent to 0 on R𝑛.

We also denote by 𝑊𝑀
𝑝,𝜆

≡ 𝑊𝑀
𝑝,𝜆

(R𝑛) the weak
Morrey space of all functions 𝑓 ∈ 𝑊𝐿

loc
𝑝
(R𝑛) for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑀

𝑝,𝜆

= sup
𝑥∈R𝑛,𝑟>0

𝑟
−𝜆/𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿
𝑝
(𝐵(𝑥,𝑟))

< ∞, (3)

where𝑊𝐿
𝑝
(𝐵(𝑥, 𝑟)) denotes the weak 𝐿

𝑝
-space.

We refer in particular to [19] for the classical Morrey
spaces.

We recall the definition of Young functions.

Definition 1. A function Φ : [0, +∞) → [0,∞] is called
a Young function if Φ is convex and left-continuous,
lim

𝑟→+0
Φ(𝑟) = Φ(0) = 0, and lim

𝑟→+∞
Φ(𝑟) = ∞.

From the convexity and Φ(0) = 0 it follows that any
Young function is increasing. If there exists 𝑠 ∈ (0, +∞) such
thatΦ(𝑠) = +∞, thenΦ(𝑟) = +∞ for 𝑟 ≥ 𝑠.

LetY be the set of all Young functionsΦ such that

0 < Φ (𝑟) < +∞ for 0 < 𝑟 < +∞. (4)

If Φ ∈ Y, then Φ is absolutely continuous on every closed
interval in [0, +∞) and bijective from [0, +∞) to itself.

Definition 2 (Orlicz space). For a Young functionΦ, the set

𝐿
Φ
(R

𝑛
) = {𝑓 ∈ 𝐿

loc
1

(R
𝑛
) : ∫

R𝑛
Φ(𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨) 𝑑𝑥

< +∞ for some 𝑘 > 0}

(5)

is called Orlicz space. If Φ(𝑟) = 𝑟
𝑝, 1 ≤ 𝑝 < ∞, then

𝐿
Φ
(R𝑛) = 𝐿

𝑝
(R𝑛). If Φ(𝑟) = 0 (0 ≤ 𝑟 ≤ 1) and Φ(𝑟) =

∞ (𝑟 > 1), then 𝐿
Φ
(R𝑛) = 𝐿

∞
(R𝑛). The space 𝐿

loc
Φ
(R𝑛)

endowed with the natural topology is defined as the set of all
functions 𝑓 such that 𝑓𝜒

𝐵
∈ 𝐿

Φ
(R𝑛) for all balls 𝐵 ⊂ R𝑛. We

refer to the books [20–22] for the theory of Orlicz spaces.
𝐿
Φ
(R𝑛) is a Banach space with respect to the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ

= inf {𝜆 > 0 : ∫
R𝑛

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑥 ≤ 1} . (6)

We note that

∫
R𝑛

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ

)𝑑𝑥 ≤ 1. (7)

For a measurable set Ω ⊂ R𝑛, a measurable function 𝑓, and
𝑡 > 0, let

𝑚(Ω, 𝑓, 𝑡) =
󵄨󵄨󵄨󵄨{𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 > 𝑡}

󵄨󵄨󵄨󵄨 . (8)

In the case Ω = R𝑛, we shortly denote it by 𝑚(𝑓, 𝑡).

Definition 3. The weak Orlicz space

𝑊𝐿
Φ
(R

𝑛
) := {𝑓 ∈ 𝐿

1

loc (R
𝑛
) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝐿
Φ

< +∞} (9)

is defined by the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝐿
Φ

= inf {𝜆 > 0 : sup
𝑡>0

Φ (𝑡)𝑚(
𝑓

𝜆
, 𝑡) ≤ 1} . (10)

For a Young functionΦ and 0 ≤ 𝑠 ≤ +∞, let

Φ
−1

(𝑠) = inf {𝑟 ≥ 0 : Φ (𝑟) > 𝑠} (inf 0 = +∞) . (11)

If Φ ∈ Y, then Φ
−1 is the usual inverse function of Φ. We

note that

Φ(Φ
−1

(𝑟)) ≤ 𝑟 ≤ Φ
−1

(Φ (𝑟)) for 0 ≤ 𝑟 < +∞. (12)

A Young function Φ is said to satisfy the Δ
2
-condition,

denoted by Φ ∈ Δ
2
, if

Φ (2𝑟) ≤ 𝑘Φ (𝑟) for 𝑟 > 0 (13)

for some 𝑘 > 1. If Φ ∈ Δ
2
, then Φ ∈ Y. A Young function Φ

is said to satisfy the ∇
2
-condition, denoted also by Φ ∈ ∇

2
, if

Φ (𝑟) ≤
1

2𝑘
Φ (𝑘𝑟) , 𝑟 ≥ 0, (14)

for some 𝑘 > 1. The function Φ(𝑟) = 𝑟 satisfies the Δ
2
-

condition but does not satisfy the∇
2
-condition. If 1 < 𝑝 < ∞,
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then Φ(𝑟) = 𝑟
𝑝 satisfies both the conditions. The function

Φ(𝑟) = 𝑒
𝑟
−𝑟−1 satisfies the∇

2
-condition but does not satisfy

the Δ
2
-condition.

For a Young function Φ, the complementary function
Φ̃(𝑟) is defined by

Φ̃ (𝑟) = {

sup {𝑟𝑠 − Φ (𝑠) : 𝑠 ∈ [0,∞)} , 𝑟 ∈ [0,∞) ,

+∞, 𝑟 = +∞.

(15)

The complementary function Φ̃ is also a Young function and
̃̃
Φ = Φ. If Φ(𝑟) = 𝑟, then Φ̃(𝑟) = 0 for 0 ≤ 𝑟 ≤ 1 and Φ̃(𝑟) =

+∞ for 𝑟 > 1. If 1 < 𝑝 < ∞, 1/𝑝 + 1/𝑝
󸀠
= 1, and Φ(𝑟) =

𝑟
𝑝
/𝑝, then Φ̃(𝑟) = 𝑟

𝑝
󸀠

/𝑝
󸀠. If Φ(𝑟) = 𝑒

𝑟
− 𝑟 − 1, then Φ̃(𝑟) =

(1 + 𝑟) log(1 + 𝑟) − 𝑟. Note that Φ ∈ ∇
2
if and only if Φ̃ ∈ Δ

2
.

It is known that

𝑟 ≤ Φ
−1

(𝑟) Φ̃
−1

(𝑟) ≤ 2𝑟 for 𝑟 ≥ 0. (16)

Note that Young functions satisfy the properties

Φ (𝛼𝑡) ≤ 𝛼Φ (𝑡) , if 0 ≤ 𝛼 ≤ 1,

Φ (𝛼𝑡) ≥ 𝛼Φ (𝑡) , if 𝛼 > 1,

Φ
−1

(𝛼𝑡) ≥ 𝛼Φ
−1

(𝑡) , if 0 ≤ 𝛼 ≤ 1,

Φ
−1

(𝛼𝑡) ≤ 𝛼Φ
−1

(𝑡) , if 𝛼 > 1.

(17)

The following analogue of the Hölder inequality is
known; see [23].

Theorem 4 (see [23]). For a Young functionΦ and its comple-
mentary function Φ̃, the following inequality is valid:

󵄩󵄩󵄩󵄩𝑓𝑔
󵄩󵄩󵄩󵄩𝐿
1
(R𝑛)

≤ 2
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿
Φ̃

. (18)

The following lemma is valid.

Lemma 5 (see [1, 24]). Let Φ be a Young function and 𝐵 a set
in R𝑛 with finite Lebesgue measure. Then

󵄩󵄩󵄩󵄩𝜒𝐵
󵄩󵄩󵄩󵄩𝑊𝐿
Φ
(R𝑛)

=
󵄩󵄩󵄩󵄩𝜒𝐵

󵄩󵄩󵄩󵄩𝐿
Φ
(R𝑛)

=
1

Φ−1 (|𝐵|
−1
)

. (19)

In the next sections where we prove our main estimates,
we use the following lemma, which follows fromTheorem 4,
Lemma 5, and (16).

Lemma 6. For a Young function Φ and 𝐵 = 𝐵(𝑥, 𝑟), the
following inequality is valid:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
1
(𝐵)

≤ 2 |𝐵|Φ
−1

(|𝐵|
−1
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵)

. (20)

3. Orlicz-Morrey and Generalized
Orlicz-Morrey Spaces

Definition 7 (Orlicz-Morrey space). For a Young function Φ

and 0 ≤ 𝜆 ≤ 𝑛, one denotes by 𝑀
Φ,𝜆

(R𝑛) the Orlicz-Morrey

space, the space of all functions 𝑓 ∈ 𝐿
loc
Φ
(R𝑛) with finite

quasinorm
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
Φ,𝜆

= sup
𝑥∈R𝑛,𝑟>0

Φ
−1

(𝑟
−𝜆

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

. (21)

Note that 𝑀
Φ,0

= 𝐿
Φ
(R𝑛) and if Φ(𝑟) = 𝑟

𝑝
, 1 ≤ 𝑝 < ∞,

then𝑀
Φ,𝜆

(R𝑛) = 𝑀
𝑝,𝜆

(R𝑛).
We also denote by 𝑊𝑀

Φ,𝜆
(R𝑛) the weak Orlicz-Morrey

space of all functions 𝑓 ∈ 𝑊𝐿
loc
Φ
(R𝑛) for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑀

Φ,𝜆

= sup
𝑥∈R𝑛,𝑟>0

Φ
−1

(𝑟
−𝜆

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿
Φ
(𝐵(𝑥,𝑟))

< ∞, (22)

where 𝑊𝐿
Φ
(𝐵(𝑥, 𝑟)) denotes the weak 𝐿

Φ
-space of measur-

able functions 𝑓 for which
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿
Φ
(𝐵(𝑥,𝑟))

≡
󵄩󵄩󵄩󵄩𝑓𝜒𝐵(𝑥,𝑟)

󵄩󵄩󵄩󵄩𝑊𝐿
Φ
(R𝑛)

. (23)

Definition 8 (generalized Orlicz-Morrey space). Let 𝜑(𝑥, 𝑟)

be a positive measurable function on R𝑛 × (0,∞) and Φ any
Young function. One denotes by 𝑀

Φ,𝜑
(R𝑛) the generalized

Orlicz-Morrey space, the space of all functions 𝑓 ∈ 𝐿
loc
Φ
(R𝑛)

with finite quasinorm
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
Φ,𝜑

= sup
𝑥∈R𝑛,𝑟>0

𝜑(𝑥, 𝑟)
−1
Φ
−1

(|𝐵(𝑥, 𝑟)|
−1
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

.

(24)

Also by𝑊𝑀
Φ,𝜑

(R𝑛) one denotes theweak generalizedOrlicz-
Morrey space of all functions 𝑓 ∈ 𝑊𝐿

loc
Φ
(R𝑛) for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑀

𝑝,𝜑

= sup
𝑥∈R𝑛,𝑟>0

𝜑(𝑥, 𝑟)
−1
Φ
−1

(|𝐵 (𝑥, 𝑟)|
−1
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿
Φ
(𝐵(𝑥,𝑟))

< ∞.

(25)

According to this definition, we recover the spaces 𝑀
Φ,𝜆

and𝑊𝑀
Φ,𝜆

under the choice 𝜑(𝑥, 𝑟) = (Φ
−1
(𝑟
−𝑛

)/Φ
−1
(𝑟
−𝜆

)):

𝑀
Φ,𝜆

= 𝑀
Φ,𝜑

󵄨󵄨󵄨󵄨󵄨𝜑(𝑥,𝑟)=(Φ−1(𝑟−𝑛)/Φ−1(𝑟−𝜆))
,

𝑊𝑀
Φ,𝜆

= 𝑊𝑀
Φ,𝜑

󵄨󵄨󵄨󵄨󵄨(Φ−1(𝑟−𝑛)/Φ−1(𝑟−𝜆))
.

(26)

According to this definition, we recover the generalized
Morrey spaces 𝑀

𝑝,𝜑
and weak generalized Morrey spaces

𝑊𝑀
𝑝,𝜑

under the choice Φ(𝑟) = 𝑟
𝑝, 1 ≤ 𝑝 < ∞:

𝑀
𝑝,𝜑

= 𝑀
Φ,𝜑

󵄨󵄨󵄨󵄨󵄨Φ(𝑟)=𝑟𝑝
,

𝑊𝑀
𝑝,𝜑

= 𝑊𝑀
Φ,𝜑

󵄨󵄨󵄨󵄨󵄨Φ(𝑟)=𝑟𝑝
.

(27)

Remark 9. There are different kinds of Orlicz-Morrey spaces
in the literature.Wewant tomake some comment about these
spaces.

Let 𝜑 : (0,∞) → (0,∞) be a function andΦ : (0,∞) →

(0,∞) a Young function.
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(1) For a cube 𝑄, define (𝜑, Φ)-average over 𝑄 by
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩(𝜑,Φ);𝑄

:= inf {𝜆 > 0 :
𝜑 (|𝑄|)

|𝑄|
∫
𝑄

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑥 ≤ 1}

(28)

and define its Φ-average over 𝑄 by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Φ;𝑄

:= inf {𝜆 > 0 :
1

|𝑄|
∫
𝑄

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑥 ≤ 1} .

(29)

(2) Define
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L
𝜑,Φ

:= sup
𝑄∈Q

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩(𝜑,Φ);𝑄

. (30)

The function space L
𝜑,Φ

is defined to be the Orlicz-
Morrey space of the first kind as the set of all
measurable functions 𝑓 for which the norm ‖𝑓‖L

𝜑,Φ

is finite.
(3) Define

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩M
𝜑,Φ

:= sup
𝑄∈Q

𝜑 (|𝑄|)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Φ;𝑄
. (31)

The function space M
𝜑,Φ

is defined to be the Orlicz-
Morrey space of the second kind as the set of all
measurable functions 𝑓 for which the norm ‖𝑓‖M

𝜑,Φ

is finite.

According to our best knowledge, it seems that L
𝜑,Φ

is
more investigated thanM

𝜑,Φ
. The spaceL

𝜑,Φ
is investigated

in [15, 16, 25–34] and the spaceM
𝜑,Φ

is investigated in [14, 35–
37].

4. Boundedness of the Riesz Potential in
Generalized Orlicz-Morrey Spaces

In this section sufficient conditions on the pairs (𝜑
1
, 𝜑
2
)

and (Φ,Ψ) for the boundedness of 𝐼
𝛼
from one generalized

Orlicz-Morrey spaces 𝑀
Φ,𝜑
1

(R𝑛) to another 𝑀
Ψ,𝜑
2

(R𝑛) and
from 𝑀

Φ,𝜑
1

(R𝑛) to the weak space 𝑊𝑀
Ψ,𝜑
2

(R𝑛) have been
obtained.

Necessary and sufficient conditions on (Φ,Ψ) for the
boundedness of 𝐼

𝛼
from 𝐿

Φ
(R𝑛) to 𝐿

Ψ
(R𝑛) and 𝐿

Φ
(R𝑛)

to 𝑊𝐿
Ψ
(R𝑛) have been obtained in [6, Theorem 2]. In the

statement of the theorem,Ψ
𝑝
is the Young function associated

with the Young function Ψ and 𝑝 ∈ (1,∞] whose Young
conjugate is given by

Ψ̃
𝑝 (𝑠) = ∫

𝑠

0

𝑟
𝑝
󸀠
−1
(B

−1

𝑝
(𝑟
𝑝
󸀠

))

𝑝
󸀠

𝑑𝑟, (32)

where

B
𝑝 (𝑠) = ∫

𝑠

0

Ψ (𝑡)

𝑡1+𝑝
󸀠
𝑑𝑡, (33)

and 𝑝
󸀠, the Holder conjugate of 𝑝, equals either 𝑝/(𝑝 − 1) or

1, according to whether 𝑝 < ∞ or 𝑝 = ∞ andΦ
𝑝
denotes the

Young function defined by

Φ
𝑝 (𝑠) = ∫

𝑠

0

𝑟
𝑝
󸀠
−1
(A

−1

𝑝
(𝑟
𝑝
󸀠

))

𝑝
󸀠

𝑑𝑟, (34)

where

A
𝑝 (𝑠) = ∫

𝑠

0

Φ̃ (𝑡)

𝑡1+𝑝
󸀠
𝑑𝑡. (35)

Recall that, if Φ and Ψ are functions from [0,∞) into
[0,∞], then Ψ is said to dominate Φ globally if a positive
constant 𝑐 exists such thatΦ(𝑠) ≤ Ψ(𝑐𝑠) for all 𝑠 ≥ 0.

Theorem 10 (see [6]). Let 0 < 𝛼 < 𝑛. Let Φ and Ψ Young
functions and letΦ

𝑛/𝛼
andΨ

𝑛/𝛼
be the Young functions defined

as in (34) and (32), respectively. Then
(i) the Riesz potential 𝐼

𝛼
is bounded from 𝐿

Φ
(R𝑛) to

𝑊𝐿
Ψ
(R𝑛) if and only if

∫

1

0

Φ̃ (𝑡)

𝑡1+𝑛/(𝑛−𝛼)
𝑑𝑡 < ∞ 𝑎𝑛𝑑 Φ

𝑛/𝛼
𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 Ψ 𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦.

(36)

(ii) The Riesz potential 𝐼
𝛼
is bounded from 𝐿

Φ
(R𝑛) to

𝐿
Ψ
(R𝑛) if and only if

∫

1

0

Φ̃ (𝑡)

𝑡1+𝑛/(𝑛−𝛼)
𝑑𝑡 < ∞, ∫

1

0

Ψ (𝑡)

𝑡1+𝑛/(𝑛−𝛼)
𝑑𝑡 < ∞,

Φ𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 Ψ
𝑛/𝛼

𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦, 𝑎𝑛𝑑Φ
𝑛/𝛼

𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 Ψ 𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦.

(37)

We will use the following statement on the boundedness
of the weighted Hardy operator

𝐻
𝑤
𝑔 (𝑡) := ∫

∞

𝑡

𝑔 (𝑠) 𝑤 (𝑠) 𝑑𝑠, 0 < 𝑡 < ∞, (38)

where 𝑤 is a weight.
The following theorem was proved in [38] (see, also [13]).

Theorem 11. Let V
1
, V
2
, and 𝑤 be weights on (0,∞) and V

1
(𝑡)

bounded outside a neighborhood of the origin. The inequality

ess sup
𝑡>0

V
2 (𝑡)𝐻𝑤

𝑔 (𝑡) ≤ 𝐶 ess sup
𝑡>0

V
1 (𝑡) 𝑔 (𝑡) (39)

holds for some 𝐶 > 0 for all nonnegative and nondecreasing 𝑔

on (0,∞) if and only if

𝐵 := sup
𝑡>0

V
2 (𝑡) ∫

∞

𝑡

𝑤 (𝑠) 𝑑𝑠

ess sup
𝑠<𝜏<∞

V
1 (𝜏)

< ∞. (40)

Moreover, the value 𝐶 = 𝐵 is the best constant for (39).

Lemma 12. LetΦ andΨ Young functions andΦ
𝑝
, 𝑝 ∈ (1,∞],

Young function defined as in (34). If ∫1
0
Φ̃(𝑡)/𝑡

1+𝑝
󸀠

𝑑𝑡 < ∞ and
Φ
𝑝
dominates Ψ globally, then

Φ
−1

(𝑟) ≲ 𝑟
1/𝑝

Ψ
−1

(𝑟) , 𝑓𝑜𝑟 𝑟 > 0. (41)
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Proof. If ∫1
0
Φ̃(𝑡)/𝑡

1+𝑝
󸀠

𝑑𝑡 < ∞, then

1 ≤ 2𝑟
−1/𝑝
󸀠

Φ̃
−1

(𝑟)Φ
−1

𝑝
(𝑟) , for 𝑟 > 0. (42)

For the proof of this claim see [39, page 50].
If Φ

𝑝
dominates Ψ globally, then a positive constant 𝐶

exists such that

Φ
−1

𝑝
(𝑟) ≤ 𝐶Ψ

−1
(𝑟) , for 𝑟 > 0. (43)

Indeed,

Ψ
−1

(𝑟) = inf {𝑡 ≥ 0 : Ψ (𝑡) > 𝑟}

≥ inf {𝑡 ≥ 0 : Φ
𝑝 (𝐶𝑡) > 𝑟}

=
1

𝐶
inf {𝐶𝑡 ≥ 0 : Φ

𝑝 (𝐶𝑡) > 𝑟}

=
1

𝐶
Φ
−1

𝑝
(𝑟) .

(44)

Thus, (41) follows from (42), (43), and (16).

The following lemma is valid.

Lemma 13. Let 0 < 𝛼 < 𝑛, Φ and Ψ Young functions, 𝑓 ∈

𝐿
loc
Φ
(R𝑛), and𝐵 = 𝐵(𝑥

0
, 𝑟). If (Φ,Ψ) satisfy the conditions (37),

then

󵄩󵄩󵄩󵄩𝐼𝛼𝑓
󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡

(45)

and if (Φ,Ψ) satisfy the conditions (36), then

󵄩󵄩󵄩󵄩𝐼𝛼𝑓
󵄩󵄩󵄩󵄩𝑊𝐿
Ψ
(𝐵)

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(46)

Proof. Suppose that the conditions (37) are satisfied. For
arbitrary 𝑥

0
∈ R𝑛, set 𝐵 = 𝐵(𝑥

0
, 𝑟) for the ball centered at

𝑥
0
and of radius 𝑟, 2𝐵 = 𝐵(𝑥

0
, 2𝑟). We represent 𝑓 as

𝑓 = 𝑓
1
+ 𝑓

2
, 𝑓

1
(𝑦) = 𝑓 (𝑦) 𝜒

2𝐵
(𝑦) ,

𝑓
2
(𝑦) = 𝑓 (𝑦) 𝜒∁

(2𝐵)
(𝑦) , 𝑟 > 0,

(47)

and have
󵄩󵄩󵄩󵄩𝐼𝛼𝑓

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≤
󵄩󵄩󵄩󵄩𝐼𝛼𝑓1

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

+
󵄩󵄩󵄩󵄩𝐼𝛼𝑓2

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

. (48)

Since 𝑓
1

∈ 𝐿
Φ
(R𝑛), 𝐼

𝛼
𝑓
1

∈ 𝐿
Ψ
(R𝑛), and from the

boundedness of 𝐼
𝛼
from 𝐿

Φ
(R𝑛) to 𝐿

Ψ
(R𝑛) (seeTheorem 10)

it follows that
󵄩󵄩󵄩󵄩𝐼𝛼𝑓1

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≤
󵄩󵄩󵄩󵄩𝐼𝛼𝑓1

󵄩󵄩󵄩󵄩𝐿
Ψ
(R𝑛)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿
Φ
(R𝑛)

= 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(2𝐵)

,

(49)

where constant 𝐶 > 0 is independent of 𝑓.

It is clear that 𝑥 ∈ 𝐵, 𝑦 ∈
∁
(2𝐵) implies (1/2)|𝑥

0
− 𝑦| ≤

|𝑥 − 𝑦| ≤ (3/2)|𝑥
0
− 𝑦|. We get

󵄨󵄨󵄨󵄨𝐼𝛼𝑓2 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 2

𝑛−𝛼
∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦. (50)

By Fubini’s theorem we have

∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦 ≈ ∫

∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ∫

∞

|𝑥0−𝑦|

𝑑𝑡

𝑡𝑛+1−𝛼
𝑑𝑦

≈ ∫

∞

2𝑟

∫
2𝑟≤|𝑥

0
−𝑦|<𝑡

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

𝑑𝑡

𝑡𝑛+1−𝛼

≲ ∫

∞

2𝑟

∫
𝐵(𝑥
0
,𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

𝑑𝑡

𝑡𝑛+1−𝛼
.

(51)

By Lemmas 6 and 12 for 𝑝 = 𝑛/𝛼 we get

∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
𝑑𝑦

≲ ∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Φ
−1

(𝑡
−𝑛

) 𝑡
𝛼−1

𝑑𝑡

≲ ∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(52)

Moreover,

󵄩󵄩󵄩󵄩𝐼𝛼𝑓2
󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡

(53)

is valid. Thus
󵄩󵄩󵄩󵄩𝐼𝛼𝑓

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(2𝐵)

+
1

Ψ−1 (𝑟
−𝑛

)

× ∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(54)

On the other hand, using the property of Young function
as it is mentioned in (16)

Ψ
−1

(𝑟
−𝑛

) ≈ Ψ
−1

(𝑟
−𝑛

) 𝑟
𝑛
∫

∞

2𝑟

𝑑𝑡

𝑡𝑛+1

≲ ∫

∞

2𝑟

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡

(55)

and we get

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(2𝐵)

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(56)

Thus

󵄩󵄩󵄩󵄩𝐼𝛼𝑓
󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(57)
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Suppose that the conditions (37) are satisfied. From
the boundedness of 𝐼

𝛼
from 𝐿

Φ
(R𝑛) to 𝑊𝐿

Ψ
(R𝑛) (see

Theorem 10) and (56) it follows that
󵄩󵄩󵄩󵄩𝐼𝛼𝑓1

󵄩󵄩󵄩󵄩𝑊𝐿
Ψ
(𝐵)

≤
󵄩󵄩󵄩󵄩𝐼𝛼𝑓1

󵄩󵄩󵄩󵄩𝑊𝐿
Ψ
(R𝑛)

≲
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿
Φ
(R𝑛)

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(2𝐵)

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(58)

Then by (53) and (58) we get the inequality (46).

Theorem 14. Let 0 < 𝛼 < 𝑛 and the functions (𝜑
1
, 𝜑
2
) and

(Φ,Ψ) satisfy the condition

∫

∞

𝑟

ess inf
𝑡<𝑠<∞

𝜑
1 (𝑥, 𝑠)

Φ−1
(𝑠
−𝑛

)
Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
≤ 𝐶𝜑

2 (𝑥, 𝑟) , (59)

where 𝐶 does not depend on 𝑥 and 𝑟. Then for the conditions
(37), 𝐼

𝛼
is bounded from 𝑀

Φ,𝜑
1

(R𝑛) to 𝑀
Ψ,𝜑
2

(R𝑛) and for the
conditions (36), 𝐼

𝛼
is bounded from𝑀

Φ,𝜑
1

(R𝑛) to𝑊𝑀
Ψ,𝜑
2

(R𝑛).

Proof. By Lemma 13 andTheorem 11 we get
󵄩󵄩󵄩󵄩𝐼𝛼𝑓

󵄩󵄩󵄩󵄩𝑀
Ψ,𝜑2

≲ sup
𝑥∈R𝑛,𝑟>0

𝜑
2(𝑥, 𝑟)

−1
∫

∞

𝑟

Ψ
−1

(𝑡
−𝑛

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑡))

𝑑𝑡

𝑡

≲ sup
𝑥∈R𝑛,𝑟>0

𝜑
1(𝑥, 𝑟)

−1
Φ
−1

(𝑟
−𝑛

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
Φ,𝜑1

,

(60)

if (37) is satisfied and
󵄩󵄩󵄩󵄩𝐼𝛼𝑓

󵄩󵄩󵄩󵄩𝑊𝑀
Ψ,𝜑2

≲ sup
𝑥∈R𝑛,𝑟>0

𝜑
2(𝑥, 𝑟)

−1
∫

∞

𝑟

Ψ
−1

(𝑡
−𝑛

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑡))

𝑑𝑡

𝑡

≲ sup
𝑥∈R𝑛,𝑟>0

𝜑
1(𝑥, 𝑟)

−1
Φ
−1

(𝑟
−𝑛

)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
Φ,𝜑1

,

(61)

if (36) is satisfied.

Remark 15. Recall that, for 0 < 𝛼 < 𝑛,

𝑀
𝛼
𝑓 (𝑥) ≤ V(𝛼/𝑛)−1

𝑛
𝐼
𝛼
(
󵄨󵄨󵄨󵄨𝑓

󵄨󵄨󵄨󵄨) (𝑥) ;
(62)

hence Theorem 14 implies the boundedness of the fractional
maximal operator 𝑀

𝛼
from 𝑀

Φ,𝜑
1

(R𝑛) to 𝑀
Ψ,𝜑
2

(R𝑛) and
from𝑀

Φ,𝜑
1

(R𝑛) to𝑊𝑀
Ψ,𝜑
2

(R𝑛).
If we take Φ(𝑡) = 𝑡

𝑝, Ψ(𝑡) = 𝑡
𝑞, 1 ≤ 𝑝, 𝑞 < ∞, at

Theorem 14 we get following corollary which was proved in
[40] and containing results obtained in [41–45].

Corollary 16. Let 0 < 𝛼 < 𝑛, 1 ≤ 𝑝 < 𝑛/𝛼, 1/𝑞 = (1/𝑝) −

(𝛼/𝑛) and (𝜑
1
, 𝜑
2
) satisfy the condition

∫

∞

𝑟

ess inf
𝑡<𝑠<∞

𝜑
1 (𝑥, 𝑠) 𝑠

𝑛/𝑝

𝑡(𝑛/𝑞)+1
𝑑𝑡 ≤ 𝐶𝜑

2 (𝑥, 𝑟) ,
(63)

where 𝐶 does not depend on 𝑥 and 𝑟. Then 𝐼
𝛼
is bounded from

𝑀
𝑝,𝜑
1

to 𝑀
𝑞,𝜑
2

for 𝑝 > 1 and from 𝑀
1,𝜑
1

to 𝑊𝑀
𝑞,𝜑
2

for 𝑝 = 1.

In the case 𝜑
1
(𝑥, 𝑟) = (Φ

−1
(𝑟
−𝑛

)/Φ
−1
(𝑟
−𝜆
1)), 𝜑

2
(𝑥, 𝑟) =

Ψ
−1
(𝑟
−𝑛

)/Ψ
−1
(𝑟
−𝜆
2) from Theorem 14 we get the following

Spanne type theorem for the boundedness of the Riesz
potential on Orlicz-Morrey spaces.

Corollary 17. Let 0 < 𝛼 < 𝑛, Φ and Ψ Young functions, 0 ≤

𝜆
1
, 𝜆
2
< 𝑛, and (Φ,Ψ) satisfy the condition

∫

∞

𝑟

Ψ
−1

(𝑡
−𝑛

)

Φ−1 (𝑡−𝜆1)

𝑑𝑡

𝑡
≤ 𝐶

Ψ
−1

(𝑟
−𝑛

)

Ψ−1 (𝑟−𝜆2)
, (64)

where𝐶 does not depend on 𝑟.Then for the conditions (37), 𝐼
𝛼
is

bounded from 𝑀
Φ,𝜆
1

(R𝑛) to 𝑀
Ψ,𝜆
2

(R𝑛) and for the conditions
(36), 𝐼

𝛼
is bounded from 𝑀

Φ,𝜆
1

(R𝑛) to 𝑊𝑀
Ψ,𝜆
2

(R𝑛).

Remark 18. If we take Φ(𝑡) = 𝑡
𝑝, Ψ(𝑡) = 𝑡

𝑞, 1 ≤ 𝑝, 𝑞 < ∞, at
Corollary 17 we get Spanne type boundedness of 𝐼

𝛼
; that is, if

0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 0 < 𝜆 < 𝑛 − 𝛼𝑝, (1/𝑝) − (1/𝑞) =

𝛼/𝑛, and 𝜆/𝑝 = 𝜇/𝑞, then for 𝑝 > 1 the Riesz potential 𝐼
𝛼

is bounded from 𝑀
𝑝,𝜆

(R𝑛) to 𝑀
𝑞,𝜇

(R𝑛) and for 𝑝 = 1, 𝐼
𝛼
is

bounded from𝑀
1,𝜆

(R𝑛) to𝑊𝑀
𝑞,𝜇

(R𝑛).

5. Commutators of Riesz Potential in
the Spaces 𝑀

Φ,𝜑

For a function 𝑏 ∈ 𝐿
loc
1
(R𝑛), let 𝑀

𝑏
be the corresponding

multiplication operator defined by 𝑀
𝑏
𝑓 = 𝑏𝑓 for measur-

able function 𝑓. Let 𝑇 be the classical Calderón-Zygmund
singular integral operator; then the commutator between 𝑇

and 𝑀
𝑏
is denoted by [𝑏, 𝑇] := 𝑀

𝑏
𝑇 − 𝑇𝑀

𝑏
. A famous

theorem of Coifman et al. [46] gave a characterization of
𝐿
𝑝
-boundedness of [𝑏, 𝑇] when 𝑇 are the Riesz transforms

𝑅
𝑗
(𝑗 = 1, . . . , 𝑛). Using this characterization, the authors of

[46] got a decomposition theorem of the real Hardy spaces.
The boundedness result was generalized to other contexts and
important applications to somenonlinear PDEswere given by
Coifman et al. [47].

We recall the definition of the space of BMO(R𝑛).

Definition 19. Suppose that 𝑓 ∈ 𝐿
loc
1
(R𝑛); let

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∗

= sup
𝑥∈R𝑛,𝑟>0

1

|𝐵 (𝑥, 𝑟)|
∫
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨 𝑑𝑦 < ∞,

(65)

where

𝑓
𝐵(𝑥,𝑟)

=
1

|𝐵 (𝑥, 𝑟)|
∫
𝐵(𝑥,𝑟)

𝑓 (𝑦) 𝑑𝑦. (66)
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Define

BMO (R
𝑛
) = {𝑓 ∈ 𝐿

loc
1

(R
𝑛
) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∗

< ∞} . (67)

Modulo constants, the space BMO(R𝑛) is a Banach space
with respect to the norm ‖ ⋅ ‖

∗
.

Remark 20. (1) The John-Nirenberg inequality: there are
constants 𝐶

1
, 𝐶

2
> 0, such that for all 𝑓 ∈ BMO(R𝑛) and

𝛽 > 0

󵄨󵄨󵄨󵄨{𝑥 ∈ 𝐵 :
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓

𝐵

󵄨󵄨󵄨󵄨 > 𝛽}
󵄨󵄨󵄨󵄨

≤ 𝐶
1 |𝐵| 𝑒

−𝐶
2
𝛽/‖𝑓‖

∗ , ∀𝐵 ⊂ R
𝑛
.

(68)

(2) The John-Nirenberg inequality implies that
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∗

≈ sup
𝑥∈R𝑛,𝑟>0

(
1

|𝐵 (𝑥, 𝑟)|
∫
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨𝑓(𝑦) − 𝑓
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑦)

1/𝑝

(69)

for 1 < 𝑝 < ∞.
(3) Let 𝑓 ∈ BMO(R𝑛). Then there is a constant 𝐶 > 0

such that

󵄨󵄨󵄨󵄨𝑓𝐵(𝑥,𝑟) − 𝑓
𝐵(𝑥,𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∗
ln 𝑡

𝑟
for 0 < 2𝑟 < 𝑡, (70)

where 𝐶 is independent of 𝑓, 𝑥, 𝑟, and 𝑡.

Definition 21. A Young functionΦ is said to be of upper type
p (resp., lower type 𝑝) for some 𝑝 ∈ [0,∞), if there exists a
positive constant 𝐶 such that, for all 𝑡 ∈ [1,∞) (resp., 𝑡 ∈

[0, 1]) and 𝑠 ∈ [0,∞),

Φ (𝑠𝑡) ≤ 𝐶𝑡
𝑝
Φ (𝑠) . (71)

Remark 22. We know that if Φ is lower type 𝑝
0
and upper

type 𝑝
1
with 1 < 𝑝

0
≤ 𝑝

1
< ∞, thenΦ ∈ Δ

2
∩∇

2
. Conversely

if Φ ∈ Δ
2
∩ ∇

2
, then Φ is lower type 𝑝

0
and upper type 𝑝

1

with 1 < 𝑝
0
≤ 𝑝

1
< ∞ (see [20]).

Lemma 23 (see [48]). Let Φ be a Young function which is
lower type 𝑝

0
and upper type 𝑝

1
with 1 ≤ 𝑝

0
≤ 𝑝

1
< ∞. Let

𝐶 be a positive constant.Then there exists a positive constant 𝐶
such that for any ball 𝐵 of R𝑛 and 𝜇 ∈ (0,∞)

∫
𝐵

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜇
) 𝑑𝑥 ≤ 𝐶 (72)

implies that ‖𝑓‖
𝐿
Φ
(𝐵)

≤ 𝐶𝜇.

In the following lemmawe provide a generalization of the
property (69) from 𝐿

𝑝
-norms to Orlicz norms.

Lemma 24. Let 𝑓 ∈ BMO(Rn
) and Φ a Young function. Let

Φ is lower type 𝑝
0
and upper type 𝑝

1
with 1 ≤ 𝑝

0
≤ 𝑝

1
< ∞;

then
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∗
≈ sup
𝑥∈R𝑛,𝑟>0

Φ
−1

(𝑟
−𝑛

)
󵄩󵄩󵄩󵄩𝑓 (⋅) − 𝑓

𝐵(𝑥,𝑟)

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

. (73)

Proof. By Hölder’s inequality, we have
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∗
≲ sup
𝑥∈R𝑛,𝑟>0

Φ
−1

(𝑟
−𝑛

)
󵄩󵄩󵄩󵄩𝑓(⋅) − 𝑓

𝐵(𝑥,𝑟)

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

. (74)

Now we show that

sup
𝑥∈R𝑛,𝑟>0

Φ
−1

(𝑟
−𝑛

)
󵄩󵄩󵄩󵄩𝑓(⋅) − 𝑓

𝐵(𝑥,𝑟)

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥,𝑟))

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∗
. (75)

Without loss of generality, we may assume that ‖𝑓‖
∗

= 1;
otherwise, we replace𝑓 by𝑓/‖𝑓‖

∗
. By the fact thatΦ is lower

type 𝑝
0
and upper type 𝑝

1
and (12) it follows that

∫
𝐵(𝑥,𝑟)

Φ(

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨 Φ
−1

(|𝐵(𝑥, 𝑟)|
−1
)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∗

)𝑑𝑦

= ∫
𝐵(𝑥,𝑟)

Φ(
󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓

𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨 Φ
−1

(|𝐵 (𝑥, 𝑟)|
−1
)) 𝑑𝑦

≲
1

|𝐵 (𝑥, 𝑟)|

× ∫
𝐵(𝑥,𝑟)

[
󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓

𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨

𝑝
0

+
󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓

𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨

𝑝
1

] 𝑑𝑦

≲ 1.

(76)

By Lemma 23 we get the desired result.

Remark 25. Note that statements of type of Lemma 24 are
known in a more general case of rearrangement invariant
spaces and also variable exponent Lebesgue spaces 𝐿

𝑝(⋅),
see [49, 50], but we gave a short proof of Lemma 24 for
completeness of presentation.

Definition 26. LetΦ be a Young function. Let

𝑎
Φ

:= inf
𝑡∈(0,∞)

𝑡Φ
󸀠
(𝑡)

Φ (𝑡)
, 𝑏

Φ
:= sup

𝑡∈(0,∞)

𝑡Φ
󸀠
(𝑡)

Φ (𝑡)
. (77)

Remark 27. It is known that Φ ∈ Δ
2
∩ ∇

2
if and only if 1 <

𝑎
Φ

≤ 𝑏
Φ

< ∞ (see [21]).

Remark 28. Remarks 27 and 22 showus that aYoung function
Φ is lower type 𝑝

0
and upper type 𝑝

1
with 1 < 𝑝

0
≤ 𝑝

1
< ∞

if and only if 1 < 𝑎
Φ

≤ 𝑏
Φ

< ∞.

The characterization of (𝐿
𝑝
, 𝐿

𝑞
) boundedness of the

commutator [𝑏, 𝐼
𝛼
] between𝑀

𝑏
and 𝐼

𝛼
was given by Chanillo

[51].

Theorem 29 (see [51]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, and
1/𝑞 = (1/𝑝) − (𝛼/𝑛). Then [𝑏, 𝐼

𝛼
] is a bounded operator from

𝐿
𝑝
(R𝑛) to 𝐿

𝑞
(R𝑛) if and only if 𝑏 ∈ BMO(R𝑛).

The (𝐿
Φ
, 𝐿

Ψ
) boundedness of the commutator [𝑏, 𝐼

𝛼
]was

given by Fu et al. [52].

Theorem 30 (see [52]). Let 0 < 𝛼 < 𝑛 and 𝑏 ∈ BMO(R𝑛). Let
Φ be a Young function andΨ defined, via its inverse, by setting,
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for all 𝑡 ∈ (0,∞), Ψ−1(𝑡) := Φ
−1
(𝑡)𝑡

−𝛼/𝑛. If 1 < 𝑎
Φ

≤ 𝑏
Φ

< ∞,
and 1 < 𝑎

Ψ
≤ 𝑏

Ψ
< ∞ then [𝑏, 𝐼

𝛼
] is bounded from 𝐿

Φ
(R𝑛) to

𝐿
Ψ
(R𝑛).

We will use the following statement on the boundedness
of the weighted Hardy operator

𝐻
∗

𝑤
𝑔 (𝑟) := ∫

∞

𝑟

(1 + ln 𝑡

𝑟
) 𝑔 (𝑡) 𝑤 (𝑡) 𝑑𝑡, 𝑟 ∈ (0,∞) ,

(78)

where 𝑤 is a weight.
The following theorem was proved in [53].

Theorem 31. Let V
1
, V
2
, and 𝑤 be weights on (0,∞) and V

1
(𝑡)

bounded outside a neighborhood of the origin. The inequality

ess sup
𝑟>0

V
2 (𝑟)𝐻

∗

𝑤
𝑔 (𝑟) ≤ 𝐶 ess sup

𝑟>0

V
1 (𝑟) 𝑔 (𝑟) (79)

holds for some 𝐶 > 0 for all nonnegative and nondecreasing 𝑔

on (0,∞) if and only if

𝐵 := sup
𝑟>0

V
2 (𝑟) ∫

∞

𝑟

(1 + ln 𝑡

𝑟
)

𝑤 (𝑡) 𝑑𝑡

ess sup
𝑡<𝑠<∞

V
1 (𝑠)

< ∞. (80)

Moreover, the value 𝐶 = 𝐵 is the best constant for (79).

Remark 32. In (79) and (80) it is assumed that 1/∞ = 0 and
0 ⋅ ∞ = 0.

The following lemma is valid.

Lemma 33. Let 0 < 𝛼 < 𝑛 and 𝑏 ∈ BMO(R𝑛). Let Φ be a
Young function andΨ defined, via its inverse, by setting, for all
𝑡 ∈ (0,∞), Ψ−1(𝑡) := Φ

−1
(𝑡)𝑡

−𝛼/𝑛, and 1 < 𝑎
Φ

≤ 𝑏
Φ

< ∞ and
1 < 𝑎

Ψ
≤ 𝑏

Ψ
< ∞; then the inequality

󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼] 𝑓
󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵(𝑥
0
,𝑟))

≲ ‖𝑏‖∗

1

Ψ−1 (𝑟
−𝑛

)

× ∫

∞

2𝑟

(1 + ln 𝑡

𝑟
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡

(81)

holds for any ball 𝐵(𝑥
0
, 𝑟) and for all 𝑓 ∈ 𝐿

loc
Φ
(R𝑛).

Proof. For arbitrary 𝑥
0

∈ R𝑛, set 𝐵 = 𝐵(𝑥
0
, 𝑟) for the ball

centered at 𝑥
0
and of radius 𝑟. Write 𝑓 = 𝑓

1
+ 𝑓

2
with 𝑓

1
=

𝑓𝜒
2𝐵

and 𝑓
2
= 𝑓𝜒∁

(2𝐵)
. Hence

󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼]𝑓
󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≤
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼]𝑓1

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

+
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼]𝑓2

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

. (82)

From the boundedness of [𝑏, 𝐼
𝛼
] from 𝐿

Φ
(R𝑛) to 𝐿

Ψ
(R𝑛) (see

Theorem 30) it follows that
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼]𝑓1

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≤
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼]𝑓1

󵄩󵄩󵄩󵄩𝐿
Ψ
(R𝑛)

≲ ‖𝑏‖∗
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿
Φ
(R𝑛)

= ‖𝑏‖∗
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(2𝐵)

.

(83)

For 𝑥 ∈ 𝐵 we have

󵄨󵄨󵄨󵄨[𝑏, 𝐼𝛼] 𝑓2 (𝑥)
󵄨󵄨󵄨󵄨 ≲ ∫

R𝑛

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏 (𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≈ ∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏 (𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦.

(84)

Then
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼] 𝑓2

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏 (⋅)
󵄨󵄨󵄨󵄨

|𝑥
0
− 𝑦|𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏
𝐵

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥0 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
∁
(2𝐵)

|𝑏(⋅) − 𝑏
𝐵
|

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

= 𝐽
1
+ 𝐽

2
.

(85)

Let us estimate 𝐽
1
:

𝐽
1
=

1

Ψ−1 (𝑟
−𝑛

)
∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏
𝐵

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥0 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≈
1

Ψ−1 (𝑟
−𝑛

)
∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ∫

∞

|𝑥0−𝑦|

𝑑𝑡

𝑡𝑛+1−𝛼
𝑑𝑦

≈
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

∫
2𝑟≤|𝑥

0
−𝑦|≤𝑡

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

𝑑𝑡

𝑡𝑛+1−𝛼

≲
1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

∫
𝐵(𝑥
0
,𝑡)

󵄨󵄨󵄨󵄨𝑏 (𝑦) − 𝑏
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

𝑑𝑡

𝑡𝑛+1−𝛼
.

(86)

Applying Hölder’s inequality, by Lemma 24 and (70), we
get

𝐽
1
≲

1

Ψ−1
(𝑟
−𝑛
)
∫

∞

2𝑟

∫
𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑦) − 𝑏

𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

𝑑𝑡

𝑡𝑛+1−𝛼

+
1

Ψ−1
(𝑟
−𝑛
)
∫

∞

2𝑟

󵄨󵄨󵄨󵄨󵄨
𝑏
𝐵(𝑥0 ,𝑟)

− 𝑏
𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨󵄨
∫
𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

𝑑𝑡

𝑡𝑛+1−𝛼

≲
1

Ψ−1
(𝑟
−𝑛
)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩󵄩
𝑏 (⋅) − 𝑏

𝐵(𝑥0 ,𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿
Φ̃
(𝐵(𝑥0 ,𝑡))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿Φ(𝐵(𝑥0 ,𝑡))

𝑑𝑡

𝑡𝑛+1−𝛼

+
1

Ψ−1
(𝑟
−𝑛
)
∫

∞

2𝑟

󵄨󵄨󵄨󵄨󵄨
𝑏
𝐵(𝑥0 ,𝑟)

− 𝑏
𝐵(𝑥0 ,𝑡)

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿Φ(𝐵(𝑥0 ,𝑡))

Φ
−1

(𝑡
−𝑛
)

𝑑𝑡

𝑡1−𝛼

≲ ‖𝑏‖
∗

1

Ψ−1
(𝑟
−𝑛
)
∫

∞

2𝑟

(1 + ln 𝑡

𝑟
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿Φ(𝐵(𝑥0 ,𝑡))
Ψ
−1

(𝑡
−𝑛
)
𝑑𝑡

𝑡
.

(87)

In order to estimate 𝐽
2
note that

𝐽
2
≈

󵄩󵄩󵄩󵄩𝑏(⋅) − 𝑏
𝐵

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦. (88)
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By Lemma 24, we get

𝐽
2
≲ ‖𝑏‖∗

1

Ψ−1 (𝑟
−𝑛

)
∫
∁
(2𝐵)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦. (89)

Thus, by (52)

𝐽
2
≲ ‖𝑏‖∗

1

Ψ−1 (𝑟
−𝑛

)
∫

∞

2𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
. (90)

Summing 𝐽
1
and 𝐽

2
we get

󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼] 𝑓2
󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲ ‖𝑏‖∗

1

Ψ−1 (𝑟
−𝑛

)

× ∫

∞

2𝑟

(1 + ln 𝑡

𝑟
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
.

(91)

Finally,
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼] 𝑓

󵄩󵄩󵄩󵄩𝐿
Ψ
(𝐵)

≲ ‖𝑏‖∗
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(2𝐵)

+ ‖𝑏‖∗

1

Ψ−1 (𝑟
−𝑛

)

× ∫

∞

2𝑟

(1 + ln 𝑡

𝑟
)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
Φ
(𝐵(𝑥
0
,𝑡))

Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
,

(92)

and the statement of Lemma 33 follows by (56).

Theorem 34. Let 0 < 𝛼 < 𝑛 and 𝑏 ∈ BMO(R𝑛). Let Φ be a
Young function andΨ defined, via its inverse, by setting, for all
𝑡 ∈ (0,∞), Ψ−1(𝑡) := Φ

−1
(𝑡)𝑡

−𝛼/𝑛, and 1 < 𝑎
Φ

≤ 𝑏
Φ

< ∞ and
1 < 𝑎

Ψ
≤ 𝑏

Ψ
< ∞. (𝜑

1
, 𝜑
2
) and (Φ,Ψ) satisfy the condition

∫

∞

𝑟

(1 + ln 𝑡

𝑟
) ess inf
𝑡<𝑠<∞

𝜑
1 (𝑥, 𝑠)

Φ−1
(𝑠
−𝑛

)
Ψ
−1

(𝑡
−𝑛

)
𝑑𝑡

𝑡
≤ 𝐶𝜑

2 (𝑥, 𝑟) ,

(93)

where 𝐶 does not depend on 𝑥 and 𝑟.
Then the operator [𝑏, 𝐼

𝛼
] is bounded from 𝑀

Φ,𝜑
1

(R𝑛) to
𝑀
Ψ,𝜑
2

(R𝑛). Moreover
󵄩󵄩󵄩󵄩[𝑏, 𝐼𝛼]𝑓

󵄩󵄩󵄩󵄩𝑀
Ψ,𝜑2

≲ ‖𝑏‖∗
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
Φ,𝜑1

. (94)

Proof. The statement of Theorem 34 follows by Lemma 33
and Theorem 31 in the same manner as in the proof of
Theorem 14.

If we take Φ(𝑡) = 𝑡
𝑝, Ψ(𝑡) = 𝑡

𝑞, 1 < 𝑝, 𝑞 < ∞, at
Theorem 34 we get following corollary which was proved in
[40] (see, also [54]).

Corollary 35. Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = (1/𝑝) −

(𝛼/𝑛), 𝑏 ∈ BMO(R𝑛), and (𝜑
1
, 𝜑
2
) satisfy the condition

∫

∞

𝑟

(1 + ln 𝑡

𝑟
)

ess inf
𝑡<𝑠<∞

𝜑
1 (𝑥, 𝑠) 𝑠

𝑛/𝑝

𝑡(𝑛/𝑞)+1
𝑑𝑡 ≤ 𝐶𝜑

2 (𝑥, 𝑟) ,
(95)

where 𝐶 does not depend on 𝑥 and 𝑟. Then [𝑏, 𝐼
𝛼
] is bounded

from 𝑀
𝑝,𝜑
1

to 𝑀
𝑞,𝜑
2

.

In the case 𝜑
1
(𝑥, 𝑟) = Φ

−1
(𝑟
−𝑛

)/Φ
−1
(𝑟
−𝜆
1), 𝜑

2
(𝑥, 𝑟) =

Ψ
−1
(𝑟
−𝑛

)/Ψ
−1
(𝑟
−𝜆
2) from Theorem 34 we get the following

Spanne type theorem for the boundedness of the operator
[𝑏, 𝐼

𝛼
] on Orlicz-Morrey spaces.

Corollary 36. Let 0 < 𝛼 < 𝑛, 0 ≤ 𝜆
1
, 𝜆

2
< 𝑛, and 𝑏 ∈

BMO(R𝑛). Let also Φ be a Young function and Ψ defined, via
its inverse, by setting, for all 𝑡 ∈ (0,∞), Ψ−1(𝑡) := Φ

−1
(𝑡)𝑡

−𝛼/𝑛,
1 < 𝑎

Φ
≤ 𝑏

Φ
< ∞, 1 < 𝑎

Ψ
≤ 𝑏

Ψ
< ∞, and (Φ,Ψ) satisfy the

condition

∫

∞

𝑟

(1 + ln 𝑡

𝑟
)

Ψ
−1

(𝑡
−𝑛

)

Φ−1 (𝑡−𝜆1)

𝑑𝑡

𝑡
≤ 𝐶

Ψ
−1

(𝑟
−𝑛

)

Ψ−1 (𝑟−𝜆2)
, (96)

where 𝐶 does not depend on 𝑟. Then [𝑏, 𝐼
𝛼
] is bounded from

𝑀
Φ,𝜆
1

(R𝑛) to 𝑀
Ψ,𝜆
2

(R𝑛).

Remark 37. If we take Φ(𝑡) = 𝑡
𝑝, Ψ(𝑡) = 𝑡

𝑞, 1 ≤ 𝑝, 𝑞 < ∞, at
Corollary 36 we get Spanne type boundedness of [𝑏, 𝐼

𝛼
]; that

is, if 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 0 < 𝜆 < 𝑛 − 𝛼𝑝, (1/𝑝) − (1/𝑞) =

𝛼/𝑛, and 𝜆/𝑝 = 𝜇/𝑞, then for 𝑝 > 1 the operator [𝑏, 𝐼
𝛼
] is

bounded from𝑀
𝑝,𝜆

(R𝑛) to 𝑀
𝑞,𝜇

(R𝑛) and for 𝑝 = 1, [𝑏, 𝐼
𝛼
] is

bounded from𝑀
1,𝜆

(R𝑛) to𝑊𝑀
𝑞,𝜇

(R𝑛).
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