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The boundedness of multilinear commutators of Calderon-Zygmund operator Tj, on generalized weighted Morrey spaces M,, ,(w)

with the weight function w belonging to Muckenhoupt’s class A

i=1,...

P‘P

,m, the sufficient conditions on the pair (¢,,¢,) which ensure the boundedness of the operator Tj from M

b,), b, € BMO,
(w) to

» is studied. When 1 < p < coand b = @, ...,

P

(w) are found. In all cases the conditions for the boundedness of T; are given in terms of Zygmund-type 1ntegral inequalities

on (¢,, ¢,), which do not assume any assumption on monotonicity of (pl(x ), @,(x,r)inr.

1. Introduction

Let T be a Calderén-Zygmund singular integral operator and
b € BMO(R"). A well known result of Coifman et al. [1] states
that ifb € BMO(R") and T is a Calderén-Zygmund operator,
then the commutator operator [b,T]f = T(bf) — bTf is
bounded on L,(R") for 1 < p < oo. The commutators
of Calderén-Zygmund operator play an important role in
studying the regularity of solutions of elliptic, parabolic and
ultraparabolic partial differential equations of second order
(see, [2-7]).

The classical Morrey spaces M, , were originally intro-
duced by Morrey in [8] to study the local behavior of solutions
to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we
refer the readers to [2-4, 8, 9].

Leth = (b,,...,b,,), bj,and 1 < j < mbelocally integrable
functions when we consider multilinear commutators as
defined by

b () K (%) f(»)dy, ()

(1000~

=1

Ty f (x) = J

where K(x, y) is Calderén-Zygmund kernel. That is, for all
distinct x, y € R", and all z with 2|x — z| < |x — y|, there exist
positive constant C and y such that

(i) [K(x, )| < Clx = y|™
(ii) |K(x, y) — K(z, )| < C(|x — z|"/|x = yI"*); and
(iii) |K(y, x) = K(y,2)] < C(Ix - 2|"/|x = y|™")

when m = 1, it is the classical commutator which was
introduced by Coifman et al. in [1]. It is well known that
Calderén-Zygmund operators play an important role in
harmonic analysis (see [10-12]).

We define the generalized weighed Morrey spaces as
follows.

Definition 1. Let 1 < p < 00, ¢ be a positive measurable
function on R" x (0, c0) and w be non-negative measurable
function on R". We denote by M, ,(w) the generalized
weighted Morrey space, the space of all functions f €
LlOC -,(R") with finite norm

£, 0

= sup (p(x,r)_lw(B(x,r))_l/P||f||LPw(B(x,,)),
x€R™r>0 ?
2



where L, (B(x, 7)) denotes the weighted L p-space of mea-
surable ffmcuons f for which

"f“Lp,w(B(x,r)) = "fXB(x,f) "LP’W(R")

: <L<x«> f (y)|Pw(y)dy)l/P.

Furthermore, by WM b

ized weighted Morrey space of all functions f € WLIE’CW(IR")
for which

£ hoss, o

= sup @(x, 1) w(B (x, r))_l/p”f”WL L(Bor) < 00
xeR",r>0
(4)

w-Space of mea-

(3)

(w) we denote the weak general-

where WL, »(B(x,7)) denotes the weak L,
surable functlons f for which

”f”WL B(x,r)) "fXB (x,r) ||WL »(R™)

1/p
= sup t(J w(y)dy> .
>0 {yeB(x,r):| f(»)|>t}

Remark 2. (1) If w = 1, then M, (1) =
ized Morrey space.

(2) If (x, 1) = w(B(x,))* /7, then M, ,(w)
is the weighted Morrey space.

@) If ¢(x,r) = v(B(xr)PwB(x,r) ", then
M p’q,(w) =L p,K(v, w) is the two weighted Morrey space.

4) fw = 1and ¢(x,7) = AP with0 < A <
then M, ,(w) = L,,(R") is the classical Morrey space and

M, ,(w) = WL, ,(R") is the weak Morrey space.

(5) If p(x,7) = w(B(x,)) /7, then M, (w) = L, ,(R")

is the weighted Lebesgue space.

)

M, , is the general-

=L P,K(w)

The commutators are useful in many nondivergence
elliptic equations with discontinuous coefficients, [2-5]. In
the recent development of commutators, Pérez and Trujillo-
Gonzalez [13] generalized these multilinear commutators and
proved the weighted Lebesgue estimates. The weighted Mor-
rey spaces L, (w) was introduced by Komori and Shirai [14].
Moreover, they showed that some classical integral operators
and corresponding commutators are bounded in weighted
Morrey spaces. Feng in [15] obtained the boundedness of the
multilinear commutators in weighted Morrey spaces L ,, .(w)

for1 < p < coand 0 < x < 1, where the symbol b
belongs to bounded mean oscillation (BMO)". Furthermore,
was given the weighted weak type estimate of these operators
in weighted Morrey spacesof L , . (w) for p = 1and 0 < x < 1.

Recently, the generalized weighted Morrey spaces
M,, (P(w) introduced by Guliyev [16, 17]. Moreover, in [16, 17]
he studied the boundedness of the sublinear operators and
their higher order commutators generated by Calderdn-
Zygmund operators and Riesz potentials in these spaces (see,
also [18-20]).

The following statement was proved in [18].
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Theo.rf,m A. Let1 < p <oo,w € A, and (¢, ,) satisfies the
condition

J'OO essinf ,.....¢, (%, 5) w(B (x,5))"/? dt

' w(B (x,1))"/? £
< Co, (x,7),

where C does not depend on x and r. Then the operator T

is bounded from M, , (w) to M, (w) for p > 1 and from
M, (w) to WML(PZ(w).

Remark 3. Note that, Theorem A was proved in the case w =
1 in [21] and in the case w € A, and ¢,(x,7) = @,(x,1)

w(B(x, r)* VP in [14].

Definition 4. BMO(R") is the Banach space modulo con-
stants with the norm | - ||, defined by

Ioll. = sup

_ b -b dy < 00,
meMBWJNLwo|U) o] 4 < 00 (7)

where b € Lll"C(IR“) and

1
bB(x,T) - |B (X, r)l J-B(x,r) b (y) dy (8)

In this paper, we prove the boundedness of the multilinear
commutators of Calderén-Zygmund operator Tj, from one
generalized weighted Morrey space M, , (w) to another

M, ,, (W )forl <p<ocoandb = (b,...,b,), b € BMO,
i=1,.

By A < B we mean that A < CB with some positive
constant C independent of appropriate quantities. If A <
and B < A, we write A = B and say that A and B are

equivalent.

2. Main Results

In the following, main results are given. First, we present
some estimates which are the main tools to prove our the-
orems, for the boundedness of the multilinear commutator
operators T; on the generalized weighted Morrey spaces.

Theorem 5. Let 1 < p < oo, w € Ap,l; = (b,...,b,),

b, € BMO, i = 1,...,m, and Ty, be a multilinear commutators
defined as (6). Then

" f”L w(B(xq,7))

< C [[B]) w(B (x5, 7))
X JOO In™ (e +
2r

holds for any ball B = B(x,, r) and for all f € Lll‘,’fw(R”), where
C does not depend on f, x, € R" andr > 0.

1pdt

t
)

£> "f “Lp,w(B<x0,t))w(B (x0,1))
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Theorem 6. Letw € A, b = b,...,b,), b € BMO, i =
1,...,m, and Ty, be a multilinear commutators defined as (6).
Then

IlTZJf|lWL1,w(B(xU,r))
< C"E“*w (B(x9,7))
&
t
(10)

00 t B
X L In™ (e + ;) "f"Lq,’w(B(xo,t))w(B (x051))
r

holds for any ball B = B(x,,r) and for all f € L'*°(R"), where
C does not depend on f, x, € R" and r > 0, where O(t) =
fn"(e + 1) and | £l . = [O(fDI,, .

Now we give a theorem about the boundedness of
the multilinear commutator operator T; on the generalized
weighted Morrey spaces.

Theorem?7. Let1 < p < 0o, w € A, and (¢y, ¢,) satisfies the
condition

JOO In™ <e + E) €ss inft<s<oo(/’1 (x,8) w(B (x, 5))1/P é
' ' w(B (x, 1)) t

< Co, (x,1),
(11)

where C does not depend on x and r. Let b = b,...,b,),
b, € BMO, i = 1,...,m. Then the operator T;, is bounded from
M, (w) to M P)q,z(w). Moreover,

|75 "MP’(PZ(w) S "E f ”M},,‘P1 W)’ (12)

*

Theorem 8. Let w € Ay, and (¢,, ¢,) satisfies the condition

jmlnm (e+ E) essinf, @ (x,5) w(B(x,s)) ﬂ
r r w (B (x,t)) t 13)

< Co, (x,1),
where C does not depend on x and r. Let b = by, ....b,),

b, € BMO, i = 1,...,m. Then the operator T;, is bounded from
Moy, (w) to WML%(LU). Moreover,

175 A lwas,,, ) < o

where () = tn"(e + £) and | fllyy, () = 190 Dllyg -

f "Mq,,,p1 (W)’ (14)

*

When ¢,(x,7) = ¢@,(x,7) = w(B(x, r))(K_l)/P, from
Theorem 7 we also get the following new result.

Corollary 9. Let 1 < p < 00,0 < ¥ < L w € A,
b= ,,...,b,), by € BMO, i = 1,...,m. Then the operator
Ty is bounded on L, (w) for p > 1 and from L, (w) to
WM, (w) for p = 1, where ®(t) = tIn"(e+t) and || fll () =
10D,

Proof. Let 1 < p < oo, w € A, 0 < k < land b =
by,....b,), b € BMO, i = 1,...,m. Then the pair
(w(B(x, 1) * VP w(B(x,r))* V/P) satisfies the condition
(11) for p > 1 and the condition (13) for p = 1. Indeed, by
Lemma 10 there exists C > 0 and § > 0 such that for all
xe€R"andt > r:

néd
w (B (x, 1) > c(f) w(B(xr)). (15)

J"O m t\ essinf, . w(B(x,s)'? dt
In <e + ) —
w(B (x,1))"/? t

_ J In™ (e + 5) w(B (x, t))“““’f’%
. r

[T (e (Y wwwn) o

oo £\ /£ \=11p) gy
In™ (e + —> (—) -

= w(B (x,r)"* /P J ¢ ;

r

= w(B (x, r))(xfl)/p JOO In" (e + 1) Tm?((tc—l)/p)d%
1
~ w(B(x,r)) VP,
(16)

Note that from Corollary 9 was proved in [15].

3. Some Lemmas

Let R” be the n-dimensional Euclidean space of points x =

(x15...>x,) withnorm |x| = (3, xf)l/z. For x € R"and r >

0, denote B(x,r) the open ball centered at x of radius r. Let
CB(x, r) be the complement of the ball B(x, ), and |B(x, r)|
be the Lebesgue measure of B(x, r).

A weight function is a locally integrable function on R"
which takes values in (0, 00) almost everywhere. For a weight
w and a measurable set E, we define w(E) = IE w(x)dx, the
Lebesgue measure of E by |E|, and the characteristic function
of E by xp. Given a weight w, we say that w satisfies the
doubling condition if there is a constant D > 0 such that
w(2B) < Dw(B) for any ball B. When w satisfies the doubling
condition, we denote w € A,, for short.

If w is a weight function, then we denote the weighted
Lebesgue space by L ,(w) = L ,(R", w) with the norm

1/p
- P
"f"LP’w = (JW |f () w(x)dx) < 00, -

when 1 < p< oo

and ”f”Loo,w = ess Sup,..gn | f (x)|w(x) when p = oo.



We recall that a weight function w is in the Mucken-
houpts class A, 1 < p < 00, if

[w]AP = sgp[w]AP(B)

sup ( |113| J w (x) dx) (18)

1 A
X (— J w(x)'? dx) < 00,
|B| Js

where the sup is taken with respect to all the balls Band 1/p+
1/p" = 1. Note that, for all balls B we have
1/ -1 1/ -1/

0l = 1B Wl G ™7 21 19)
by Holder’s inequality. For p =
defined by the condition Mw(x) <
Sup . (Mw(x)/w(x)), and for p =

1, the class A, is
Cw(x) with [w]A1 =
0o we define A

1<p<oo “2p*

Lemma 10 (see [22]). We have the following:

WIfw € A, forsomel < p < oo, thenw € A,.
Moreover, for all A > 1 we have

w(AB) < /\”P[w]APw (B). (20)

) Ifw e A,
have

then w € A,. Moreover, for all A > 1 we

w(AB) < 2" [w]} w(B). (1)

(3) Ifw e A, for some 1 < p < 00, then there exist C > 0
and § > 0 such that for any ball B and a measurable

setS C B,
w(S) 151\
< C(ﬁ) . (22)

The following results are proved by Pérez and Trujillo-
Gonzélez [13].

Lemmall. Let 1 < p < coandw € A, and suppose that

b=(b,....,b,), b € BMO,i = 1,...
constant C > 0 such that

JRn |TEf (x)lpw (x)dx<C JR" |f (x)|pw (x)dx. (23)

,m, then there exists a

Although the commutators with BMO function are not of
weak type (1, 1), they have the following inequality.

and suppose that b = (by,...,b,),
,m, then there exists a constant C > 0

Lemma 12. Letw € A,
b € BMO,i = 1,...

such that
1
Wm0
< Csup i (x e B [0 (5] £) (o] > 1),

(24)
where ®(t) = t1In" (e + t).
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Lemma 13. Let w € A, and suppose thatb = (b,... ,b,),
b, € BMO, i = 1,...,m, then there exists a constant C > 0
such that

w(x e R":|T; fx)|>A)<CJ O (|f (0)]) w(x)dx,

(25)
where ®(t) = tIn" (e + t).

In this paper, we need the following statement on the
boundedness of the Hardy type operator

(e

where p be a non-negative Borel measure on (0, 00).

(Hyg) (¢) = £>g(r)d14(r), 0<t<oo,

(26)

Theorem 14. The inequality

esssup w(t) Hg(t) <c esssup v (t) g (t) (27)
t>0 t>0

holds for all non-negative and non-increasing g on (0, 00) if
and only if

d
Al—supﬁj <e+£)¢<oo,
>0 t Jo r/ esssup g .,V (s)
(28)
andc= A
Note that, Theorem14 is proved analogously to

Theorem 4.3 in [21].

Lemma 15 (see [23, Theorem 5, page 236]). Let w € A
Then the norm of BMO(R") is equivalent to the norm of
BMO(w), where

1
BMO (w) = {b bl = sup —————
@ o (B (x,1))

X L( ) b (¥) = byl w (y) dy < 00} ,

1

by w = m JB(W) b(y) w()’) dy
(29)

Remark 16. (1) The John-Nirenberg inequality: there are
constants C;, C, > 0, such that for all b € BMO(R") and

>0

[{x € B:|b(x) VB c R".

(30)

_ bB| > ﬂ}l < Cl |B| e_Cz,B/"b"*’

(2) For 1 < p < oo the John-Nirenberg inequality implies
that

1/p
bl ~sup< |B|J 1b(y bB|de> 31)
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andforl < p<ooandw € A

%nsw(ij

Indeed, it follows from the John-Nirenberg inequality and
using Lemma 10 (3), we get

1/p
bB|pw(y)dy> : (32)

w({x € B:|b(x)-bg| > B}) < Cw(B) eGP (33)

for some § > 0. Hence, this inequality implies that

JB b (y) = bs|"w () dy

o[ e llx e B b - > BB (0

< Cw (B) J BP1eGROIEL. g5 — Cuy (B) [P

To prove the requested equivalence we also need to have
the right inequality, that is easily obtained using Hélder
inequality, then we get (32). Note that (31) follows from (32)
in the case w = 1.

The following lemma was proved in [24].

Lemma17. Letb be a function in BMO(R"). Let also 1 < p <
0, x € R", and r|,r, > 0. Then

p 1/p

dy)

1
- b b
( |B (x’ rl)l J’B(x,ﬁ) | ()/) B(x,r2)

;
' >Ilbll*,
;

(35)

In —
2

$C<1+

where C > 0 is independent of f, x, r| and r,.
The following lemma was proved in [17].

Lemmal8. (i) Letw € A, and b be a function in BMO(R").
Letalsol < p < 0o, x € R", andr,r, > 0. Then

! b b r d v
(m JB(x,rl) ' (}’) - B(X’m’wl w ()/) )’)

< c<1 +ln ) 11,
5}
where C > 0 is independent of f, x, r| and r,.

(ii) Let w € A, and b be a function in BMO(R"). Let also
1< p<oo,xeR" andr;,ry>0. Then

1 s
/— b X,T-
<w1—P (B(x,1)) .[ B(x,ry) | (7) = s 2w '

(36)

!

o \p
x w(y) " dy) (37)

SC<1+ >||b||*,

where C > 0 is independent of f, x, v, and r,.

4., Proof of the Theorems

Proof of Theorem 5. Let p € (1,00). For arbitrary x, € R"
and r > 0, set B = B(x, ). Write f = f, + f, with f; = fx,p
and f, = fXC(ZB)‘ Hence

||TEf||Lp,w(B) = "TEfl "Lp,w(B) + "TEfZHLPYw(B)' (38)

From the boundedness of T; in L P(w) (see Lemma 11) it
follows that:

175400, <

<ITpfill,,

“LP’w = o pw(2B)°

(39)

For the term ||T; £l Sl

can assume m = 2. Thus, the operator
into four parts

g Without loss of generality, we
T; f, can be divided

Tify () = (b () = (B)g,) (B2 () = (),
<[ K@) )y

+ JW K (x,) (b (») - (b))

X (bz (y) - (bZ)B,w) £ (y)dy
— (b () - (b)) (40)

< [ K G (600 = @an) £, 0)
@u>wnd

x [R"K b () - (b)) f» (v)dy
I (%) + I (x) + I; (x) + I, (x).

For x € B we have

T3 f, (0] < |1 (0] +
S|I71(X)—

|5 ()] + |15 ()] + |1, ()]
(bl)B,w' 'bz (x) - (bZ)B,w|

XJ f O,

C(ZB) |x0 - y|"

3 N TR CYMN

If (v Indy
|x0 = ¥l

X|b2(J’) Bw|

+ by (x) = (B1) |

If )
<Joiapy I )~ @l 7




+[b, (x) = (B,) 5,

XJ (ZB)|

1)Bw' | |

(41)
Then

"TEfZ “Lp,w(B)

_ <J <I [T B () - (B) 5|
“\Js C(2B) |x0 - y|n

1/p

p
10 wirs)

+ < JB .bl (x) - (bl)B,w|
bz - bz Bw ?
X <JC(2B) % If(y)ldy>
1/p
X w (x) dx)
; < JB 1B, () = (B,))
( ) Bw g
X<L@m| ﬁo sl “f(”*)
1/p
X w(x) dx)

[T |6 o) = (B),|
" <JB <JC(ZB) %o = y["

P
x |f(y)|dy> w (x) dx)

1/p

=L +L+I;+1,

(42)
Let us estimate I,
118 () = (B
I = w(B)l/P JC(ZB) 1 ||x0 _ yln & . |f (y)l dy

1/ 2

:ww)PLQmebu s
=

©dt
x| f )l J|x0_y| eyl
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~ w(B)l/P JOO

2r

Lleo y|<t H 'b ()/ B,w|

dt
x<If Dl dy o

—

b)

1 B,wl

<u® [ jOIIPU—

dt
x| f Ol dy
(43)
Applying Holder’s inequality and by Lemma 18, we get

I, <w(B)"?

oo 2 !

<| 11 B (3) = () [
Lr ; <JB(x0,t)

1-2p' 12p
y) P dy)
j=1

dt
"f"L w(B(xg,t)) tn+1

S}

l/p

m@l ) e I11 a
X - +in- ||w “L o (B(xo,1)) f Ly (Blxo,t)) g+

< [BlLw " [0 (e )AL, o
owww»”P§.
(44)
Let us estimate I,
1/
I = <L |b1 (x) - (bl)B,w'Pw (x) dx) ?
b () = (8),]
- Jﬁ(zB) ﬁ |f (n)]dy
< ||y ”*LU(B)I/P J-C(ZB) |b2 (y) - (bZ)B,w' If )]
©dt
§ j|Xo—y| t"“dy (45)

= ] wee)

o0 dt
] O - @l Oy
2r J2r<|xg-ylst t

< by, wB)"?

00 dt
x Lr Lu(,,t) 102 () = (@), |f W)y -
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Applying Holder’s inequality and by Lemma 18, we get

L < |||, w(B)"?

o) ' , l/p’
8 Lr (JB(xO,t) |b2 ()~ (bZ)B,W|p w(y)l_P dy)

dt
x| f ||prw<3(x0,t)>tnT

2
<[Tlo].we™ o (o m )],

dt
”f"L B(x:t)) tn+1

< o], we?

©0 t -1/ dt
x Lr 10 (o4 ) 71, ey B (0 8)) 1752
(46)
In the same way, we shall get the result of I,
£ oL@ [ (e )11
' (47)
x w(B (x,, 1)) %.
In order to estimate I, note that
1/p
I, = <J |b (x) - bi)B)w'pw(x)dx>
j=1
y JC(ZB) ||f(y):nd
X —
4 (48)
2 2 1/2p
<T1(] 66O - @)y "0 dx)
j=1
y JC |f (y)|n J
(2B) [x) - y/|
By Lemma 18, we get
I< [B], wee JC |f (J’)|nd (49)
* (2B) |x, - |
Applying Holder’s inequality, we get
J f O,
“2B) |x, - )’|
< [ 1ol i OO
=, L (B(xg:t)) L 1 (Blxo,t)) g1+1

—1/pdt
< Wl [ 11, B )

Thus, by (50)
pdt
-
(51)

< [B0®" 151 B i)

Summing up I, and I, for all p € [1, 0c0) we get

”TBfZ"LP)w(B) S

bl wB)"'?

f, (e

x w(B (x4, 1))

Ay 6

1pdt
-

On the other hand,

170y = 1By o |, o
Ly (2B) Lyu(@B) |, ol

0 dt
< |B| Lr |.f ||Lp,w(3<xo,t))tnT

o | I,

dt

< w(B)l/p"w*l/p“L (B) (B(x,t)) gntl

< w(B)"/? ® ~1/p dt
<w®" | o™l iy ot

< [w]Xfw(B)l/P

« -1/pdt

X Lr “f”Lp,w(B(xU,t))w(B (x0:1)) R
(53)

Finally,
17551, e + o], wem?
e m t
x_Lrln. (e+—;)ufﬂLﬂdBuwn) (54)
x w(B (x,, t))_l/Pﬂ,

and the statement of Theorem 5 follows by (53). O

Proof of Theorem 6. Let p = 1. To deal with this result, we
split f asabove by f = f; + f,, which yields

“TBf"WLLw(B) <131 “WLLW(B) +

From the boundedness of T; from Lg(w) to WL, , (see
Lemma 13) it follows that:

”TEfl ||WL1,w(B) = "TEfI “WLl,w
<PlLIAL.. = [

For the last term | Ty f;[I,,,,

|75 £ “WLL,U(B)' (55)

(56)

(5 Without loss of generality,
1w

we still assume m = 2. By homogeneity it is enough to assume



A2 = |y,
that

= lb,l,

= 1 and hence, we only need to prove

w({x eB:|Tyf, (x)| > 1})

1d (57)
< w(B)J “f"me(B(xO w(B (x4, t)) 1dt

for all B = B(x,, ). In fact, by Lemma 12, we get

w(x €B:|Tyf, (x)| > 1)

erR

1
I CIn R

(58)

1
< Stliop(l)(l/t)w(x € B: My (fy) (x) > t)

1
= stggq)(l/t)w(x €B: M(P(f,)) () >1),

where ®(t) = tIn"(e + t). We use the Fefferman-Stein
maximal inequality

J ¢t dx< J If (0] Mg (x)dx,  (59)
(xeR™:Mf (x)>1}

for any functions f and ¢ > 0. This yields

w({x € B: M (®(f,))(x)>t})

1
s t J{xeRw(fz)(x)»} Xp () w (x) dx (60)
<1 e @M@ w.
.
Then
w(x € B:|T;f, (x)| > 1)
1
< St%)@(l/t)w(x €B:M(®(f,))(x)>1) (61)
sswprois |0 () (00 M (wi) (4.
O

Proof of Theorem 7. By Theorem 5 and Theorem 14 we have
forp>1

I7 f”M (w)~“b" SuP ‘Pz(x )

e8] m t
<[ (e )1

x w(B (x, t))‘””?
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“b" sup (pz(x,r)

x€R™,r>0

-1

r
X L In™ (6 + — ) "f“LPw(B(Xt )

-1 —l/pdt

X w(B (x,t )) ?

- 'Q sup ¢, (x, r_l)_lrl
*xeR”,r>0 r

r m r
o [ 1 (e D) Ul

X w(B (x, til))_l/p%

sup (pl(x, ril)_l

x€R™,r>0

<|
.

xw(B (e ™)) 1AL, ey

1/p

“b" sup @161 w(B (x,7))”

>0

x “f”LP)w(B(x,r))

P‘Pl

(62)
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