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Abstract

A module M is called morphic if M/Ma = ker(a) for all endomorphisms o in
end(M), and a ring R is called a left morphic ring if gR is a morphic module. We
consider the open question when the matrix ring M, (R) is left morphic by relating it
to when R" is morphic as a left R-module. More generally, we investigate when M
being morphic implies that end(M) is left morphic, and conversely. Finally, we relate
the morphic condition to internal cancellation in the module.

A module M is called morphic if M/Ma = ker(a) for every endomorphism o of M. We
show that a module M is morphic if and only if M/N = K C M implies that M/K = N,
and use this to show that every uniserial module of finite length over a commutative (in
fact left duo) ring is morphic. It is an open problem when the matrix ring M, (R) is left
morphic, and we show that this holds if and only if R™ is morphic as a left module. Hence
the rings R for which this happens for every n > 1 are a Morita invariant class containing
the left FP-injective rings. An example is given of a commutative, FP-injective ring with
simple, essential socle, in which J(R)3 = 0, but which is not morphic.

Direct summands of a morphic module are again morphic, and the study of when a direct
sum is morphic leads to a characterization of the morphic, finitely generated abelian groups,
and to a characterization of when semisimple modules are morphic. If £ = end(gM), we
say that M is self-projective if M~y C Ma, v, o € E, implies that v € Ea. We then show
that: (1) M is morphic and self-projective if and only if E is left morphic and M generates
ker(8) for each g € E; (2) E is unit regular if and only if M is morphic and ker(a) is a
direct summand of M for all & € F; and (3) M has internal cancellation if and only if every
regular endomorphism in E is morphic.

Throughout this paper every ring R is associative with unity and all modules are unitary.
We often abbreviate J(R) = J. A submodule N C M is said to be an essential submodule
(written N C®* M) if NN K # 0 for every nonzero submodule K of M. We write K C® M
to mean that K is a direct summand of the module M, and the “length” of a module means
the composition length. We denote left and right annihilators of a subset X C R by 1(X)
and r(X) respectively, and we write Z for the ring of integers and Z,, for the ring of integers
modulo n. Modules are left modules unless otherwise stated, and module homomorphisms
are written on the right of their arguments.
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1. Examples

An endomorphism « of a module M will be called morphic if M/Ma = ker(«), that is
if the dual of the Noether isomorphism theorem holds for «. The module M is called a
morphic module if every endomorphism is morphic. If R is a ring, an element a in R
is called left morphic if right multiplication -a : gR — rR is a morphic endomorphism,
that is if R/Ra = 1(a). The ring itself is called a left morphic ring if every element is left
morphic, that is if gR is a morphic module. These rings were studied in [10].

Lemma 1. The following conditions are equivalent for an endomorphism « of a module
M :

(1) e is morphic, that is M/Ma 22 ker(a).

(2) There exists € end(M) such that M3 = ker(a) and ker(8) = Ma.

(3) There exists § € end(M) such that M = ker(«) and ker(8) = Ma.

Proof. Given (1), let 0 : M/Ma — ker(a) be an isomorphism and define 5 : M — M by
mpB = (m+Ma)o. Then M3 = (M/Ma)o = ker(a), and ker(8) = {m | (m+Ma)oc =0} =
Ma. Hence (1)=-(2), and (2)=-(3) is clear. But if (3) holds then M/Ma = M/ker(5) =
MpB = ker(a), proving (1). O

A ring R is called directly finite if ab =1 in R implies ba = 1.

Corollary 2. A morphic endomorphism is monic if and only if it is epic. Hence every left
morphic ring is directly finite.

Every idempotent o : M — M is morphic (take § = 1 — « in Lemma 1) as is every
automorphism « (take 5 = 0). Hence every simple module is morphic by Schur’s lemma.
An endomorphism « : M — M is called unit regular if aca = a for some automorphism o
of M, equivalently if a = mo where 72 = 7 and ¢ is an automorphism.

Example 3. Let a € end(M) be a morphic element. If o : M — M is an automorphism,
then oo and ao are both morphic. In particular, every unit regular endomorphism is
morphic.

Proof. By Lemma 1, choose 5 € end(M) such that MS = ker(a) and ker(8) = Ma.
Then Moa = Ma = ker(8) = ker(Bo™1), and ker(oca) = (ker(a))o™! = M(Bo™1), so
oa is morphic. Similarly, Mao = (ker(8))o = ker(c713) and ker(ao) = ker(a) = M3 =
M (o=18), so ga is morphic. O

Example 4. In Lemma 1 we cannot replace (3) by “There exists 8 € end(M) such that
Mg = ker(a) and ker(B8) = Ma”. Moreover, the composite of morphic endomorphisms
need not be morphic.

Proof. Consider the Z-module M = Zy & Z4. Define o : Zy — Zy by (n+2Z)o = (2n+4Z)
for n € Z, and then define o and S in end(M) by (z,y)a = (0,z0) and (x,y)B = (0,y).
Then M S = ker(a) and kerf = Ma, but M/Ma 2 ker(a) so « is not morphic.

Next define 0 : Zy — Zo by (n+4Z)0 = n+2Z. Then definer: M — M andy: M — M
by (z,y)m = (x,0) and (z,y)y = (y8,x0) where ¢ : Zg — Z4 is the above map. Then 7 is
morphic (it is an idempotent) and 7 is morphic as M/M~ = Zs = ker(y), but 7y = «a is
not morphic. g

We now give a characterization of a morphic module in terms of the lattice of submodules.
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Theorem 5. The following are equivalent for a module M :
(1) M is morphic.
(2) If M/K = N where K and N are submodules of M, then M/N = K.

Proof. (1)=(2). If 0 : M/K — N is an isomorphism, define o : M — M by ma =
(m+ K)o. Then N = Ma and K = ker(a). By (1) there exists 8 : M — M such that
Mp = ker(a) = K and ker(8) = Ma = N. Hence M/N = M /ker(8) =2 M = K, proving
(2).

(2)=(1). Given oo : gpM — M, write K = ker(a) and N = M. Hence (2) provides
an isomorphism 7 : M/N — K. If we define § : M — M by m@B = (m + N)7, then
Mp =K = ker(a) and ker(8) = N = Ma. This proves (1). O

Corollary 6. Let M be morphic and K C M. If M = K then K = M; if M =2 M/K then
K=0.

Proof. If M = K then M/0 = K so M/K = 0 by Theorem 5, thatis K = M. If M = M/K
then K = M /M by Theorem 5, so K = 0. O

Corollary 6 shows that the infinite cyclic group Z is not morphic as a Z-module. However,
Z,, is morphic by Theorem 5 because finite cyclic groups are isomorphic if and only if they
have the same order. We will characterize the morphic, finitely generated abelian groups in
Theorem 26.

A module is called uniserial if its submodule lattice is a chain. Hence the Priifer group
Zp~ is uniserial, injective and artinian but it is not morphic by Corollary 6. Thus the
injective hull of the (simple) morphic module Z,, is not morphic.

Corollary 7. The following conditions are equivalent for a uniserial module with submodule
lattice0 =Ko C K1 C Koy C---C K, o CK,_1 CK, =M.

(1) M is morphic.

(2) For eacht =0,1,--- ,n, if M/K; = K,,_; then M/K,,_; = K;.

Proof. We have (1)=-(2) by Theorem 5. Conversely, given (2) let M/K = N, K C M and
N C M. If K =K, then N 2 M/K; so N has length n — t. Hence N = K,,_; so, by (2),
M/N = K,_(,_y = K, = K. 0

A ring is called left duo if every left ideal is two-sided.

Proposition 8. Let g M be a uniserial module of finite length.
(1) If every submodule of M is an image of M then M is morphic.
(2) In particular, M is morphic if M = Rm where 1(m) is an ideal of R.
(3) Hence every uniserial left module of finite length over a left duo ring is morphic.

Proof. (1). Let M/K = N where K C M and N C M, and let a : M — K be epic. If
M and K have lengths n and ¢ respectively, then N and ker(«) both have length n — ¢, so
N = ker(a) because M is uniserial. Thus M/N = M/ker(a) = K, so (1) follows by
Theorem 5.

(2). If K C M is a submodule then K is principal (it is uniserial), say KX = Rk. Then
the map a : M — K given by (rm)a = rk is well defined [if rm = 0 then, writing k = sm,
we have rk = r(sm) = 0 because rs € 1(m) by hypothesis]. Hence (2) follows from (1).

(3). This follows from (2). O

A ring R is called left special if it is left morphic, local and J is nilpotent; equivalently
[10, Theorem 9] if gR is a uniserial module of finite length.
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Corollary 9. If pR is left special then every principal left module is morphic.

Proof. Every principal module over a left uniserial ring of finite length is again uniserial of
finite length, and R is left duo (indeed the only left ideals are R > J > J2 > --- D> J" 1 >
J"™ = 0—see [10, Theorem 9]). Hence Proposition 8 applies O

The converse of (2) in Proposition 8 is false: Take M = R/L and m = 1+ L, where L
is a maximal left ideal of R that is not an ideal. The next example shows that the converse
of (1) in Proposition 8 is also false.

Example 10. If D is a division ring and R = [ l(:)) g } , let M = [ g g } . Then rM is
uniserial of length 2 that but not every submodule is an image.

Proof. The only proper submodule of M is K = [ 8 l(:)) } , so M is uniserial, and hence

morphic by Example 13. But K is not an image of M since; if so M/K = K, contrary to
the fact that [ (1] 8 } annihilates M /K but not K. O

We now look at pairs of dual conditions that imply that a module of finite length is
morphic.

Lemma 11. A module g M of finite length is morphic if either (1) or (2) holds:
(1) (a) Every submodule of M is isomorphic to an image of M; and
(b) If length(K) = length(K') where K, K' C M, then M/K = M/K’.
(2) (c) Every image of M is isomorphic to a submodule of M; and
(d) If length(M/K) = length(M/K') where K, K' C M, then K = K'.

Proof. Let M/K = N where K, N C M; we show M/N = K. Write n = length(M) and
t = length(K). To prove (1), write K = M/N’ by (a) where N’ C M. Then length(N') =
n—t = length(N) so M/N = M/N' = K using (b). For (2), write M/N = K’ by (c) where
K’ C M. Then length(M/K') =n —t = length(M/K) so K =2 K' =2 M/N using (d). O

Note that both (b) and (d) in Lemma 11 hold in a uniserial module of finite length. The
module zM = Zs @ Z3 is morphic (as we shall see in Example 13 below) and has finite
length, but (b) and (d) both fail for M.

Example 12. There exists a non-morphic module M of length 8 in which both (a) and (c)
hold (and so both (b) and (d) fail).

Proof. Let M = Zs ® Z4. By the fundamental theorem of finite abelian groups, the only
images of M are M, Zo ®Zs, Zo, Z4 and 0, each is isomorphic to a submodule, and these are
the only submodules. However M is not morphic. In fact, if K = Zo ® 2Z4 and N = Zs G0
then M/K =7y = N but M/N 27, 2 K. O

It follows by Lemma 11 that every homogeneous semisimple module M of finite length
is morphic. In fact we will show (see Theorem 35) that every semisimple module of finite
length is morphic.

Example 13. Every module M of length 2 is morphic.
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Proof. Let K and N be submodules of M with M/K = N; by Theorem 5 we must show
that M/N = K. Since M has length 2 this holds if K = 0, M or if N = 0, M. So we may
assume that K and N are simple (and hence maximal in M). Since M has length 2 it is
either uniserial or semisimple. In the first case M has submodule lattice 0 C P C M, so
K = P = N and we have M/N = M/K = N = K, as required.

On the other hand, suppose that M is semisimple, say M = X @Y where X and Y are
simple. If X 2 Y then M is homogeneous and so is morphic by Lemma 11. So assume that
X 2Y. Since K # M, either X  KorY ¢ K,so M = K®X or M = K@Y because
K is maximal in M. We assume that M = K @ X (the other case is analogous). Similarly,
M=N@XooM=NaYIEM=Ne&XthenY = M/X =N =M/K = X, contrary
to our assumption. So M = N @Y and we obtain M/N =2Y =~ M/X =~ K, as required. O

Example 14. There exists a non-morphic module M with submodule lattice 0 C Q C P C

M.
a b ¢ F F
Proof. Let R = g a d]a,lxcéF}whereFisaﬁeld.IfM—[?],P— Ig ,
F c a 1 0 0
andQ—[8],thenM/PZQvia[d]»—>[8]butM/Q?_3Pbecause[8 8 8]

annihilates M/Q but not P. It is routine to verify that 0, P, Q and M are the only submodules
of M. O

Note that Zg and the module M in Example 14 are uniserial modules with isomorphic
submodule lattices, but Zg is morphic while M is not.

It would be interesting to see an example of a non-morphic module of finite length
in which every submodule is isomorphic to an image and every image is isomorphic to a
submodule. However, if the module is morphic (possibly not of finite length), these two
conditions are equivalent, and we obtain a satisfying symmetry.

Theorem 15. The following are equivalent for a morphic module R M :
(1) Every submodule of M is isomorphic to an image of M.
(2) Every image of M is isomorphic to a submodule of M.
In this case, the following hold:
(a) If N and N’ are submodules of M then M/N = M /N’ if and only if N = N'.
(b) M is finitely generated if and only if M is noetherian.

Proof. (1)=(2). Given K C M, let K = M/N where N C M by (1). Then M/K = N
because M is morphic, and (2) follows.

(2)=(1). Given K C M, let M/K = N C M by (2). Then M/N = K because M is
morphic, so (1) is proved.

(a). If M/N = M/N’',let M/N =2 K C M by (2). Then N = M/K = N’ because M is
morphic. Conversely, suppose N & N’ and, by (2), let M/N =% K C M and M/N' 2 K' C
M. Since M is morphic we have M/K = N = N’ = M/K' so K = K’ as above. Hence
M/N = M/N', as required.

(b). If M is finitely generated and K C M, then K = M/N for some N C M by (1).
Hence K is finitely generated, and so M is noetherian. O

A left morphic ring R satisfies conditions (1) and (2) in Theorem 15 if and only if every
left ideal is principal, and these rings are called left P-morphic in [11]. Accordingly, we call
a module P-morphic if it is morphic and satisfies the equivalent conditions (1) and (2) in
Theorem 15.
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Every simple module is P-morphic; a semisimple module is P-morphic if and only if it is
morphic because conditions (1) and (2) in Theorem 15 are automatic. The Z-module Z,, is
P-morphic because it is morphic by Example and, if K C Z,, is a subgroup, | K| = m, then
Z,, has a subgroup N with |[N| = n/m so K = Z,,/N. On the other hand, the module M in
Example 10 is a uniserial, morphic module of length 2 that is not P-morphic.

2. Matrix Rings

It is an open problem to determine when M, (R) is left morphic. With an eye on this
question, we examine the relationship between R-modules and modules over the matrix ring
M,,(R). The free module R™ plays a basic role. We assume that n = 2 for convenience.

Write S = Ma(R). If K C S is a left ideal then K has the form K = [ i({ } where
rX C grR?is given by X = {Z € R? | {g} € K}. In fact, X — {ﬁ} is a lattice
isomorphism from the left R-submodules of R? to the left ideals of S. Given p M, [ % } is a

left S-module via matrix multiplication. If « : gM — grN the map [ o } : [ j\é } — [ x }

M

m } [ * } = [ mae } . Moreover, every S-linear map A : [ M } —

m2

is S-linear where [ o e

{%} has this form. Indeed, if m € M then [ i }x\: [(1] 8}([ IS }/\) = [ " } for
some element ma € N, and this defines an R-morphism « : gM — grN. Now observe that

Lo =[S o1l eDr=10 o] ] =] ] forame n, and it follows

that A= | o |. Clearly | ¢ | is one-to-one or onto if and only if the same is true of a.

Lemma 16. Let K = [ § } and N = [ }; } denote left ideals of S = Ms(R). Then:
~ [ R?/X
(1) S/K = [ X }
(2) S/K = N as S-modules if and only if R*/X =Y as R-modules.

Proof. The map 6 : S — [ RY/X } given by [ g } — [ p+X } is an S-morphism with

R?*/X q+X
kernel [ § } . This proves (1). Hence S/K = N if and only if [ gi;ﬁ } o~ [ }Y, } ; if and
only if R?/X =Y. This proves (2). O

Lemma 17. Let R be a ring and write S = M, (R).
(1) Every left ideal of S is isomorphic to an image of S if and only if every
submodule of gR™ is isomorphic to an image of RR".
(2) Every image of ¢S is isomorphic to a left ideal of S if and only if every
image of rR™ is isomorphic to a submodule of g R".

Proof. We prove the result for n = 2; the general case is analogous. Assume that left
ideals of S are images of S. If X C R™ and we write K = [ § } then K = S/N for some

N = [ ¥ } C S, so X = R™/Y. This proves half of (1); the converse is similar as is the
(2)-

proof of (2 a

Theorem 18. Let R be a ring.
(1) rRR™ is morphic if and only if M,,(R) is left morphic.
(2) rR™ is P-morphic if and only if M,,(R) is left P-morphic.
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Proof. We prove it for n = 2; the general case is analogous.
(1). If gR? is morphic, let K = [ § } and N = [ § } be left ideals of S = My(R)

such that K = S/N. Then X = R?/Y by Lemma 16, so Y = R?/X by hypothesis, whence
N = S/K. Hence S is left morphic, and the converse is similar.

(2). If RR? is P-morphic then S = Ms(R) is left morphic by (1). If gR? is P-morphic,
let K = [ § } be a left ideal of S, where X C R% Then X = R?/Y for some Y C R? by

hypothesis. If we write N = [ }; } then S/N = K, proving that S is left P-morphic. The

converse is similar. O

The property of being left morphic (or being left P-morphic) does not pass to matrix
rings. In fact, Example 7 of [11] exhibits a left and right artinian, left P-morphic ring R such
that M (R) is not left morphic. Accordingly, the following classes of rings are of interest. A
ring R is called strongly left morphic (respectively strongly left P-morphic) if every
matrix ring M, (R) is left morphic (respectively left P-morphic).

Direct products of strongly left morphic rings, and finite direct products of strongly
left P-morphic rings, are again of the same type by [10, Example 2] and [11, Example 3],
respectively, using the canonical isomorphism M, (II; R;) = II; M,,(R;).

Every unit regular ring is strongly left morphic (unit regularity is a Morita invariant by
[8, Corollary 3]). However:

Question. If a ring R is strongly left morphic and J(R) = 0, is R unit regular?

Call a ring R left special if R is local, left morphic and J = J(R) is nilpotent (see
[10, Theorem 9]). Then the left and right special rings are all strongly P-morphic by [11,
Theorem 15]. Note that Example 7 of [11] is actually a left special ring R for which M>(R)
is not left morphic.

Theorem 19. The following are equivalent for a ring R :
(1) R is strongly left morphic (respectively strongly left P-morphic).
(2) rR™ is morphic (respectively P-morphic) for each n > 1.
(3) Every finitely generated projective left R-module is morphic (respectively
P-morphic).

Proof. (1)<(2) by Theorem 18 and (2)«<(3) because direct summands of morphic or P-
morphic modules are again of the same type (Theorem 23 below). O

Theorem 20. Let R denote a ring.
(1) If R is strongly left morphic the same is true of eRe for any idempotent e € R.
(2) Being strongly left morphic is a Morita invariant.

Proof. Write S = M, (R).

(1). If R is strongly left morphic and e? = e € R, write € = el € S where I is the
identity matrix. Then M, (eRe) = &Se is left morphic by [10, Theorem 15] because S is left
morphic. Hence eRe is is strongly left morphic.

(2). It R is strongly left morphic then M,,(S) = My, (R) is left morphic for all m > 1
by hypothesis. Hence S is strongly left morphic, and we are done by (1). O

We do not know if part (1) of Theorem 20 holds for strongly left P-morphic rings because
we do not know the answer to:

Question. If R is left P-morphic and ReR = R where e = e, is eRe left P-morphic?
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Note that Re is a P-morphic module by Theorem 23.
A ring R is said to be stably finite if M, (R) is directly finite for every n > 1. Hence
every strongly left morphic ring is stably finite by Corollary 2 because M, (R) is morphic.

Theorem 21. A ring R is strongly left morphic and semiperfect if and only if R is a finite
product of matrix rings over local, strongly left morphic rings.

Proof. This follows from [10, Theorem 29] and the fact that M, (R) is strongly left morphic
if R is local and strongly left morphic. a

Question. If My(R) is left morphic, is R strongly left morphic?

A ring R is called right FP-injective if every R-morphism from a finitely generated
submodule of a free right R-module F to R extends to F. Every strongly left morphic ring
R is right FP-injective by [14, Theorem 1] because every left morphic ring is right P-injective
by [10, Theorem 24]. (Here a ring R is called right P-injective [12] if every R-morphism
aR — R, a € R, extends to R, equivalently if aR is a right annihilator for each a € R.)

Example 22. There exists a commutative, local, FP-injective ring R with J®> = 0 and J?
simple and essential in R, but which is not morphic.

Proof. Let R = Flx1, 2, -] where F is a field and the z; are commuting indeterminants
satisfying the relations

z3 =0 for all 4, xz;x; =0 for all 1 # j, and — xf for all ¢ and j.

Write m = 22 = 23 = --- , so that m? = 0 = z;m for all i. Then R is commutative and

J = spanp{m,x1, 29, -}, so Ris local, R/J = F, J> = 0 and J?> = Rm = Fm is simple
and essential in R (see also [2, Example 6]). Moreover, R is P-injective; in fact 1r(A) = A
for every ideal A. This follows from the

Claim. If we denote X = spang{x1,x2, -}, the maps A ANX and U — Fm & U are
mutually inverse lattice isomorphisms between the lattice of all ideals A # 0, R of R and
the lattice of all F-subspaces U of X.

Proof. Observe first that Fm@®U is an ideal for each U because (Fm®U)R C FmR+UR C
Fm+ (UF +mF) C Fm + U. The composites of the given maps are U — Fm & U —
(FmaU)NX =U because U C X, and A— ANX — Fm® (AN X) = A by the modular
law because F'm C A C J = Fm® X. Hence the two maps are mutually inverse; they clearly
preserve inclusions. This proves the Claim. Note that J = Fm & X.

The Claim also shows that R is not morphic since otherwise R is special and has only
finitely many ideals. R is FP-injective by [13, Example 5.45]. O

3. Direct Sums

The classes of morphic and P-morphic modules are not closed under taking direct sums.
In fact The Z-modules Zs and Z4 are both P-morphic but Zs & Z4 is not even morphic by
Example 4. However we do have

Theorem 23. Every direct summand of a morphic or P-morphic module is again of the
same type.
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Proof. Let M = P& @ be morphic, and suppose that P/K = N where K C P and N C P.
Then M/K = (P/K)® Q = N & @, so (as M is morphic) K = M/(N & Q) = P/N. Hence
P is morphic by Theorem 5.

Now assume that M = P & @ is P-morphic. Let N C P be a submodule; we must show
that N is an image of P. As M is P-morphic, M /(N @0) is isomorphic to a submodule of M
by Theorem 15, say M /(N&®0) = H C M. Since M is morphic, this gives M/H = N&0 = N,
so it suffices to show that M/H is an image of P. Observe that H = M/(N®0) = (P/N)®Q,
so write H = Hy; ® @1 where Q1 = Q. Now (M/Q1)/(H/Q1) = M/H = N so N is an image
of M/Q. Hence it suffices to show that M/Q; = P. But M is P-morphic so the fact that
Q = Q; gives M/Q = M/Q1 by Theorem 15, so P = M/Q1, as required. O

Lemma 24. Let M = K & N be a morphic module. If A\ : K — N is R-linear then
K & (N/KX) = ker(\) @ N.
In particular:
(1) If X is monic then N =2 K @& (N/K\).
(2) If X is epic then K = ker(\) @ N.
Hence if K is isomorphic to either a submodule or an image of N then K is isomorphic to
a direct summand of N.

Proof. Given A define A : M — M by (k+n)X = kX for all k+n € M. Then MA = K\ and
ker(\) = ker(\) @ N. Since M is morphic we have M/MX = ker(\), that is K @ (N/K\) =
ker(A) @ N. Now (1) and (2) are immediate. As to the last sentence: If K is isomorphic to a
submodule of N then K is isomorphic to a direct summand of N by (1); If K is isomorphic
to an image of N then K is isomorphic to a direct summand of N by (2) with K and N
interchanged. g

We can refine Lemma 24 as follows: If M = K @& N is morphic and X C K, then
K/X >N ifandonlyif K>X®N.

In fact, K/X 2 M/(X®N),so K/ X N & M/(X®&N)=2N & M/N
XeN & KZX®N.

We conclude with a consequence of Theorems 23 and 19 characterizing the morphic,
finitely generated abelian groups. The following will be needed.

Lemma 25. If gM and g N are morphic modules for which hompg(M,N) = 0 = homg(N, M),
then M @& N is morphic.

Proof. If A € end(M @& N) then A = [ o ,(3] } in matrix form where o € end(M) and
B € end(N).If o € end(M) and B’ € end(N) satisfy Ma = ker(o/), ker(a) = Mo/, M3 =
ker(8'), ker(8) = MB' then im()) = ker()N) and ker(\) = im(\') where N = { o g }
g

Applying the fundamental theorem of finitely generated abelian groups, we obtain

Theorem 26. A finitely generated abelian group is morphic if and only if it is finite and
each p-primary component has the form (Zpk)” for some n > 0 and k > 0.
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Proof. If zM is finitely generated and morphic, then M is a direct sum of cyclic groups,
and contains no infinite summand by Theorem 23 because Z is not morphic. Hence M is
finite and so is the direct sum of its primary components. If M,, is the p-primary component
of M then My, = Zymy @ Zpma @ - - - @ Zpma where my > mg > -+ > my. But if m; > m;
then Zpym; © Z,mi+1 is not morphic by Lemma 24 because Z,mi+1 is indecomposable and
Zym: embeds in it. This contradicts Theorem 23, and so shows that M =2 (Z,m,)™.

Conversely, by Lemma 25 it suffices to show that (Z,)™ is morphic for each n > 0 and
k > 0. The ring S = Z, is (left and right) special so M, (S) is left morphic by [10, Theorem
17]. Hence S™ is morphic as a left S-module by Theorem 19, and hence as a left Z-module.
O

We remark in passing that, for integers n > 1 and m > 1, Z,, ® Z,, is morphic if and only
if m = da and n = db where gcd(d,a) =1, ged(d,b) = 1, and ged(a,b) =1

4. Endomorphism Rings

The original motivation for studying morphic modules stems from FErlich’s theorem char-
acterizing when an endomorphism « is unit regular. This is included in the next lemma
(along with Azumaya’s characterization of when « is regular) and reveals the connection
with morphic endomorphisms. We sketch brief proofs for completeness.

Lemma 27. Let a be an endomorphism of M.
(1) Azumaya [1]. « is regular if and only if both M« and ker(a) are direct
summands of M.
(2) Ehrlich [5]. « is unit regular if and only if it is both regular and morphic.

Proof. (1) If M = Ma® K = ker(a) ®N then Ma = Naso M = Na® K. Then afa = o
where g : M — M is (well-) defined by (na+ k)8 = n, n € N, k € K. The converse is
routine.

(2) If o is unit regular it is morphic by Example 3. Conversely, if M = Ma ® K =
N @ ker(a) then K = M/Ma = ker(a) because « is morphic, say via v : K — ker(a). We
have M = Na@® K as in (1), and we define 0 : M — M by (na+ k)o = n+ ky,n € N,
k € K. Then o is well defined, Mo = N + Ky = N + ker(a) = M, and ker(c) = 0 because
v is monic, so ¢ is a unit in end(M). Finally, aca = a because they agree on ker(a) and
N. |

Example 28. If end(M) is unit regular then M is morphic.

Zelmanowitz [15] calls a module g M regular if for any m € M there exists A € M* =
homg(M, R) such that (mA)m = m. In this case, if we write e = mA, then e = e, A :
Rm — Re is an isomorphism (so Rm is projective), and M = Rm @& W where w = {w €
M | (wA)m = 0}. Zelmanowitz proves [15, Theorem 1.6] that every finitely generated
submodule of a regular module M is a projective direct summand of M. Our interest lies
in a larger class of modules wherein every principal submodule Rm, m € M, is a direct
summand of M (equivalently [15, Corollary 1.3] if every finitely generated submodule is a
summand).

Proposition 29. Let M be a finitely generated module in which every principal submodule
is a direct summand. Then M is morphic if and only if end(M) is unit regular. In particular,
every finite dimensional, regular module M is morphic.
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Proof. If M is morphic and a € end(M), then M« is a summand by [15, Corollary 1.3].
Since M is morphic, we have ker(a) = M/Ma so ker(a) is finitely generated, and so is a
summand. Hence « is regular in end(M), and so is unit regular by Lemma 27. The converse
also follows from Lemma 27. If M is finite dimensional then M is finitely generated (the
proof of [15, Theorem 1.8] goes through), so the last statement follows by Example 28
because end(M) is semisimple artinian by [15, Theorem 4.8]. O

Corollary 30. Let M be a finitely generated module over a commutative ring. Then M is
regular and morphic if and only if M is projective and end(M) is unit regular.

Proof. If M is regular and finitely generated then M is projective by [15, Corollary 1.7]
and end(M) is unit regular by Proposition 29. Conversely, if M is projective and end(M)
is unit regular then M is regular (by [15, Theorem 3.8]) and morphic (by Proposition 29).00

A module pM will be called image-projective if, whenever M~ C M« where o,y €
E =end(M), then v € Eq, that is if the map ¢ exists in the

diagram when o and «y are given. If we insist on this whenever s M
Ma is replaced by an arbitrary module (equivalently Sl
any quotient of M) the module M is called quasi-projective. M % Ma —0

Hence every quasi-projective module zp M is image-projective.
In a different direction, [12, Theorem 1.5] shows that pM is
image-projective if £ = end(M) is right P-injective, and that the converse holds if M
cogenerates M /M f3 for every 5 € E.

A module M is said to generate a submodule K C M if K =X{MM | A€ E, MAC K},
and we say that M generates its kernels if M generates ker(f3) for each 5 € E.

Lemma 31. Let gM be a module and write E = end(gM).
(1) If E is left morphic then M is image-projective.
(2) If M is morphic and image-projective, then F is left morphic.
(3) If M is morphic then it generates its kernels.
(4) If E is left morphic and M generates its kernels, then M is morphic.

Proof. (1). Assume that E is left morphic. If My C Ma then rg(a) C rg(y), so Ey C Ea
because F is right P-injective by hypothesis using [10, Theorem 24].

(2). If M is morphic and image-projective, and given o € E, choose (by hypothesis)
B € E such that Mo = ker(8) and M5 = ker(a). Then Ea C 1g(8) because aff = 0.
Conversely, if v € 1g(8) then M~ C ker(8) = Ma, so v € Ea because M is image-
projective. Thus Fa = 1g(8), and EB = 1g(«) follows in the same way. Hence E is left
morphic by [10, Lemma 1].

(3). Let 8 € E. Since M is morphic, choose A € E such that M = ker(5). This proves
that M generates its kernels.

(4). If E is left morphic and M generates its kernels, and given a € E, choose 8 € E such
that Ea = 1g(f) and EB = 1g(«). Then Ma C ker(3) because a8 = 0. By hypothesis we
have ker(8) = L{MA | X € E and MX C ker(8)}. But MX C ker(f) implies A € 1g(8) =
Ea, say A = ya, v € E. Hence M)A\ = M~ya C Ma, whence ker(8) C Ma. This shows that
Mo = ker(B), and M3 = ker(a) is proved in the same way. O

Combining these we get a characterization of the image-projective, morphic modules.

Theorem 32. The following are equivalent for a module M :
(1) M is morphic and image-projective.
(2) end(M) is left morphic and M generates its kernels.
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Proof. (1)=-(2) by (2) and (3) of Lemma 31, and (2)=-(1) by (4) and (1) of Lemma 31. O

Let R be aring. Since R" is image-projective and generates its submodules, taking M = R"
in Theorem 32 provides another proof of the fact (in Theorem 18) that M,,(R) is left morphic
if and only if R™ is morphic as a left R-module.

If every principal submodule of a module pM is a direct summand, it is routine to check
that M generates all its submodules. Hence Theorem 32 gives

Corollary 33. Assume that Rm C% M for all m € rM (for example if M is regular).
Then M is morphic and image-projective if and only if end(M) is left morphic.

Corollary 34. Let gM be a module and assume that E = end(M) is regular. Then M is
morphic and image-projective if and only if E is unit regular.

Proof. If M is morphic and image-projective then E is morphic by Theorem 32. Since F is
regular, it is unit regular by Lemma 27. Conversely, if F is unit regular then M is morphic
by Example 3. But F is left morphic by Lemma 27, so M is image-projective by Lemma
31. O

We can say more for a semisimple module.

Theorem 35. The following are equivalent for a semisimple module M :
(1) M is morphic.
(2) end(M) is unit regular.
(3) Each homogeneous component of M is artinian.

In this case end(M) is a direct product of matrix rings over division rings.

Proof. Write £ = end(M) and E; = end(H;) where {H; | i € I} are the homogeneous
components of M. Then E = II; E;.

(1)=(2). Assume that M is morphic. Since M is image-projective (every semisimple
module is quasi-projective), E is left morphic by Lemma 31. Now (2) follows by Lemma 27
because E is regular (M is semisimple).

(2)=(3). Note that end(H;) is left morphic for each ¢ by (2) and Lemma 27. If H; =
K®K®--- where K is simple, then (k1,ke,---) — (0, k1, k2, ---) is monic in end(H;) and
not epic, contrary to Corollary 2. This proves (3).

(3)=(1). Given (3) the last statement follows because E = II; F;. In particular F is unit
regular, and hence left morphic. But M generates its kernels because end(M) is regular, so
M is morphic by Lemma 31. O

Proposition 36. A ring R is semisimple artinian if and only if every finitely generated
(respectively every 2-generated) left module is morphic.

Proof. If R is semisimple artinian then every module is semisimple, so Theorem 35 applies.
Conversely, let X C R be a left ideal and let A : R — R/X be the coset map. Since
M = R® (R/X) is morphic by hypothesis, Lemma 24 shows that R =2 X @& (R/X). In
particular, R/X is projective so X is a direct summand of R. It follows that R is semisimple
artinian. O

Note that Corollary 9 shows that if R is left uniserial of finite length then every principal
left R-module is morphic, but the converse is false (consider Z,).

Question. Which rings have every principal left module morphic?
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Call a module M kernel-direct if ker(a) C® M for every a € end(M), and call M
image-direct if im(a) C® M for each a € end(M). Modules with regular endomorphism
ring (and hence all semisimple modules) enjoy both properties. Note that, by Lemma 1,
a morphic module is kernel direct if and only if it is image direct. We can give a partial
converse for Example 28.

Theorem 37. The following are equivalent for a module M :
(1) end(M) is unit regular.
(2) M is morphic and kernel-direct.
(3) M is morphic and image-direct.

Proof. (1)=(2). Given (1), M is morphic by Example 28 and kernel direct by Lemma 27.
(2)=(3). Given a € end(M), then Mo = ker(8) for some 5 € end(M) by Lemma 1.
(3)=(1). Given a € end(M), M« is a summand of M by (3), as is ker(c) (since

ker(a) = M3 for some 8 € end(M)). Hence end(M) is regular by (1) of Lemma 27, so it is

unit regular by (2) of the same lemma. O

If R is a ring then rR is image direct if and only if R is regular, so Theorem 37 shows
again that the unit regular rings are just the regular, left morphic rings. On the other hand,
rR is kernel-direct if and only if 1(a) C¥ grR for all a € R, that is if and only if every
principal left ideal Ra is projective. These are called left PP rings, and Theorem 37 gives

Corollary 38. A ring R is unit regular if and only if it is a left morphic, left PP ring.

Corollary 39. The following are equivalent for a finite dimensional module M :
(1) M is morphic and kernel-direct.
(2) M is morphic and image-direct.
(3) end(M) is semisimple artinian.

Proof. We have seen (1)< (2), and these conditions imply that E = end(M) is semilocal by
Corollary 2 and the Camps-Dicks theorem [4]. Now (3) follows because E is unit regular by
Theorem 37. Conversely, given (3), M is morphic by Example 28, and hence kernel-direct
by Lemma 27. O

Lemma 40. Every kernel-direct module is image-projective.

Proof. Let M3 C M« where a and § are in end(M). Write M = ker(a) ® N. Hence

Ma=Nasoo: Ma— N is well defined by (na)o =n, n € N. Then M LA MpBC Ma=
Na % N C M so A= o is in end(M) and Aa = 3. This shows that M is image-projective.
(|

Since kernel-direct modules generate their kernels, Theorem 32 gives
Corollary 41. If M is kernel-direct then M is morphic if and only if end(M) is left morphic.

We conclude this section with a look at when end(gM) is right morphic. We call a module
rM image-injective if R-linear maps M3 — M extend to M for each 8 € end(gM), and
we say that M cogenerates its cokernels if it cogenerates M /M § for each 8 € end(grM).
Note that rR is image-injective if and only if R is left P-injective, and rR cogenerates its
cokernels if and only if R is right P-injective. With this, we can obtain “dual” versions of
Lemma 31 and Theorem 32.
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Lemma 42. Let gM be a module and write E = end(gM).
(1) If E is right morphic then M is image-injective.
(2) If M is morphic and image-injective, then E is right morphic.
(3) If M is morphic then it cogenerates its cokernels.
(4) If E is right morphic and M cogenerates its cokernels, then M is morphic.

Proof. (1). Let v: M3 — M, B € E. Then A = gy € E and 1g(8) C 1g(A), so A € BE
because F is left P-injective, say A = Sa. Hence (mf3)a = mA = (mf3)y, so a extends ~.

(2). Let a € E. Since M is morphic, choose 8 € E such that M3 = ker(a) and
Ma = ker(B). Then BE C rg(a), and we claim that this is equality. If A € rg(«) then
Ma C ker(X), that is ker(8) C ker(X). Hence «y : M3 — M is well defined by (mg8)y = mA.
By hypothesis, let d € F extend 7. Then A = 80 € BF, and we have shown that 8F = rg(«).
The proof that aF = rg(5) is similar.

(3). Given 8 € FE, let o € E satisty M = ker(a). Then v : M/MpB — M is well
defined by (m + MpB)y = ma. Moreover, if my + M3 # 0 then m; ¢ MB = ker(a), so
(m1 + MB)y = mya # 0. This proves (3).

(4). Let a € E. Since F is right morphic, there exists 5 € E such that SE = rg(a) and
aF =rg(B). Then M C ker(a) and we claim this is equality. If k € ker(a) but k ¢ Mg
then, by hypothesis, choose v : M/MB — M such that (k+ MB)y # 0. If 6 € E is defined
by mé = (m+ MB)y then 86 = 0s0d € rg(8) = aFE, say 6 = a\ where A € E. But then
0 # kdé = kaX = 0\ = 0; and it follows that M S = ker(«). Similarly, Ma = ker(B). O

Theorem 43. The following are equivalent for a module M.
(1) M is morphic and image-injective.
(2) end(M) is right morphic and M cogenerates its cokernels.

If R is left and right P-injective and we take M = grR then this shows (again) that R
is left morphic if and only if R is right morphic. Note finally that the “dual” of Lemma
40 (every kernel-direct module is image-projective) is true: Every image-direct module is
clearly image-injective.

5. Internal Cancellation

A module pM is said to have internal cancellation (IC) if it satisfies the following
condition:
IfMZNEBK:Nl@Kl andN%Nl, thenK%Kl.

Each indecomposable module M has IC, and we have
Proposition 44. Every direct summand of an IC module has IC.

Proof. If M = N & K has IC, let N = Ny & Ny = N’ & N” where Ny = N’. Then
M=(NdK)® N, = (N ®K)®dN" where Ny ® K =2 N’ ® K. Hence Ny = N by
hypothesis, as required. O

We say that a ring R has left internal cancellation (left IC) if g R has IC. This holds
if and only if Re & Rf, €2 = e, f? = f, implies that R(1 — e) = R(1 — f). In this case, we
have f = u~'eu for some unit v € R.

If 72 = 7w and 72 = 7 in E = end(gM), it is routine to verify that Mm = M7 as
R-modules if and only if Emr = E7 as left E-ideals. It follows that g M has IC if and only
if E = end(gM) has left IC. Hence Proposition 44 gives
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Corollary 45. If R has left IC then eRe has left IC for every idempotent e € R.

Goodearl [7, Theorem 4.1] shows that for a module M with end(M) regular, internal
cancellation is equivalent to end(M) being unit regular. In fact

Theorem 46. A module pM has IC if and only if every regular element in end(grM) is
morphic.

Proof. If M has IC let a be regular in end(M), so that M = Ma ® K = ker(a) & N.
Then Ma = M/ker(a) =2 N so K = ker(a). Hence M/Ma = K 2 ker(a), proving
(2). Conversely, if M = N® K = Ny ® K; and v : N — N; is an isomorphism, define
a:M—Mby (n+k)a=ny,ne N, ke K. Then Ma = Ny = N; and ker(a) = K are
both summands of R. Thus a is regular in end(pM) (using Lemma 27) and so our hypothesis
gives M/Ma = ker(«). Hence K1 = M/N; = M/Ma = ker(a) = K, as required. O

Corollary 47. Every morphic module has IC.

The converse to of Corollary 47 is false: Every local ring has left (and right) IC, but need
not be left morphic. In fact Z,) is a counterexample that is a local integral domain, and
Example 22 shows that the counterexample can actually be chosen to be commutative and
P-injective. For an artinian example, the Z-module Zy ® Z4 can be verified to have IC but
is not morphic by Example 4.

Corollary 48. Given pM, end(M) is unit regular if and only if M has IC and end(M) is
regular.

Proof. If end(M) is unit regular then M has IC by Theorem 46. Conversely, if M has IC
and end(M) is regular then end(M) is morphic by Theorem 46, and so is unit regular by
Lemma 27. g

The next result extends Theorem 35.
Corollary 49. A semisimple module is morphic if and only if it has IC.

Proof. If M has IC, let N and K be submodules with M/K = N. Since M is semisimple
let M=K®K' =N&®N'. Then N = M/K = K’ so, because M has IC, K = N’ = M/N.
Hence M is morphic. The converse is by Corollary 48. O

A ring R is said to have stable range 1 if aR 4+ bR = R implies that a + bt is a unit in R
for some ¢. Evans [6] showed that if end(M) has stable range 1 then M is cancellable in the
sense that M & A = M @ B implies A = B. Camillo and Yu [3, Theorem 3] show that an
exchange ring R has stable range 1 if and only if every regular element of R is unit regular
(extending the same result of Kaplansky in the regular case).

Theorem 50. A morphic module is cancellable if it is either injective or has the finite
exchange property.

Proof. Let M be a morphic module. If M is injective then end(M) is right morphic by
Theorem 43, and so is directly finite by Corollary 2. This means that M is directly finite
([7, Lemma 5.1]) and so is cancellable by Mohamed and Miiller [9, Proposition 1.29]. Now
suppose that M has the finite exchange property. Since M has IC by Corollary 47, it is
cancellable by Mohamed and Miiller [9, Proposition 1.23]. O
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