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a b s t r a c t

In the present paper, a general recurrence relation for determining the solutions of the
time-fractional diffusion equation is obtained with the generalized differential transform
method. The obtained relationwill help us to solve time-fractional diffusion equationswith
various external forces and initial conditions. Four illustrative examples are given.
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1. Introduction

Fractional diffusion equations represent extensions of basic equations of mathematical physics. Analytical methods used
to solve these equations have very restricted applications and thenumerical techniques commonly used give rise to rounding
of errors. These kinds of equations have been intensively studied since the nineties [1–3].

Recently, SahaRay andBera haveused theAdomiandecompositionmethod (ADM) to find the solution of a time-fractional
diffusion equation of order β = 1/2 in [4]. Das has used the variational iteration method (VIM) for the same equation with
the initial conditions 1, x and x2 in [5], and for time-fractional diffusion equation of order β, (0 < β ≤ 1) with the initial
conditions xn, n ∈ N in [6].

There are several definitions of a fractional derivative. In this paper, we deal only with the Caputo fractional derivative.
The Caputo fractional derivative of order β is defined as

Dβ
t0 f (t) = Jm−β

t0


dm

dtm
f (t)


, m − 1 < β ≤ m

where m is a positive integer [7,8]. Here Jµt0 is the Riemann–Liouville integral operator of order µ > 0 defined by

Jµt0 f (t) =
1

Γ (µ)

 t

t0
(t − τ)µ−1f (τ )dτ , t > t0,

J0t0 f (t) = f (t).

In this work, we consider the following time-fractional diffusion equation

Dβ
t u = λ

∂2u
∂x2

−
∂

∂x
(F(x)u(x, t)) , 0 < β ≤ 1, x, t > 0 (1)
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with initial condition u(x, 0) = f (x). Hereλ is a positive constant, F(x) is the external force, u(x, t) represents the probability
density function of finding a particle at the point x in the time t and Dβ

t u(x, t) = J1−β

0


∂
∂t u(x, t)


.

Themain object of this work is to give a general recurrence relation for obtaining the solutions of (1) with the generalized
differential transformmethod (GDTM). This is the first study that this type of problem is solved for a given general external
force F(x) and initial condition f (x).

2. Generalized differential transform

Consider a function of two variables u(x, t), and suppose that it can be represented as a product of two single-variable
functions, i.e.,u(x, t) = f (x)g(t). Based on the properties of generalized one-dimensional differential transform, the function
u(x, t) can be represented as

u(x, t) =

∞
k=0

Fα(k)(x − x0)kα
∞
h=0

Gβ(h)(t − t0)hβ

=

∞
k=0

∞
h=0

Uα,β(k, h)(x − x0)kα(t − t0)hβ (2)

where 0 < α, β ≤ 1. The generalized two-dimensional differential transform of the function u(x, t) is given by

Uα,β(k, h) =
1

Γ (αk + 1)Γ (βh + 1)


(Dα

x0)
k(Dβ

t0)
hu(x, t)


(x0,t0)

(3)

where (Dα
x0)

k
= Dα

x0D
α
x0 · · ·Dα

x0 , k-times. Besides, Eq. (2) is also called as the generalized inverse differential transform of
Uα,β(k, h). In case of α = β = 1, the generalized two-dimensional differential transform (3) reduces to the classical
two-dimensional differential transform.

Suppose thatUα,β(k, h), Vα,β(k, h) andWα,β(k, h) are the differential transformations of the functions u(x, t), v(x, t) and
w(x, t), respectively. Based on Eqs. (2) and (3), we have the following results [9–13].

1. If u(x, t) = v(x, t) ± w(x, t), then Uα,β(k, h) = Vα,β(k, h) ± Wα,β(k, h).
2. If u(x, t) = λv(x, t), λ ∈ R, then Uα,β(k, h) = λVα,β(k, h).
3. If u(x, t) = v(x, t)w(x, t), then

Uα,β(k, h) =

k
r=0

h
s=0

Vα,β(r, h − s)Wα,β(k − r, s).

4. If u(x, t) = (x − x0)nα(t − t0)mβ , then Uα,β(k, h) = δ(k − n)δ(h − m).
5. If u(x, t) = f (x)g(t) and the function f (x) = xλh(x), where λ > −1, h(x) has the generalized Taylor series expansion

h(x) =


∞

n=0 an(x − x0)αn, and
(a) β < λ + 1 and α arbitrary or
(b) β ≥ λ + 1, α arbitrary and an = 0 for n = 0, 1, . . . ,m − 1, where m − 1 < β ≤ m,
then the generalized differential transform (3) becomes

Uα,β(k, h) =
1

Γ (αk + 1)Γ (βh + 1)


Dαk
x0 (Dβ

t0)
hu(x, t)


(x0,t0)

.

6. If u(x, t) = Dγ
x0v(x, t),m − 1 < γ ≤ m, and v(x, t) = f (x)g(t), then

Uα,β(k, h) =
Γ (αk + γ + 1)

Γ (αk + 1)
Vα,β(k + γ /α, h).

7. If u(x, t) = Dγ
t0v(x, t),m − 1 < γ ≤ m, and v(x, t) = f (x)g(t), then

Uα,β(k, h) =
Γ (βh + γ + 1)

Γ (βh + 1)
Vα,β(k, h + γ /β).

3. The solution of the general problem

In this section we present a general recurrence relation for the generalized differential transform (GDT) of Eq. (1) by
the following theorem. With the help of the given general recurrence relation, the solutions of time-fractional diffusion
equations will be easily calculate with GDTM.
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Theorem 1. If the function F(x) has the Maclaurin series expansion F(x) =


∞

n=0 anx
n with a radius of convergence R > 0

where an =
F (n)(0)

n! for n = 0, 1, 2, . . . , then the GDT of Eq. (1) is

U1,β(k, h + 1) =
Γ (βh + 1)

Γ (β(h + 1) + 1)
(k + 1)


λ(k + 2)U1,β(k + 2, h) −

k+1
i=0

ak+1−iU1,β(i, h)


. (4)

Proof. Applying GDT to both sides of the Eq. (1), we get

Γ (β(h + 1) + 1)
Γ (βh + 1)

U1,β(k, h + 1) = λ(k + 1)(k + 2)U1,β(k + 2, h)

− (k + 1)
k+1
r=0

h
s=0

∞
n=0

anδ(r − n)δ(h − s)U1,β(k − r + 1, s).

To make δ(r − n) ≠ 0 and δ(h − s) ≠ 0, we take s = h and n = r . Thus,

Γ (β(h + 1) + 1)
Γ (βh + 1)

U1,β(k, h + 1) = λ(k + 1)(k + 2)U1,β(k + 2, h) − (k + 1)
k+1
r=0

arU1,β(k − r + 1, h).

Consequently, taking r = k − i + 1, we obtain (4). �

Furthermore, the reader easily see that

U1,β(k, 0) =
f (k)(0)

k!
, k = 0, 1, 2, . . . (5)

is the GDT of the initial condition u(x, 0) = f (x).

4. Numerical examples

In this section, we have selected four examples which will ultimately show the simplicity and effectiveness of the
proposed general recurrence relation (4). The first three examples also solved with VIM and ADM before.

Example 2. Taking F(x) = −x, λ = 1 in (1) and choosing f (x) = 1, we get the following initial value problem:Dβ
t u =

∂2u
∂x2

+
∂

∂x
(xu),

u(x, 0) = 1.
(6)

Since F(x) = −x, we find a1 = −1 and an = 0 for n ≠ 1. Also, substituting f (x) = 1 in (5), we have

U1,β(0, 0) = 1, U1,β(k, 0) = 0 for k ≠ 0.

Therefore, using the general recurrence relation (4), we get

U1,β(0, 1) =
1

Γ (β + 1)
, U1,β(k, 1) = 0 for k ≠ 0,

U1,β(0, 2) =
1

Γ (2β + 1)
, U1,β(k, 2) = 0 for k ≠ 0,

U1,β(0, 3) =
1

Γ (3β + 1)
, U1,β(k, 3) = 0 for k ≠ 0,

U1,β(0, 4) =
1

Γ (4β + 1)
, U1,β(k, 4) = 0 for k ≠ 0,

...

U1,β(0, h) =
1

Γ (hβ + 1)
, U1,β(k, h) = 0 for k ≠ 0.

Thus, the solution of (6) is given by

u(x, t) =

∞
h=0


tβ

h
Γ (hβ + 1)

= Eβ(tβ)

where Eβ(t) =


∞

n=0
tn

Γ (nβ+1) , β > 0 is the Mittag-Leffler function in one parameter.
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For the special case β = 1/2, the above result is in complete agreement with [5].

Example 3. Taking F(x) = −x, λ = 1 in (1) and choosing f (x) = x, we get the following initial value problem:Dβ
t u =

∂2u
∂x2

+
∂

∂x
(xu),

u(x, 0) = x.
(7)

Since F(x) = −x, we find a1 = −1 and an = 0 for n ≠ 1. Also, substituting f (x) = x in (5), we have

U1,β(1, 0) = 1, U1,β(k, 0) = 0 for k ≠ 1.

Therefore, using the general recurrence relation (4), we get

U1,β(1, 1) =
2

Γ (β + 1)
, U1,β(k, 1) = 0 for k ≠ 1,

U1,β(1, 2) =
22

Γ (2β + 1)
, U1,β(k, 2) = 0 for k ≠ 1,

U1,β(1, 3) =
23

Γ (3β + 1)
, U1,β(k, 3) = 0 for k ≠ 1,

U1,β(1, 4) =
24

Γ (4β + 1)
, U1,β(k, 4) = 0 for k ≠ 1,

...

U1,β(1, h) =
2h

Γ (hβ + 1)
, U1,β(k, h) = 0 for k ≠ 1.

Thus, the solution of (7) is given by

u(x, t) = x
∞
h=0


2tβ

h
Γ (hβ + 1)

= xEβ(2tβ).

The same solution has been obtained by Das [6]. Also the above result is in complete agreement with [4,5] for β = 1/2.

Example 4. Taking F(x) = −x, λ = 1 in (1) and choosing f (x) = x2, we get the following initial value problem:Dβ
t u =

∂2u
∂x2

+
∂

∂x
(xu),

u(x, 0) = x2.
(8)

Since F(x) = −x, we find a1 = −1 and an = 0 for n ≠ 1. Also, substituting f (x) = x2 in (5), we have

U1,β(2, 0) = 1, U1,β(k, 0) = 0 for k ≠ 2.

Therefore, using the general recurrence relation (4), we get

U1,β(0, 1) =
2

Γ (β + 1)
, U1,β(2, 1) =

3
Γ (β + 1)

, U1,β(k, 1) = 0 for k ≠ 0, 2,

U1,β(0, 2) =
8

Γ (2β + 1)
, U1,β(2, 2) =

32

Γ (2β + 1)
, U1,β(k, 2) = 0 for k ≠ 0, 2,

U1,β(0, 3) =
26

Γ (3β + 1)
, U1,β(2, 3) =

33

Γ (3β + 1)
, U1,β(k, 3) = 0 for k ≠ 0, 2,

...

U1,β(0, h) =
3h

− 1
Γ (hβ + 1)

, U1,β(2, h) =
3h

Γ (hβ + 1)
, U1,β(k, h) = 0 for k ≠ 0, 2.

Thus, the solution of (8) is given by
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u(x, t) = x2 +
(2 + 3x2)
Γ (β + 1)

tβ +
(8 + 9x2)
Γ (2β + 1)

t2β +
(26 + 27x2)
Γ (3β + 1)

t3β + · · ·

=

∞
h=0

3h(1 + x2) − 1
Γ (hβ + 1)

thβ

= Eβ(ptβ)

where ph = 3h(1 + x2) − 1.
The same solution has been obtained by Das [6]. Also this solution is in complete agreement with [5] for β = 1/2.

Example 5. Taking F(x) = e−x, λ = 1 in (1) and choosing f (x) = ex, we get the following initial value problem:Dβ
t u =

∂2u
∂x2

−
∂

∂x
(e−xu),

u(x, 0) = ex.
(9)

Since F(x) = e−x, we find an =
(−1)n

n! , n = 0, 1, 2 . . . . Also, substituting f (x) = ex in (5), we have

U1,β(k, 0) =
1
k!

, k = 0, 1, 2, . . . .

Therefore, using the general recurrence relation (4), we get

U1,β(k, h) =
1

k!Γ (hβ + 1)
, k, h = 0, 1, 2, . . . .

The first few components of U1,β(k, h) can be seen in Table 1. Thus, the solution of (9) is given by

u(x, t) =

∞
k=0

∞
h=0

1
k!Γ (hβ + 1)

xkthβ

= exEβ(tβ).

Table 1
Some values of the components U1,β (k, h) obtained from (4) for Eq. (9).

U1,β (k, h) k = 0 k = 1 k = 2 k = 3 k = 4

h = 0 1 1 1
2!

1
3!

1
4!

h = 1 1
Γ (β+1)

1
Γ (β+1)

1
2!Γ (β+1)

1
3!Γ (β+1)

1
4!Γ (β+1)

h = 2 1
Γ (2β+1)

1
Γ (2β+1)

1
2!Γ (2β+1)

1
3!Γ (2β+1)

1
4!Γ (2β+1)

h = 3 1
Γ (3β+1)

1
Γ (3β+1)

1
2!Γ (3β+1)

1
3!Γ (3β+1)

1
4!Γ (3β+1)

h = 4 1
Γ (4β+1)

1
Γ (4β+1)

1
2!Γ (4β+1)

1
3!Γ (4β+1)

1
4!Γ (4β+1)

5. Conclusion

In this paper, we present a general recurrence relation for (1) by using GDTM. The recurrence relation presented in
this study is applied to four time-fractional diffusion equations that exist in the literature except the last one. The results
evaluated are in good agreement with the already existing ones. Shortly, the general recurrence relation works successfully
in handling time-fractional diffusion equations with a minimum size of calculations.
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