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The problem of boundedness of the anisotropic Riesz potential in local
Morrey-type spaces is reduced to the problem of boundedness of the Hardy
operator in weighted L,-spaces on the cone of non-negative non-increasing
functions. This allows obtaining sharp sufficient conditions for bounded-
ness for all admissible values of the parameters, which, for a certain range
of the parameters wider than known before, coincide with the necessary
ones.

Keywords: anisotropic Riesz potential; anisotropic local and global
Morrey-type spaces; Hardy operator on the cone of monotonic functions
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1. Introduction

Let R” be the n-dimensional Euclidean space with the routine norm |x| for each
x e€R", §"~! denotes the unit sphere on R”. For x € R” and r> 0, let B(x, r) denote the
open ball centred at x of radius r and “B(x,r) denote the set R"\B(x,r). Let
d=(dy,....d,), d;>1,i=1,...,n,|d| =" d and t'x = (t‘l‘xl, ... ,td"xn). By [1,2],
the function F(x,p) = > 1, x?p~24 considered for any fixed x € R”, is a decreasing
one with respect to p>0 and the equation F(x,p)=1 is uniquely solvable. This
unique solution will be denoted by p(x). It is a simple matter to check that p(x —y)
defines a distance between any two points x,y € R”. Thus R", endowed with the
metric p, defines a homogeneous metric space [1-3]. The balls with respect to p,
centred at x of radius r, are just the ellipsoids

(}/1 _xl)z (yi _xl)2
5,,(x,r):{yeﬂ@”:rz—dl+---+%<l :
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with the Lebesgue measure |€,(x, r)| = v, where v, is the volume of the unit ball in

R”. Also let °€,(x, r) = R"\E,(x, r) be the complement of £,(0, 7). Ifd=1=(1,...,1),
then clearly p(x)=|x| and &;(x, r) = B(x, r). Note that in the standard parabolic case

d=(1,...,1,2) we have
P 1]

p(x) = 3 ,ox= (X, x).
For any x=(xy,..., x,) € R", set
X1 = pd‘ COS @] ...COS @2 COS Y1,
x> = p cos ®]...COS@,_2SIN@, |,
(1.1)
X1 = p™' cos gy sin gy,

Xy = p¥ sing;.

Thus, dx = p!¥~! J(@1, ..., 0,_1)dpdo(x), where do is the element of the area of N
and p'"" J(¢1, ..., @,_1) is the Jacobian of this transform. In [1,2], it was shown that
there exists a constant M > 1 such that 1 <J(¢y,...,¢,_1) <M and J(¢y,...,9,_1) €
C>((0, 27r)" % x (0, 7).

If E is a non-empty measurable subset on R” and f'is a measurable function on E,
then we put

1Nz, = </:E |f()’)|de’> , 0<p < +oo,

1/l =supla: [{y€e E:[f(¥)] = o} > 0}.
Let f'e L*(R"). The anisotropic Riesz potential I¢ is defined by

I41(x) :/ L)_dy, 0<a<|dl|
) e plx — )7

If d=1, then I, = I! is the Riesz potential. The operators I, and ¢ play an
important role in real and harmonic analysis (see, e.g. [4,5]).

In the theory of partial differential equations, together with weighted L, ,, spaces,
Morrey spaces M, play an important role. They were introduced by Morrey in
1938 [6]. These spaces appeared to be quite useful in the study of a number of
problems in the theory of partial differential equations, in particular in the study of
local behaviour of solutions of parabolic or quasi-elliptic differential equations. The
anisotropic Morrey space is defined as follows: for 1 <p <00, 0 <X <|d|, a function
feM,,  if fe L};’C(R”) and

— _ —X/
”JIUM,,)\J,= Hf”M,,_-A,,,(R”)— Sup 1 PUA N 2y croy < 00
xeR", r>0
Note that Mp,)\ EMp,A,l~ (If A :0, then Mp,O,d: Lp; if A= |d|, then MP,WL!/: Looa

if A<0 or A>|d|, then M,,, ;=©, where O is the set of all functions equivalent
to 0 on R")
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Also, by WM,, ; s we denote the weak Morrey space of all functions f € WL},OC
for which

17 wp,, = 1 s, n= 590 U Mgy < 00,
xeR", r>0

where WL, (E,(x,r)) denotes the weak L,-space of measurable functions f
for which

I MWL, aenry = 1 Xe oo e, @
1/
:sugx\{yegd(x,r): Lf() > t}|”
1>

= sup (e ) (D) < 0. (1.2)
1>

Here g* denotes the non-increasing rearrangement of the function g.

The anisotropic result by Hardy-Littlewood—Sobolev states that if 1<p;<
pa2<oo, then I is bounded from L, (R") to L,,(R") if and only if @ = |d|(pll — ) and
for py=1<ps<oo, I¢ is bounded from L (R") to WL,,(R") if and only if
a=1d|(1- piz) Spanne [7] and Adams [8] studied boundedness of the Riesz
potential I, for 0 <a<n in Morrey spaces M, ;. Later on Chiarenza and Frasca [9]
reproved boundedness of the Riesz potential , in these spaces. By more general
results of Guliyev [10] (see also [11,12]) one can obtain the following generalization
of the results in [7-9] to the anisotropic case.

Tueorem 1.1 (1) Let 1 <p;<py<oo and 0<a<|d|. Then I is bounded from M,, ;
to My, 5 if and only if

1 1 1 1 1 1 -1
aSIdI(—) and A:(|d|(_)_a>(_) _
P1 D2 D1 D2 )21 §2)
(2) Let 1<py<oo and 0<a<|d|. Then I¢ is bounded from M, , to WM, if
and only if

ccuo-) (i) ) -2)

If o = |d|( pll — piz), then A =0 and the statement of Theorem 1.1 reduces to the
aforementioned result by Hardy-Littlewood—Sobolev.

If in the place of the power function r~*/” in the definition of M p..d We consider
any positive measurable weight function w defined on (0, c0), then it becomes the
Morrey-type space M, ,, ». Guliyev [10] and Fan et al. [13] (see also [11,12,14,15])
generalized Theorem 1.1 and obtained sufficient conditions on weights w; and w,
ensuring boundedness of the anisotropic Riesz potential /¢ for the limiting case
a=1|d|(;-— ;) from M, 4 t0 My, a.

The following statement, containing the results in [13] was proved in [10] (see also
[11,12,14,15]).
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THEOREM 1.2 Let 1 <p;<pr,<o0 and a = |d|(pll—pl2). Moreover, let wy, w, be

positive measurable functions satisfying the following condition:

ld] 1

sup w’z(l)l%/ 52 s < oo (1.3)
>0 ¢ wis)

Then for py>1 I¢ is bounded from M, ., 4 t0 My, v, 4 and for py =1 I¢ is bounded
from Ml,wl,d to WMpz,nf’d.

Earlier, in [13] a weaker version of Theorem 1.2 was proved: it was assumed that
w;=w,=w and that w is a positive non-increasing function satisfying the pointwise
doubling condition, namely that for some ¢>0

hw(r) < w(t) < ew(r)

for all 7,7>0 such that O0<r<t¢<2r.

In [10,11,14-27] boundedness of maximal operator, fractional maximal operator,
Riesz potential and singular integral operators from one local Morrey-type space
LM, to another one LM,,, ., have been investigated and, in particular, in
[24,25] for a certain range of the parameters necessary and sufficient conditions for
the operator I, to be bounded from LM,y ,, to LM,,,,, were obtained. (The
definition and basic properties of these spaces are given in Section 2. In particular it
is noted there that local Morrey-type spaces are non-trivial only if w;, w, belong to
classes €2,, 2,, respectively, defined in that section.)

THeorReM 1.3 (1) If 1 <py<pr<o00,0<6, <6, <00, a=n(l/p, —1/p>), w1 € Qp, and
wa € Q,, then the Burenkov—Guliyevs condition

n/p>
Wz(”)<l _: r)

for all t>0, where ¢>0 is independent of t, is necessary and sufficient for the
boundedness of 1, from LM, \,, to LM, .

(2) If 1<pi<pr<oo, 0<0;<6,<o00, a=n(l/py—1/py), w1 €, and w, € Qy,,
then the Burenkov—Guliyevs condition (1.4) is necessary and sufficient for the
boundedness of 1, from LM, g, ., to WLM 0, ,.

Condition (1.4) for the first time was introduced in [20,21] for the case of the
maximal operator and in [22,23] for the case of the fractional maximal operator.
It appeared to be rather ‘stable’: for 6, <6, it serves as necessary and sufficient
condition not only for the maximal and the fractional maximal operators, but also,
under the appropriate assumptions on the parameters, for the Riesz potential [24,25]
and genuine singular integral operators [26,27].

=< clwillz, ¢, ) (1.4)
Ly, (0,00)

Theorem 1.3 in the case 6; <p; was proved in [24,25] and in the case 6;>p; in
[19]. In [24,25] the proof was based on a certain estimate for L,-norms of I, f over
balls B(x,r), which allowed to reduce the problem of boundedness of 7, in local
Morrey-type spaces to the problem of boundedness of the Hardy operator on the
cone of non-negative non-decreasing functions. In [19], the problem of boundedness
of I, from LM, v, to LM, \, was reduced to the problem of boundedness of the
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so-called Hardy operator on the cone of non-negative non-decreasing functions.
Also for the case p;=1, 0<p,<o0, and n(1 —piz)+ < a < n necessary and sufficient
conditions ensuring boundedness of /I, from LM, ,,, to LM, ,,, were obtained in
[19] for all 0<6y,0, <oo and w; € Qg,, Wy € Qy,.

2. Definitions and basic properties of Morrey-type spaces

Definition 2.1 Let 0<p, 6 <oo and let w be a non-negative measurable function on
(0,00). We denote by LM, 4, GM 0, 4, the anisotropic local Morrey-type spaces,
the global Morrey-type spaces, respectively, the spaces of all functions fe L},‘)C(IR”)
with finite quasinorms

10 a0 = 1 2ty = H WOz en0. | o ooy

1/ Vgrs,,..= sup [ S G+
xeR

pow.d ?

respectively.

Definition 2.2 Let 0<p, 6 <oo and let w be a non-negative measurable function on
(0,00). Denote by WLM pg,.q WGM,g,, 4, the anisotropic local weak Morrey-type
spaces, the anisotropic global weak Morrey-type spaces, respectively, the spaces of
all functions f'e LLOC(IR”) with finite quasinorms

1A wert= 1 g = H WO e, Ea0.m | g ooy

I/] WMy~ SUP |/ +9)] WLM
xeR

pow.d ?

respectively.

Note that GM 9,1 =GM 9,0, LM 9,0 1=LMpp,, and
| /]
Also WGMpg’w’l = WGMpg’w, WLMpO,w,l = WLMpg’w and

I‘MPDC.I.{[: ||f||GM,m4m: ”f”L,,

”fH WELMpsora ”f” WGMpsora ||f”WLp'
Furthermore, GM o0 )10, ¢ = Mpsas WGM o yit0. a = WMpja, 0 <A <|d|.

Lemma 2.3 [16] Let 0<p, 0 <oo and let w be a non-negative measurable function
on (0, 00).

(1) If for all t>0
||W(r)||Lg([,OO) = 00, (21)

then LM y4.,p.0=GM 9., 0= O, where © is the set of all functions equivalent to 0 on R”.
(2) If for all t>0

()21 0. = 00, (2.2)

then for all functions fe LMy, 4 continuous at 0, f0)=0, and for 0<p<oo
GMpp,0.0=0.
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Definition 2.4 Let 0<p, 6 < oo. We denote by 4 the set of all functions w which are
non-negative, measurable on (0, 00), not equivalent to 0 and such that for some >0
Wl zy(z00) < 0.

Moreover, we denote by €,, ; the set of all functions w which are non-negative,
measurable on (0, 00), not equivalent to 0 and such that for some 7, £,>0

1d
W Ly 1.00) < 005 () |/p||L9(0,t2) < 00.

In [16] (see also [21]), it was proved that if [[wll;, o) = 0o for all £>0, then
GM pp,00= LM, 4= © and if [|w(r)r 17| ;o .,y = oo for all 1>0, then GM 5,,, 4= ©.
For this reason when considering spaces LM, ; we always assume that w € £, and
when considering spaces GM . s we always assume that we 2,4 ..

LeEmMA 2.5 [16] Let 0<p<oo, r>0. Then for B>—|d|/p

lo(x)’|

Lya0.m= UdI+ Bp)~\/r Cy VB
and for B<—|d|/p

’ = =Up ~ ldi/p+B

”P(x) HL/?(EE'(/(O,;’))_ “d| + ﬂp} Cor » ,

where C£,4(0, 1) is the complement of €4(0,r), and

1/p
Co = ( da(x’))
Sn—1

T T 2 1/p
= (/ / f J(<p1,...,90"_1)d¢1d<pz---d<pn_1) < 00.
0 0 0

COROLLARY 2.6 [16] Let 0<p, 6, t<oo and w € Q. Then

(1) p(x) € LMpg,a=> B> —Id|/p and [w(r)r'"" P ¢ o) < 00:
() () xe,0.0) € LMppa > B> —Id|/p and
w0, < 00, W)l 1, 00) < 00
Ga) p() ' xee o € LMposa for B> —Id|/p
— ||(,,Idl/p+ﬂ _ tldl/p%)w(r)HLU(,’ o) < OO
(3b) P xeg 0.y € LMpaa for B=—d|/p = w71, o0y < 00
(3¢) P X o € LMpowa for p<—Id|/p
— ”(Zld\/IH-ﬁ _ l’ldl/p+ﬁ)1V(V)||Lg(z, o) < 0.

If, in addition, w is continuous on (0,00) then conditions (3a)—(3¢c) take simpler
form, namely

(3a) p() xce o ) € LMpoa for B> —1d|/p
= (1P — PPy, < 00
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(36) p('xee o ) € LMppa for B=—Id|/p <= Iw(r)In D'l q ) < 00;
(3C/) ,O(X)ﬁ)(ggd 0,1) € LMpé),w,d fOl’ :3 < - |d |/p

Lemma 2.7 Let 1<p;<oo, 0<p,<oo, O<a<|d], 0<0y,0,<00, w|€Qy and
wa € Qp,. Then the conditions

pr<oo and o< |d—|
D1
are necessary for the boundedness of Id Sfrom LM, v, .a t0 LM,g, \, 4.
Proof Assume that o > ';” and Id is bounded from LM, g, .0 to LM, v, a. Let
flx) = p(x)? if p(x) > 1 where "” < B <a, and fix)=0 if p(x)<1. Then by Lemma
2.5 we have f€e LM g, .4 smce

HfHLMplol‘“.]‘[,S WL, (1, 00) ”p(x)_ﬂ“Lm(C&/(Oﬁl)) < 0.

On the other hand for all x € R”

-
O e SIS
Ce,0.1) p(x — )17

Assume that a—'}i' and Iff,‘ is bounded from LM, .4 to LMy, .4 Let

f(x)=p(x) 7 (log p(x)77 if ,o(x) >2 Where <y <1,and f{x)=0 if p(x)<2. Then
S € LMp,6, v, a since for y > --

X b log p(x
||-f||LM;19 ul{/ ||L0|(2 00) Hp( ) ( gp( )) L,;l(cfd(oﬂ))

On the other hand, since p(x —y) <2p(y) for p(y) > p(x), by passing to generalized
spherical coordinates (1.1) we have that for all x € R”

\11\

() = / p(x — ) " p(y) A (log p()) "dy
7l p(y)=max{2,p(x)}
\(/I

> 27 / p(») ¥I(log p( ) "dy = oo,
p(¥)>max{2,p(x)}
because y < 1. [ |

Throughout this article a <bh (b= a) means that a <1b, where A >0 depends on
unessential parameters. If »<a<bh, then we write a=~ b.

3. L,-estimates of the anisotropic Riesz potential over ellipsoids
We consider the following ‘partial” anisotropic Riesz potentials

WAGY]
d £(x) = 4 _ _ I
Lar 0 = 1l ey )) /sdw) plx — )=
L/ (I

110 = Hr, = ftw e
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Lemma 3.1 Let 0<p<oo, 0<a<|d| and fe LY(R"). Then for any ball £(x,r)
in R"

n—d
LSS DIy e 277 Ly (LS D).
Proof If ye&,(x,r) and ze€E,(x,r), then p(y —2) <2p(x — y) and

L/ @)l
r _ @l
D) = /CEW) T
=ld] & _ ha—ld| 74
= ’ /[;54(,\‘, r) ,O(X — Z)W‘*Ul dz=2 Iot,r(|4f|)(x)-

Hence'

Dl eyery = Gar D 27T (1 FD0),

where v, is the volume of the unit ball in R”. [ |

LEmMMmA 3.2 Let O0<p<oo, O<a<|d| and f€ LIIOC(R"). Then for any ball &,(x,r)
in R"

n—d
||IZ(|f|)”L,,(£,/(x,r)) ~ ||IZ(|f|ng<x,2,.))||L,,(gd(x,r)) + 17 L5, (1 fD(x) (3.1

and

n—d
S Dlwr s cern = IS e o) Wy acery + 17 Tao (1S D). (3.2)
Proof Clearly

di g di ¢ a5
||Ia(|f|)||L,,(g,,(x,r))$ ”]a('f|ng(,‘,z,v))”Lﬂ((‘,'d(x,r)) + ||1a(|f|XC£ ( 2))||Lﬂ(€d(x,r))
él X, 47,
and
d i i
IS Dl ey cern S MHGUS TXe o)l e e + ||IZ(|f|XE£ ( 2))||WL,,(£L/(,>;,1‘))'
Cd X, 2r,

If y e E4(x,r), z€€4(x,2r), then p(x —z)/2 < p(y — z) < 3p(x — z)/2. Therefore,

(s (s,
o |f|XC‘ o |f|XCgé,<\;2r) Ly(Eq(x,1))

E4(x. Zr)) H WL,(Eq(x,7))
1
z 4 ’
= (/ (/ 3 U )|d\—a dz) d)’)
e \JCeyx2n p(y — 2)

%r‘_“/ [/ (2)] ds
C _ \ld|—a
Ea(x.2r) P(X — 2)

—d
w2 (LS D),
and the right-hand side inequalities in (3.1) and (3.2) follow.
The left-hand side inequalities in (3.1) and (3.2) follow by Lemma 3.1 and
obvious inequalities

<

a1
=7,

5L DLy ery = M2 X o) Ly ey
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and

d i
IS Dllwr e = MU TXe oz e ey - u

Lemma 3.3 Let 1 <p,<p,<oo and 0<wa<|d|. The inequality

- a—|d (-1 s
ey Ly ) S 7 G2 171, 200 (3.3)

holds for any ball £;(x,r) CR" and for all € L}gC(IR”) if and only if in the case py> 1

1 1

o> |d|(1 —1>.
P2

Moreover for 1<p,<oo and o = |d|(1 —pl?) the inequality

and in the case py =1

d
||Ia(4fXgl/(,\‘_2r))|| WL,Q(EL/ (x, 7)) s || f” Li(E4(x,2r) (35)
holds for any ball €,(x,r) CR" and for all fe€ LY*°(R").
Proof Recall the well-known inequalities for the anisotropic Riesz potential [5].
If 1<p<g<oo, then
d
i, (%)f 0y < [/ 1, - (3.6)

P

Also if 1 <g< oo, then

i
I a1 (11

If 1 <p,<p><o0, inequality (3.4) holds and z € £,(x, r), then
a—ld(L—L
Ig(|f|xgll('\,_2,,))(z) <r \dl(m pz)fl ) <|f|ng(x_z/.))(Z)’

L —
|d|(pl ,72

)f” WL,(R") < ”-f”L](IR")' (37)

and by (3.6)
||IZ(|f|X5L,(x.z,l)> ”Lﬁz(&/ ) < Va_ld‘(ﬁ_g)
If 1 <py<oo and inequality (3.5) holds then by (3.7)

dfy ¢ dfy ¢ *
“]a('f'ng(,\_z,-)) Iz, e = ||<Ia<|f|Xg{1(,\».2r))> Iz, 0,186, D)

a

- * o
= sup ¢ “”<IZ<|f |Xa,(x,zr))> O L 0,160 (o)

T 0<1=IE (xr)]

0!7|C”(17l>
~r P

a—\dl(l—l
<r

< N e o2

f H Ll’l (Ea(x,2r)"

IZ(|f| Xg[,o-.zr)) H

WL 141 (Ea(x,1))

dl—a
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If py>1 and a< |d|(p— — plz), then inequality (3.3) cannot hold for all
fe L'p‘jC(IR”). Indeed if f'€ L, (R") and f 0 then by passing in (3.3) to the limit as
r— 400 we arrive at a contradlctlon.

Assume that py=1, 1 <py<oo, @ = |d|(1 — ;) and f€ L;(R"). Then by passing
to the limit in (3.3) as r — +o00 we get

I £z, ey S Ly @y

1’2
which, according to known results [5], is not possible. |

COROLLARY 3.4 Let

1 1
l<p <00, 0<py<occorp =1, 0<py<oo, andl|d| ———) <a<|d],
1 P2

+
(3.8)
or
I 1
l<pi<pp<oo and a=|d||——— 3.9
1 D2
Then the inequality
i) (-
MG o) Ly ey ST ) /] Ly, (€4(x,29)
holds for any ball €,(x,r) CR" and for all e LIOC(IR”)
Moreover for 1<py<oco and o = |d|(1 — —) then the inequality
d
I6(f. Xs,m,zr))” WLy, (Eq(x,1)) S “f “ Li(E4(x,2r))
holds for any ball €,(x,r) CR" and for all f€ LY*°(R").
Proof 1f p>py, the statement follows by Lemma 3.3.
If p»=p1, then by applying Minkowski’s inequality for integrals we have
e
a Eq2an ) Ly (Ea(x,1)) — £4(x.2r) p( o y)\dl—a Ly (Ea(x.r)
< H / |(fX5(1(x,2r))(' B u)’ du‘
- M eg0.30 p(u)‘d'_‘” Lp ®)
< IXe i '
/,,<0 3»>p(u)"” o | n &)
SN L, €a0x20)-
If p»<pi, then by applying Hélder’s inequality and this inequality we get
” IZ(fng (,\~_z,~)) ”Lp2 (Ea(x,1)
il
Y ”] (fXgl(\»zl->)||L (Ea(x,1)
<ol ) | n

| f“ Ly (Ea(x,2r))"
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Lemma 3.2 and Corollary 3.4 imply the following statement.

Lemma 3.5  Let condition (3.8) or condition (3.9) be satisfied. Then the inequality

ML F Il ey 747 Gy ﬂz)||f||L,,l(g(,<x,z,‘»+rﬂz 75,0/ (3.10)

holds for any ball €,4(x,r) CR" and for all f€ L'OC([R")
Moreover, for 1 <p,<oo and o = |d|(1 — —) the inequality

. ldl— g
”Igf“WL,,Z(S(,(x,r))S/ I e, ce2my + 172 Ly, (LS D(X) (3.11)
holds for any ball €4(x,r) CR" and for all f€ LI°°(R").
LeEmMA 3.6  Let the condition (3.8) or condition (3.9) be satisfied. Then the inequality

i [ dr
17 S, e, ;))<V”2/ 1AL, ey - (3.12)
]

a+1

holds for any ball €,4(x,r) CR" and for all f€ Llp‘?C(IR").

Proof Note that if o > ‘;—]‘ and f'is not equivalent to 0 on R”, then the right-hand
side of (3.12) is infinite, and in this case inequality (3.12) is trivial.
Let o < %. By Lemma 6 in [23] and Hélder’s inequality
rl’z I

L )
ut2r(|f|)(x) =r ,/éé:,,(x,b‘) ,o(x _ y)\dl—oz

(4] - ) Mt/w /1 Oy ) &
= — 2 o dar
“r 2r 2r<p(x—y)<t Y Y [|d\—0!+1

[ dr
<(d| —o)rm i 1Az, 0 JdTatT
r

1dl dr
<
S A’ ”f”Lm(E{/(Y 0) \{1\ atrl’

On the other hand,

ald|(—
r [ ’2) /WL, e, 20

|d| _ldl 1d| o dt
= (— — 2% /0L, 06,20 Tar1
1

D1 2r fr
o de
<m e
S /2r (WA [FAREHE) ool

Hence the statement of the lemma follows by inequalities (3.10) and (3.11). W
Remark 3.7 Note that inequality (37) in [24]

dl o0 ds i
d]_s X » i
||Idf||Lp2(€d(\ ) SH?2 (/I </£,(x ) VAGY] ‘dy) m)

follows from the inequality (3.12) by applying Holder’s inequality.
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Indeed for any §>0 by (3.12)

M < o0 CoPd i dr
P2 _—
1S ||L,72(€,z(x,r))~r / ./51, ) APy m—(oz+6)+pl]+5+p—:,

r 24

1 1
A dt o de \o
s D; ! Ihd - —
AL o) srssm) ([ )
1
1l _g /OO ([ dt 7
S If(y)lmdy)i .
( p £ant) t|d\7(a+5)p| +1

LemMA 3.8 Let 0<p<oo, 0<a<|d|. Then the inequality

I [ dt
LGS DL,y e R 77 AN acea e o) Jarart

r

20 112
holds for any ball €4(x,r) CR" and for all f€ L°°(R").

Proof For all ye&y(x,r) p(y—2z)<2r if ze&y(x,r) and p(y—1z)<2p(x —z) if
zel&,(x,r), therefore

_ __ e __el
L1/ = /s,,(m -t ﬁmx, np(y =2

> (2r)a*\d| f |f(z)|dz+2a7|d\ / |f(2)|
Ea(x,r)

Ly (e p(x — 2)l417

o o , dr
= (|d| — @)2 ld‘»[ </gl(xr)|f(z)|dz>t|d—a+l
(1] — a2 N TP
ld| — o Ce,xr) p(x,z)t‘dl—aﬂ |/(2)ldz
o dr
a—|d
o0 dt
Ly ) )
r Ea (6 ONE () /@ fld1—atl

o0 dr
“1d
=(|d| — a)2% Id| / ||f||L1(£,,(x, D) fld|—a+1"
p

Hence the first of the desired inequalities follows.>
The second one follows since

w o [ dr w [ dr
re / ”f”L](&,(x,l))W > /2 11z, 0 Jdi—at1
r r

atd)(1-

2r a1(1-5) 1/ N ey .20 u

TuaeOREM 3.9 (1) Let 0<p<oo and |d|(l —%)+ < a < |d|. Then the equivalences
||IZ(|f|)||WLp(a,(x,r)) ~ ||IZ(|f|)||L,,(£,,(x,r))

1~ g wtd|(1-1
~ AT + 0D 71 s (3.13)

[TIR e dt
zrpf ”f”L](Ed(x,t))W

r

hold for any ball €,(x,r) CR" and for all f€ L'**(R").
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(2) Let 1<p<oo and a = |d|(1 —11—)). Then the equivalences

ﬂ
H (14 WDH Wiy 'd‘(‘ . ADCYH S e
1l dt
Ry / (RA VAT, Iy (3.14)
r tr

hold for any ball €,(x,r) CR" and for all fe L'Y*(R").

Proof The second equivalence in (3.13) for both |14 fDllww (e and
||I“'(| Dz S (E (1) and the first equivalence in (3.14) follow by Lemma 35 (estimate
above) and Lemmas 3.1 and 3.8 (estimate below). The third equivalence in (3.13) for
both |11/ Dllwe, e, ey and 1201/ DIl 1, (x.r and the second equivalence in (3.14)
follow by Lemmas 3.6 and 3.8. |

4. Anisotropic Riesz potential and Hardy operator

Let 9i(0, 0o) be the set of all Lebesgue measurable functions on (0, o) and 9i*(0, o)
its subset consisting of all non-negative functions on (0,00). We denote by
IMT(0, 00; ) the cone of all functions in M (0, 00), which are non-increasing on
(0, 00) and we set

A = [pem (0,00 1) lim () = 0}.
Let H be the Hardy operator
t
(to0 = [ gar. 0<1<oc.
0

LEmMA 4.1 Let condition (3.8) or condition (3.9) be satisfied. Moreover, let
0<6, <00 and wy € Q,.

Then
LS N zat, gy o S IHEp L 0,00 4.1)
g 1
Jor all fe Ly(R"), where
payY ol
gn () = fdy) . o=—-a>0,
£4(0.07%) P
and
() = WSy T, 4.2)

Moreover, if py=1, 0<p> <00 and |d|(1 ——) << |d|, then
VLS Wwetyy s 2 WS N

207w d

~ 1 Hgill L, ., 0,00

for all non-negative functions fe LIIOC(R").
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Also if 1 <p,<oo and o = |d|(1 ——) then

Vst

for all non-negative functions fe Lll("’([R”).

~ 1 Hgill L, ., 0,00

Proof By Lemma 3.6 we have

|

[ dr
12 f ety 0y S [ W2A0)P7 / 171z, 0. ey
.

Lo, (0,00)

w [
w0 [ U1, 0

%

Lo, (0.00)

= ‘VQ(”)V%/ gp (v)dt
0

Lo, (0,00)
i

= a0 B g, (o)

Lo, (0.00)
= Hgp, |l 1,,.,0,00)-

The second and third statements of the lemma follow by applying
Theorem 3.9 also. u

THEOREM 4.2  Let condition (3.8) or condition (3.9) be satisfied. Moreover, let 0 <6,
0, <00, wi € Qp, and wy € Qg, .

Then Ig is bounded from LMy ,.a to LMy, v a if, and in the case p;=1,
0<pr<oo and |d|(1 _11%)+ <a<|d| only if the operator H is bounded from
Lo, 4,(0,00) to Ly, ,(0,00) on the cone A, that is

1Hgll 1, ., 0,00 S &L, ., 0.00) (4.3)
for all functions g € A, where
vi(r) = wl(r_i)r_"l%’_% (4.4)

and v, is defined by equality (4.2).

Moreover, if py=1, 0<p,<oco and |d|(1 ——) <a<|d| or l<p,<oo and
a=1d|(1- —) then I is bounded from LM g, ,», a t0 WLM ., , 4 if and only if the
operator H is bounded Jrom Ly, ,,(0,00) to Ly, ,(0,00) on the cone A.

Proof Assume that the operator H is bounded from Ly, ,, (0, 00) to Ly, .,(0,00) on
the cone A. Since g, €A, by Lemma 4.1 we have

1
||Ifyf||LM,,2H, vged N < IIHgp, ||L92 0y (0,00) D S gpy ||L91 0, (0,00)*

Note that

1gp Nz, 0,00 = ||v1(l)||f||L (5,(0 ) |L91,U](0,oo)

~ |ui(p™)p” TS, 21 (400, p) HLQ 2y (0,00)
= w1/, s0.m 2, , 0,000
= Mewty 0, 0,0

Hence it follows that /¢ is bounded from LM 4, 4 t0 LM, . a.
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Assume that /¢ is bounded from LM g, .4 to LMy v, 4. Then for all non-
negative € LI(R")

~ 7 g ~
1Hgp 1, . 0.00) & oS I Lw, SW sty a = 18P lL, 0 0,00)- 4.5)

26105 d

Let g € A be locally absolutely continuous on (0, co). Consider the non-negative
measurable function 4 on (0, co) defined uniquely up to equivalence by the equality

N + B n
8O = (- DIl 5,0,y = (d1va) ( / h(p)" P! ‘dp) .
Pl d > 0
If we take in (4.5) f{x) =h(p(x)) then g, = g and (4.5) implies that

178l ,, 0,00 S &l 0,00)- (4.6)

Finally if g is an arbitrary function in A, then there exist functions g, €A
which are locally absolutely continuous on (0, 00) and g, /g on (0, 00) as |d| — oc.
Therefore by passing to the limit it follows that inequality (4.6) holds for
allgeA. H

5. Necessary and sufficient conditions

In order to obtain sufficient conditions on the weight functions ensuring bounded-
ness of If)f, we shall apply Theorem 4.2 and the known necessary and sufficient
conditions ensuring boundedness of the Hardy operator H from one weighted
Lebesgue space to another one on the cone A (see, e.g. [28,29]).

THEOREM 5.1  Let condition (3.8) or condition (3.9) be satisfied. Moreover, let 0 <6,
0> <00, wi €, W2 € Qg,.

Then the operator IZ is bounded from LM, . a to LM .0, v, a if and in the case
p1=1 only if,

(a) 1<, <0,<o0, then

1

00 % 00 -
B% = sup(f ‘/ng(r)’ﬁz(ot—ldl _l_ﬂlz))dr) <f w(;‘ (r)dr) < 00, (5.1
>0 \Jr t

and

-

‘ 0 N[ o W)
B} :=sup </ wgz(r)razédr) ’ / ng,dr < o0. (5.2)
>0 \Jo t (7w (p)dp)

(b) 0<0,<1,0<6, <b,<o0, then B} < 0o and

1

B; :=supt n /wzz(r)r “ndr f w1 (r)dr < 00. (5.3)
>0 0 t
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(c) 1<b;<00, 0<b,<b <00, 0,#1, then

B 616>
(o))
0 00 0, T d
3 S wR(n)r r P (a |d\(p——p—))
By = / = wzz(t)t v/ de < 00,
0 [ wii(rydr
and
-1 e(j]—egz

00 1 / BL 00 ol ( P )
B3 — ( 0 ez‘ﬂ(_zld ) 2 Wl (I")}" 1 d
te L (frorme (] (W)

01-6)
010y

ld|

e
YRR
(/7 ' (0)dp)
(d) 1=60,<6, <00, then

fy-1

oo f o0 —d1 (L) 1\
wa(r)r r ) dr Zig(L_L
B4 — ft 2( ) W’z(l)la |d| ;ll l’lz)d[ < 00,
1 l
0 [ Wi ndr

and
|d| 9/1 -1

1d
/ 00 ftoo wz(r)rafld‘(ﬁiﬁ’iz) dr + laifll fot wa(r)redr
0 L2 (rdr

_aif (! w o\ de
x %7 (/ Wz(I)I/’ZdV> ) < 0.
0

4 .
B =

(e) 0<6,<6;=1, then

o[ o(o(i8)) o, PP ot A
0

b f[ wi(r)dr

) 6

)
s 00 t 5 o141 =0, ) W, 00 Ao . ol
B; = / /wzz(r)r ‘ndr inf s / wi(p)dp wy (1)t ndt < 00.
0 0 1<s<oo s

(f) 0<6b,<6,<1, then B*? < oo and

(a,m) 016 9_2
. 00 s p1)0,=6, 0 o o,ldl
B = sup 5 W2 (r)r B dr wy (0t rdt < 00.

0 I=s<o0 (fJ W,ll (p)dp)"l —6, \JO
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(2) 0<6,<1, 0,=00, then

141
wy(1)tr2

B’ := esssup e < 00.

0<t<5<00 g (/"Oo W‘l’l (r)dr)ﬁ

(h) 1<0;<00, =00, then

=Y

v |d|

8 [ [ ¥ (o) ar\”
B® 1= esssup wy(1)tr2 / SRS < 0.
>0 to (LT s)d S‘) r

(1) 61 =00, 0<br <00, then

(2
00 00 Dt———l -
Blo = / 1‘#7&\/ ds Wgz([)tez(aild‘(ﬁiliﬂiz))d[
0 ¢ ©SS Sups<y<oowl(y)

() 61=06,=o00, then

1
6

d [ s
B’ :=esssup wa(1)1» ds < oo.
>0 ¢ ©S8 Sups<y<oowl(y)
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Moreover, if py=1, 0<p,<oo and |d|(l——) <a<|d| or 1<p,<oo and

a=ld|(1 —1%), then I¢ is bounded from LMg, »,q t0 WLM 4, v, 4 if and only if
conditions (a)—(j) are sallsﬁed

Proof  From results in [28,29] it follows that conditions (a)—(j) are necessary and
sufficient for inequality (4.3) to hold, where v; and v, are defined by (4.2) and (4.4)
respectively.

For example, let 1<6; <6,<o0o, then by [28,29] inequality (4.3) holds if and

only if

1 ' 0> % t 01 E
Ay = s[gl(?(/o v, (s)ds) (/(; v (s)ds) < 00,
00 = t 91 9, ‘%’
Al = sup V2 (s) ’ (;)Sds 1 < 00.
2 2
>0 \Js ( " 0’(r)dv)

and

If v; and v, are defined by (4.2) and (4.4), respectively, then by using the

substitute r = 575 we get

1 1
1 ! 0y —L —M—l—l 2 ! 01—\ —11 o 1
A, = su%) Wy (s~ 7)s 2 v ds | wi'(s )= 'ds) =B
1>

and similarly 4} ~ B}

Hence the statement follows by Theorem 4.2.
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Remark 5.2 Note that two conditions (5.1) and (5.3) are equivalent to anisotropic
variant of the Burenkov—Guliyevs condition

-\ 1/
o

for all £>0, where ¢>0 is independent of 7.

=< clwillz, ¢, 00) (5.4)
ng(O, OO)

CoROLLARY 5.3 Let condition (3.8) or condition (3.9) be satisfied. Moreover, let
Junctions wi € 2, co.q and wy € Q,, 0 a4 satisfy the following condition:

[ s
sup w (1)1 / ds < oo. (5.5)
(>0 ; €SSSUPy;cooWi(T)

Then Iz is bounded from My, \,, a to Mp, \v, 4.

Proof Clearly boundedness of Ig from LM o0 .0 t0 LM, 00,4 implies bounded-
ness of 1 from GM, 000 = M, s 10 GMp6d = Moy s, a- [ ]
Remark 5.4 Let 1<p <p,<oo, a = |d|(pll—1%). It is obvious that if condition

(1.3) holds, then condition (5.5) holds too. Moreover for non-increasing continuous
functions w, conditions (1.3) and (5.5) coincide. However, in general, condition (5.5)
does not imply condition (1.3). For example, the functions

|d|

wi(r) = x“m)(r)r_ﬂ, wo(t) = e 0<B< p_1 —a
satisfy condition (5.5) but do not satisfy condition (1.3).
THEOREM 5.5 (1) Let 1 <p,<p><o00, a = |d|(p—]—p—7) 0<6, <00 and 0; <6, < oo,

w1 € Qp, and wa € Qqp,, then condition (5.4) is necessary and sufficient for boundedness
('
Of Ifx ﬁ om LMJ]@]JV],({ to LMJZGLWZ,(I-

(2) Let 1 <p,<p,<o00,a= |d|(p] o 1), 0<6, <00 and 6, <6, <00, wy € Q, and
wa € Qp,, then condition (5.4) is necessary and sufficient for boundedness of I¢ from
LM[?]@],M],d to WLMPZQZ,“Z,

Proof 1f 0<6; <1, 0<6; <6, <oo, then the statement of the theorem is proved in
[24,25]. Let 1 <6, <0,<00. Since

1
4 ; ( 7m> 01
0y 00 1 r1
9,11 ) wi(r)r
Bé = sup ( / wgz (r)r’edr Ldr
0 t

>0 (fr w?l (,O)d,O)Ol

00 ,91 . v

<sup?” h (/ w2 2 (r)r 02ﬂid}"> / %dr 1

>0 t (7w (p)dp)”

(1\ o0 o0 1-6, #
~ sup 1 </ (r)r 17zdr) —/ d(/ wl‘(,o)dp>
t>0 0 t r
( 3/ oo -

= sup £ ( / Wi (r)r e dl) < / wf (r)dr) = B3,

t>0 0 t

Fl-
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sufficiency of (5.1) and (5.3) follows by Theorem 5.1, part (a). Hence condition (5.4)
is sufficient (by Remark 5.2) and necessary (by Theorem 1.3, part 1) for boundedness
of I from LM, .4 t0 LM 4, v, 4. The case 1 <6; <00, 6, = oo is similar, because
in this case B® < B3 by the same argument as above.

The proof of sufficiency for the second statement is similar. As for necessity one
should note that boundedness of ¢ from LM, .0 to WLM,g, . 4 implies
boundedness of the fractional maximal operator MY from LM, .4 to
WLM ,p, w,.a and that condition (5.4) is necessary for boundedness of M? from

LMp191,Hf’1,d to WLMngz’n,-z,d [16]. |
COROLLARY 5.6 Let l<p <p,<oo, a = |d|(pil—pl2), 0<6,<00 and 0, <6, < oo,
wy € Qq, and
1dl
r Iz
wr(r) [ — < 00
2 )<l+ r>
L, (0,00)

for all t>0. Moreover, if 6, =00 and 6, <oo it is also assumed that
1d|

Wz(")<t : ,)pz =0.

Lss(0,00)

Then

(1) I is bounded from LMo, w2,a 10 LM g, v, a, Where wi is a non-increasing
continuous function on (0, 00) defined by

1]
, t€(0,00).

ro\”
wWolr
2 (1) ) |, o
0,(0,00

(2) If w1 €, and 1% is bounded from LM g, v, a t0 LM 4, v, 4, then
LMpIGI,wl,d C LM]}]Q],WT,d-

1952, (1,000 =

(Hence LMp,q, w:.q is the maximal among spaces LMp,g, v, a for which [ s
bounded from LM, ¢, v, a t0 LM, v a.)

Proof  Since condition (5.4) is also necessary and sufficient for boundedness of the
fractional maximal operator M [19], the proof of Corollary 5.6 is also the same as
for the case of M. u

An analogue of Corollary 5.6 also holds for the case in which LM, ., 4 1S
replaced by WLM,,0, v, 4.

COROLLARY 5.7 Let 1<p;<p><o0, a = |d|(il—pl2), w1 €Qp, and wy € Qy,, then

condition (5.4) is necessary and sufficient for boundedness of 1 from Ly w, to Ly, w,,
where Wi(x) = [WillL, (sx). 000> W2(x) = IW21l1,, (o). o0)-

Proof 1t suffices to take into account that for 0 <p < oo
AT Vi
where for all x € R" W(x) = Wz (px),00) [21]- |
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It is interesting to note that condition (5.4) has the form that differs from the
known, necessary and sufficient conditions discussed in detail, for example, in [30].

Example 5.8 Let the condition (3.8) or condition (3.9) be satisfied. Moreover, let
1<6, <06,<00, and B be such that
1 d 1 d 1 d
B+— <0, ,B—i—u—l——>0, /“3—1—u+——i—oz—U <0,
) 2R P2 6 D1

.. . ﬂ+“_’|+L+a_M_L B .
then it is easy to calculate that the functions w(¢) = ¢" 2% 1 7 w,(f) = (” satisfy

the condition (a) of Theorem 5.1. Thus IZ is bounded from LM, s to LM, 0, . 4.

6. Concluding remarks

The assumption made at the beginning of this article d;>1, i=1,...,n, is not
essential. One may assume that d;>0, i=1,...,n. However, under this assumption
the function p(x — y), x,y € R" is in general a quasi-distance, which does note cause
any problem.

Also note that if v>0 then

=1 vv>o.

”f”L,,(&,(O, r) = ||f||L,,(5w,(o,,~1/v))-

Lemma 6.1 Let 1 <p;<py<o00,0<6, 6, <00, w| € Qp, and way € Qp,. Then for v>0

d
LS W zat, s LMy s = oS Nt LM v
101w ()0 01 vd Pab,wa (") 2
Proof
d
4 WS Wer, i o, 4
||IO[f”LMplUl.\rl.d_>LM/)207.u'7.(l = sup
220 e LMy W LM, 0 0
d
_ up W2 (IS N 2,200, 12, 0,00)
1205 €LMyy . WIS N L0014, 0,00
d
w2 (DI N 1 a0, | 24, 0.00)
= sup
1205 eLMya WIS L, 0. 114, 0,00)
v=1
el g
e, w2(0")0 % M5 1 1, €000, o) 1 4, 0. 0)
=v sup —
PO LMy .0 Wi(EV)P S L, (.00, 00 12y, 0.00)
d
= ||Izaf||LM w1 —LM vot.vd* u
P01 ()0 1 vd Pabr (V) 02
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Notes
1. We apply the following simple statement. If Q is a measurable set in R”, M >0 and for

almost all ye Q g(y)> M, then for any 0<p < oo || g|| WL = M|Q|%.
2. See endnote 1.
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