

Complex Variables and Elliptic Equations

An International Journal

ISSN: 1747-6933 (Print) 1747-6941 (Online) Journal homepage: https://www.tandfonline.com/loi/gcov20

Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces

A. Akbulut , V.S. Guliyev & Sh.A. Muradova

To cite this article: A. Akbulut , V.S. Guliyev & Sh.A. Muradova (2013) Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces, Complex Variables and Elliptic Equations, 58:2, 259-280, DOI: 10.1080/17476933.2011.575465

To link to this article: https://doi.org/10.1080/17476933.2011.575465

Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces†

A. Akbulut^a, V.S. Guliyev^{ab*} and Sh.A. Muradova^b

^aDepartment of Mathematics, Ahi Evran University, Kirşehir 40 200, Turkey; ^bDepartment of Mathematical Analysis, Institute of Mathematics and Mechanics, Baku, AZ 1145, Azerbaijan

Communicated by A. Pankov

(Received 25 November 2010; final version received 9 March 2011)

The problem of boundedness of the anisotropic Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted L_p -spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.

Keywords: anisotropic Riesz potential; anisotropic local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions

AMS Subject Classifications: Primary; 42B20; 42B25; 42B35

1. Introduction

Let \mathbb{R}^n be the n-dimensional Euclidean space with the routine norm |x| for each $x \in \mathbb{R}^n$, S^{n-1} denotes the unit sphere on \mathbb{R}^n . For $x \in \mathbb{R}^n$ and r > 0, let B(x,r) denote the open ball centred at x of radius r and ${}^{\mathbb{C}}B(x,r)$ denote the set $\mathbb{R}^n \setminus B(x,r)$. Let $d = (d_1, \ldots, d_n), d_i \geq 1, i = 1, \ldots, n, |d| = \sum_{i=1}^n d_i \text{ and } t^d x \equiv (t^{d_1}x_1, \ldots, t^{d_n}x_n)$. By [1,2], the function $F(x,\rho) = \sum_{i=1}^n x_i^2 \rho^{-2d_i}$, considered for any fixed $x \in \mathbb{R}^n$, is a decreasing one with respect to $\rho > 0$ and the equation $F(x,\rho) = 1$ is uniquely solvable. This unique solution will be denoted by $\rho(x)$. It is a simple matter to check that $\rho(x-y)$ defines a distance between any two points $x,y \in \mathbb{R}^n$. Thus \mathbb{R}^n , endowed with the metric ρ , defines a homogeneous metric space [1–3]. The balls with respect to ρ , centred at x of radius r, are just the ellipsoids

$$\mathcal{E}_d(x,r) = \left\{ y \in \mathbb{R}^n : \frac{(y_1 - x_1)^2}{r^{2d_1}} + \dots + \frac{(y_n - x_n)^2}{r^{2d_n}} < 1 \right\},\,$$

^{*}Corresponding author. Email: vagif@guliyev.com

[†]Dedicated to 70th birthday of Prof. V. Burenkov.

with the Lebesgue measure $|\mathcal{E}_d(x,r)| = v_n r^{|d|}$, where v_n is the volume of the unit ball in \mathbb{R}^n . Also let ${}^{\complement}\mathcal{E}_d(x,r) = \mathbb{R}^n \setminus \mathcal{E}_d(x,r)$ be the complement of $\mathcal{E}_d(0,r)$. If $d = \mathbf{1} \equiv (1,\ldots,1)$, then clearly $\rho(x) = |x|$ and $\mathcal{E}_1(x,r) = B(x,r)$. Note that in the standard parabolic case $d = (1,\ldots,1,2)$ we have

$$\rho(x) = \sqrt{\frac{|x'|^2 + \sqrt{|x'|^4 + x_n^2}}{2}}, \quad x = (x', x_n).$$

For any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, set

$$x_{1} = \rho^{d_{1}} \cos \varphi_{1} \dots \cos \varphi_{n-2} \cos \varphi_{n-1},$$

$$x_{2} = \rho^{d_{2}} \cos \varphi_{1} \dots \cos \varphi_{n-2} \sin \varphi_{n-1},$$

$$\dots$$

$$x_{n-1} = \rho^{d_{n-1}} \cos \varphi_{1} \sin \varphi_{2},$$

$$(1.1)$$

$$x_n = \rho^{d_n} \sin \varphi_1$$
.

Thus, $\mathrm{d} x = \rho^{|d|-1} J(\varphi_1, \dots, \varphi_{n-1}) \mathrm{d} \rho \, \mathrm{d} \sigma(x)$, where $\mathrm{d} \sigma$ is the element of the area of S^{n-1} and $\rho^{|d|-1} J(\varphi_1, \dots, \varphi_{n-1})$ is the Jacobian of this transform. In [1,2], it was shown that there exists a constant $M \ge 1$ such that $1 \le J(\varphi_1, \dots, \varphi_{n-1}) \le M$ and $J(\varphi_1, \dots, \varphi_{n-1}) \in C^{\infty}((0, 2\pi)^{n-2} \times (0, \pi))$.

If E is a non-empty measurable subset on \mathbb{R}^n and f is a measurable function on E, then we put

$$||f||_{L_p(E)} := \left(\int_E |f(y)|^p dy \right)^{\frac{1}{p}}, \quad 0$$

$$||f||_{L_{\infty}(E)} := \sup\{\alpha : |\{y \in E : |f(y)| \ge \alpha\}| > 0\}.$$

Let $f \in L_1^{loc}(\mathbb{R}^n)$. The anisotropic Riesz potential I_α^d is defined by

$$I_{\alpha}^{d}f(x) = \int_{\mathbb{R}^{n}} \frac{f(y)}{\rho(x-y)^{|d|-\alpha}} dy, \quad 0 < \alpha < |d|.$$

If d=1, then $I_{\alpha} \equiv I_{\alpha}^{1}$ is the Riesz potential. The operators I_{α} and I_{α}^{d} play an important role in real and harmonic analysis (see, e.g. [4,5]).

In the theory of partial differential equations, together with weighted $L_{p,w}$ spaces, Morrey spaces $\mathcal{M}_{p,\lambda}$ play an important role. They were introduced by Morrey in 1938 [6]. These spaces appeared to be quite useful in the study of a number of problems in the theory of partial differential equations, in particular in the study of local behaviour of solutions of parabolic or quasi-elliptic differential equations. The anisotropic Morrey space is defined as follows: for $1 \le p \le \infty$, $0 \le \lambda \le |d|$, a function $f \in \mathcal{M}_{p,\lambda,d}$ if $f \in L^{\rm loc}_p(\mathbb{R}^n)$ and

$$||f||_{\mathcal{M}_{p,\lambda,d}} \equiv ||f||_{\mathcal{M}_{p,\lambda,d}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, r > 0} r^{-\lambda/p} ||f||_{L_p(\mathcal{E}_d(x,r))} < \infty.$$

Note that $\mathcal{M}_{p,\lambda} \equiv \mathcal{M}_{p,\lambda,1}$. (If $\lambda = 0$, then $\mathcal{M}_{p,0,d} = L_p$; if $\lambda = |d|$, then $\mathcal{M}_{p,|d|,d} = L_{\infty}$; if $\lambda < 0$ or $\lambda > |d|$, then $\mathcal{M}_{p,\lambda,d} = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^n .)

Also, by $W\mathcal{M}_{p,\lambda,d}$ we denote the weak Morrey space of all functions $f \in WL_p^{loc}$ for which

$$||f||_{W\mathcal{M}_{p,\lambda,d}} = ||f||_{W\mathcal{M}_{p,\lambda,d}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, r > 0} r^{-\lambda/p} ||f||_{WL_p(\mathcal{E}_d(x,r))} < \infty,$$

where $WL_p(\mathcal{E}_d(x,r))$ denotes the weak L_p -space of measurable functions f for which

$$||f||_{WL_{p}(\mathcal{E}_{d}(x,r))} \equiv ||f\chi_{\mathcal{E}_{d}(x,r)}||_{WL_{p}(\mathbb{R}^{n})}$$

$$= \sup_{t>0} t |\{y \in \mathcal{E}_{d}(x,r) : |f(y)| > t\}|^{1/p}$$

$$= \sup_{t>0} t^{1/p} (f\chi_{\mathcal{E}_{d}(x,r)})^{*}(t) < \infty.$$
(1.2)

Here g^* denotes the non-increasing rearrangement of the function g.

The anisotropic result by Hardy–Littlewood–Sobolev states that if $1 < p_1 < p_2 < \infty$, then I_{α}^d is bounded from $L_{p_1}(\mathbb{R}^n)$ to $L_{p_2}(\mathbb{R}^n)$ if and only if $\alpha = |d|(\frac{1}{p_1} - \frac{1}{p_2})$ and for $p_1 = 1 < p_2 < \infty$, I_{α}^d is bounded from $L_1(\mathbb{R}^n)$ to $WL_{p_2}(\mathbb{R}^n)$ if and only if $\alpha = |d|(1 - \frac{1}{p_2})$. Spanne [7] and Adams [8] studied boundedness of the Riesz potential I_{α} for $0 < \alpha < n$ in Morrey spaces $\mathcal{M}_{p,\lambda}$. Later on Chiarenza and Frasca [9] reproved boundedness of the Riesz potential I_{α} in these spaces. By more general results of Guliyev [10] (see also [11,12]) one can obtain the following generalization of the results in [7–9] to the anisotropic case.

Theorem 1.1 (1) Let $1 < p_1 < p_2 < \infty$ and $0 < \alpha < |d|$. Then I_{α}^d is bounded from $\mathcal{M}_{p_1,\lambda}$ to $\mathcal{M}_{p_2,\lambda}$ if and only if

$$\alpha \leq |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right) \quad and \quad \lambda = \left(|d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right) - \alpha\right) \left(\frac{1}{p_1} - \frac{1}{p_2}\right)^{-1}.$$

(2) Let $1 < p_2 < \infty$ and $0 < \alpha < |d|$. Then I_{α}^d is bounded from $\mathcal{M}_{1,\lambda}$ to $W\mathcal{M}_{p_2,\lambda}$ if and only if

$$\alpha \le |d| \left(1 - \frac{1}{p_2}\right)$$
 and $\lambda = \left(|d| \left(1 - \frac{1}{p_2}\right) - \alpha\right) \left(1 - \frac{1}{p_2}\right)^{-1}$.

If $\alpha = |d|(\frac{1}{p_1} - \frac{1}{p_2})$, then $\lambda = 0$ and the statement of Theorem 1.1 reduces to the aforementioned result by Hardy–Littlewood–Sobolev.

If in the place of the power function $r^{-\lambda/p}$ in the definition of $\mathcal{M}_{p,\lambda,d}$ we consider any positive measurable weight function w defined on $(0,\infty)$, then it becomes the Morrey-type space $\mathcal{M}_{p,w,d}$. Guliyev [10] and Fan et al. [13] (see also [11,12,14,15]) generalized Theorem 1.1 and obtained sufficient conditions on weights w_1 and w_2 ensuring boundedness of the anisotropic Riesz potential I_{α}^d for the limiting case $\alpha = |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$ from $\mathcal{M}_{p_1,w_1,d}$ to $\mathcal{M}_{p_2,w_2,d}$.

The following statement, containing the results in [13] was proved in [10] (see also [11,12,14,15]).

Theorem 1.2 Let $1 \le p_1 \le p_2 < \infty$ and $\alpha = |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$. Moreover, let w_1 , w_2 be positive measurable functions satisfying the following condition:

$$\sup_{t>0} w_2(t) t^{\frac{|d|}{p_2}} \int_t^\infty \frac{s^{-\frac{|d|}{p_2}-1}}{w_1(s)} \mathrm{d}s < \infty. \tag{1.3}$$

Then for $p_1 > 1$ I_{α}^d is bounded from $\mathcal{M}_{p_1,w_1,d}$ to $\mathcal{M}_{p_2,w_2,d}$ and for $p_1 = 1$ I_{α}^d is bounded from $\mathcal{M}_{1,w_1,d}$ to $W\mathcal{M}_{p_2,w,d}$.

Earlier, in [13] a weaker version of Theorem 1.2 was proved: it was assumed that $w_1 = w_2 = w$ and that w is a positive non-increasing function satisfying the pointwise doubling condition, namely that for some c > 0

$$c^{-1}w(r) \le w(t) \le cw(r)$$

for all t, r > 0 such that $0 < r \le t \le 2r$.

In [10,11,14–27] boundedness of maximal operator, fractional maximal operator, Riesz potential and singular integral operators from one local Morrey-type space $LM_{p_1\theta_1,w_1}$ to another one $LM_{p_2\theta_2,w_2}$ have been investigated and, in particular, in [24,25] for a certain range of the parameters necessary and sufficient conditions for the operator I_{α} to be bounded from $LM_{p_1\theta_1,w_1}$ to $LM_{p_2\theta_2,w_2}$ were obtained. (The definition and basic properties of these spaces are given in Section 2. In particular it is noted there that local Morrey-type spaces are non-trivial only if w_1 , w_2 belong to classes Ω_{θ_1} , Ω_{θ_2} , respectively, defined in that section.)

Theorem 1.3 (1) If $1 < p_1 < p_2 < \infty$, $0 < \theta_1 \le \theta_2 \le \infty$, $\alpha = n(1/p_1 - 1/p_2)$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$, then the Burenkov–Guliyevs condition

$$\left\| w_2(r) \left(\frac{r}{t+r} \right)^{n/p_2} \right\|_{L_{\theta_1}(0,\infty)} \le c \|w_1\|_{L_{\theta_1}(t,\infty)}$$
 (1.4)

for all t>0, where c>0 is independent of t, is necessary and sufficient for the boundedness of I_{α} from $LM_{p_1\theta_1,w_1}$ to $LM_{p_2\theta_2,w_2}$.

(2) If $1 \le p_1 < p_2 < \infty$, $0 < \theta_1 \le \theta_2 \le \infty$, $\alpha = n(1/p_1 - 1/p_2)$, $w_1 \in \Omega_1$ and $w_2 \in \Omega_{\theta_2}$, then the Burenkov–Guliyevs condition (1.4) is necessary and sufficient for the boundedness of I_{α} from $LM_{p_1\theta_1,w_1}$ to $WLM_{p_2\theta_2,w_2}$.

Condition (1.4) for the first time was introduced in [20,21] for the case of the maximal operator and in [22,23] for the case of the fractional maximal operator. It appeared to be rather 'stable': for $\theta_1 \le \theta_2$ it serves as necessary and sufficient condition not only for the maximal and the fractional maximal operators, but also, under the appropriate assumptions on the parameters, for the Riesz potential [24,25] and genuine singular integral operators [26,27].

Theorem 1.3 in the case $\theta_1 \leq p_1$ was proved in [24,25] and in the case $\theta_1 > p_1$ in [19]. In [24,25] the proof was based on a certain estimate for L_p -norms of I_α f over balls B(x,r), which allowed to reduce the problem of boundedness of I_α in local Morrey-type spaces to the problem of boundedness of the Hardy operator on the cone of non-negative non-decreasing functions. In [19], the problem of boundedness of I_α from $LM_{p_1\theta_1,w_1}$ to $LM_{p_2\theta_2,w_2}$ was reduced to the problem of boundedness of the

so-called Hardy operator on the cone of non-negative non-decreasing functions. Also for the case $p_1 = 1$, $0 < p_2 < \infty$, and $n(1 - \frac{1}{p_2})_+ < \alpha < n$ necessary and sufficient conditions ensuring boundedness of I_α from $LM_{1\theta_1,w_1}$ to $LM_{p_2\theta_2,w_2}$ were obtained in [19] for all $0 < \theta_1, \theta_2 \le \infty$ and $w_1 \in \Omega_{\theta_1}$, $w_2 \in \Omega_{\theta_2}$.

2. Definitions and basic properties of Morrey-type spaces

Definition 2.1 Let 0 < p, $\theta \le \infty$ and let w be a non-negative measurable function on $(0,\infty)$. We denote by $LM_{p\theta,w,d}$, $GM_{p\theta,w,d}$, the anisotropic local Morrey-type spaces, the global Morrey-type spaces, respectively, the spaces of all functions $f \in L_p^{\text{loc}}(\mathbb{R}^n)$ with finite quasinorms

$$||f||_{LM_{p\theta,w,d}} = ||f||_{LM_{p\theta,w,d}(\mathbb{R}^n)} = ||w(r)||f||_{L_p(\mathcal{E}_d(0,r))} ||_{L_{\theta}(0,\infty)},$$

$$||f||_{GM_{p\theta,w,d}} = \sup_{x \in \mathbb{R}^n} ||f(x+\cdot)||_{LM_{p\theta,w,d}},$$

respectively.

Definition 2.2 Let 0 < p, $\theta \le \infty$ and let w be a non-negative measurable function on $(0, \infty)$. Denote by $WLM_{p\theta,w,d}$ $WGM_{p\theta,w,d}$, the anisotropic local weak Morrey-type spaces, the anisotropic global weak Morrey-type spaces, respectively, the spaces of all functions $f \in L_p^{\text{loc}}(\mathbb{R}^n)$ with finite quasinorms

$$||f||_{WLM_{p\theta,w,d}} = ||f||_{WLM_{p\theta,w,d}(\mathbb{R}^n)} = ||w(r)||f||_{WL_p(\mathcal{E}_d(0,r))}||_{L_{\theta}(0,\infty)},$$

$$||f||_{WGM_{p\theta,w,d}} = \sup_{x \in \mathbb{R}^n} ||f(x+\cdot)||_{WLM_{p\theta,w,d}},$$

respectively.

Note that $GM_{p\theta,w,1} = GM_{p\theta,w}$, $LM_{p\theta,w,1} = LM_{p\theta,w}$ and

$$||f||_{LM_{p\infty,1,d}} = ||f||_{GM_{p\infty,1,d}} = ||f||_{L_p}.$$

Also $WGM_{p\theta,w,1} = WGM_{p\theta,w}$, $WLM_{p\theta,w,1} = WLM_{p\theta,w}$ and

$$||f||_{WLM_{nonld}} = ||f||_{WGM_{nonld}} = ||f||_{WL_p}.$$

Furthermore, $GM_{p\infty,r^{-\lambda/p},d} \equiv \mathcal{M}_{p,\lambda,d}, \ WGM_{p\infty,r^{-\lambda/p},d} \equiv W\mathcal{M}_{p,\lambda,d}, \ 0 \leq \lambda \leq |d|.$

LEMMA 2.3 [16] Let 0 < p, $\theta \le \infty$ and let w be a non-negative measurable function on $(0, \infty)$.

(1) If for all t > 0

$$||w(r)||_{L_{\theta}(t,\infty)} = \infty, \tag{2.1}$$

then $LM_{p\theta,w,d} = GM_{p\theta,w,d} = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^n . (2) If for all t > 0

$$\|w(r)r^{|d|/p}\|_{L_{\theta}(0,t)} = \infty,$$
 (2.2)

then for all functions $f \in LM_{p\theta,w,d}$, continuous at 0, f(0) = 0, and for $0 <math>GM_{p\theta,w,d} = \Theta$.

Definition 2.4 Let 0 < p, $\theta \le \infty$. We denote by Ω_{θ} the set of all functions w which are non-negative, measurable on $(0, \infty)$, not equivalent to 0 and such that for some t > 0

$$||w||_{L_{\theta}(t,\infty)} < \infty.$$

Moreover, we denote by $\Omega_{p,\theta,d}$ the set of all functions w which are non-negative, measurable on $(0,\infty)$, not equivalent to 0 and such that for some $t_1, t_2 > 0$

$$||w(r)||_{L_a(t_1,\infty)} < \infty, \quad ||w(r)r^{|d|/p}||_{L_a(0,t_2)} < \infty.$$

In [16] (see also [21]), it was proved that if $\|w\|_{L_{\theta}(t,\infty)} = \infty$ for all t > 0, then $GM_{p\theta,w,d} = LM_{p\theta,w,d} = \Theta$ and if $\|w(r)r^{|d|/p}\|_{L_{\theta}(0,t_2)} = \infty$ for all t > 0, then $GM_{p\theta,w,d} = \Theta$. For this reason when considering spaces $LM_{p\theta,w,d}$ we always assume that $w \in \Omega_{\theta}$ and when considering spaces $GM_{p\theta,w,d}$ we always assume that $w \in \Omega_{p,\theta,d}$.

Lemma 2.5 [16] Let 0 , <math>r > 0. Then for $\beta > -|d|/p$

$$\|\rho(x)^{\beta}\|_{L_p(\mathcal{E}_d(0,r))} = (|d| + \beta p)^{-1/p} C_0 r^{|d|/p+\beta},$$

and for $\beta < -|d|/p$

$$\|\rho(x)^{\beta}\|_{L_{n}(\mathcal{C}_{\mathcal{E}_{d}}(0,r))} = ||d| + \beta p|^{-1/p} C_{0} r^{|d|/p+\beta},$$

where ${}^{\complement}\mathcal{E}_d(0,r)$ is the complement of $\mathcal{E}_d(0,r)$, and

$$C_0 = \left(\int_{S^{n-1}} d\sigma(x')\right)^{1/p}$$

$$= \left(\int_0^{\pi} \int_0^{\pi} \cdots \int_0^{2\pi} J(\varphi_1, \dots, \varphi_{n-1}) d\varphi_1 d\varphi_2 \cdots d\varphi_{n-1}\right)^{1/p} < \infty.$$

Corollary 2.6 [16] Let 0 < p, θ , $t < \infty$ and $w \in \Omega_{\theta}$. Then

$$(1) \ \rho(x)^{\beta} \in LM_{p\theta,w,d} \Longleftrightarrow \beta > -|d|/p \ and \ \|w(r)r^{|d|/p+\beta}\|_{L_{\theta}(0,\infty)} < \infty;$$

(2)
$$\rho(x)^{\beta} \chi_{\mathcal{E}_{d}(0,t)} \in LM_{p\theta,w,d} \iff \beta > -|d|/p \text{ and}$$

 $\|w(r)r^{|d|/p+\beta}\|_{L_{\theta}(0,t)} < \infty, \|w(r)\|_{L_{\theta}(t,\infty)} < \infty;$

(3a)
$$\rho(x)^{\beta} \chi_{\mathcal{E}_{d}(0,t)} \in LM_{p\theta,w,d} \text{ for } \beta > -|d|/p$$

 $\iff \|(r^{|d|/p+\beta} - t^{|d|/p+\beta})w(r)\|_{L_{\theta}(t,\infty)} < \infty;$

(3b)
$$\rho(x)^{\beta} \chi_{\mathbb{C}_{\mathcal{E}_d(0,t)}} \in LM_{p\theta,w,d} \text{ for } \beta = -|d|/p \Longleftrightarrow \|w(r)(\ln \frac{r}{t})^{1/p}\|_{L_{\theta}(t,\infty)} < \infty;$$

(3c)
$$\rho(x)^{\beta} \chi_{\mathcal{E}_{d}(0,t)} \in LM_{p\theta,w,d}$$
 for $\beta < -|d|/p$

$$\iff \|(t^{|d|/p+\beta} - r^{|d|/p+\beta})w(r)\|_{L_{\theta}(t,\infty)} < \infty.$$

If, in addition, w is continuous on $(0, \infty)$ then conditions (3a)–(3c) take simpler form, namely

(3a')
$$\rho(x)^{\beta} \chi_{\mathbb{C}_{\mathcal{E}_d(0,t)}} \in LM_{p\theta,w,d} \text{ for } \beta > -|d|/p$$

$$\iff \|(r^{|d|/p+\beta} - t^{|d|/p+\beta})w(r)\|_{L_{\theta}(1,t)} < \infty;$$

(3b')
$$\rho(x)^{\beta} \chi_{\mathcal{E}_{\mathcal{L}(0,t)}} \in LM_{p\theta,w,d} \text{ for } \beta = -|d|/p \iff ||w(r)(\ln r)^{1/p}||_{L_{\theta}(1,t)} < \infty;$$

(3c')
$$\rho(x)^{\beta} \chi_{\mathbb{C}_{\mathcal{E}_d(0,t)}} \in LM_{p\theta,w,d} \text{ for } \beta < -|d|/p.$$

Lemma 2.7 Let $1 < p_1 \le \infty$, $0 < p_2 \le \infty$, $0 < \alpha < |d|$, $0 < \theta_1, \theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$. Then the conditions

$$p_1 < \infty$$
 and $\alpha < \frac{|d|}{p_1}$

are necessary for the boundedness of I_{α}^d from $LM_{p_1\theta_1,w_1,d}$ to $LM_{p_2\theta_2,w_2,d}$.

Proof Assume that $\alpha > \frac{|d|}{p_1}$ and I_{α}^d is bounded from $LM_{p_1\theta_1,w_1,d}$ to $LM_{p_2\theta_2,w_2,d}$. Let $f(x) = \rho(x)^{-\beta}$ if $\rho(x) \ge 1$ where $\frac{|d|}{p_1} < \beta < \alpha$, and f(x) = 0 if $\rho(x) < 1$. Then by Lemma 2.5 we have $f \in LM_{p_1\theta_1,w_1,d}$ since

$$\|f\|_{LM_{p_1\theta_1,w_1,d}} \leq \|w\|_{L_{\theta_1}(1,\infty)} \|\rho(x)^{-\beta}\|_{L_{p_1}} c_{\mathcal{E}_d(0,1))} < \infty.$$

On the other hand for all $x \in \mathbb{R}^n$

$$I_{\alpha}^{d}f(x) = \int_{\mathcal{E}_{d}(0,1)} \frac{\rho(y)^{-\beta}}{\rho(x-y)^{|d|-\alpha}} dy = \infty.$$

Assume that $\alpha = \frac{|d|}{p_1}$ and $I_{\frac{|d|}{p_1}}^d$ is bounded from $LM_{p_1\theta_1,w_1,d}$ to $LM_{p_2\theta_2,w_2,d}$. Let $f(x) = \rho(x)^{\frac{-|d|}{p_1}}(\log \rho(x))^{-\gamma}$ if $\rho(x) \ge 2$ where $\frac{1}{p_1} < \gamma \le 1$, and f(x) = 0 if $\rho(x) < 2$. Then $f \in LM_{p_1\theta_1,w_1,d}$ since for $\gamma > \frac{1}{p_1}$

$$||f||_{LM_{p_1\theta_1,w_1,d}} \leq ||w||_{L_{\theta_1}(2,\infty)} ||\rho(x)^{-\frac{|d|}{p_1}} (\log \rho(x))^{-\gamma}||_{L_{p_1}({}^{\complement}\mathcal{E}_d(0,2))} < \infty.$$

On the other hand, since $\rho(x-y) \le 2\rho(y)$ for $\rho(y) \ge \rho(x)$, by passing to generalized spherical coordinates (1.1) we have that for all $x \in \mathbb{R}^n$

$$I_{\frac{|d|}{p_1}}^{d} f(x) \ge \int_{\rho(y) \ge \max\{2, \rho(x)\}} \rho(x - y)^{-\frac{|d|}{p_1'}} \rho(y)^{-\frac{|d|}{p_1}} (\log \rho(y))^{-\gamma} dy$$

$$\ge 2^{-\frac{|d|}{p_1'}} \int_{\rho(y) \ge \max\{2, \rho(x)\}} \rho(y)^{-|d|} (\log \rho(y))^{-\gamma} dy = \infty,$$

because $\gamma \leq 1$.

Throughout this article $a \lesssim b$ $(b \gtrsim a)$ means that $a \leq \lambda b$, where $\lambda > 0$ depends on unessential parameters. If $b \lesssim a \lesssim b$, then we write $a \approx b$.

3. L_p -estimates of the anisotropic Riesz potential over ellipsoids

We consider the following 'partial' anisotropic Riesz potentials

$$\underline{I}_{\alpha,r}^{d}f(x) \equiv I_{\alpha}^{d}(f\chi_{\mathcal{E}_{d}(x,r)})(x) = \int_{\mathcal{E}_{d}(x,r)} \frac{|f(y)|}{\rho(x-y)^{|d|-\alpha}} dy,$$

$$\overline{I}_{\alpha,r}^{d}f(x) \equiv I_{\alpha}^{d}(f\chi_{\mathbb{C}_{\mathcal{E}_{d}(x,r)}})(x) = \int_{\mathbb{C}_{\mathcal{E}_{d}(x,r)}} \frac{|f(y)|}{\rho(x-y)^{|d|-\alpha}} dy.$$

Lemma 3.1 Let $0 , <math>0 < \alpha < |d|$ and $f \in L_1^{loc}(\mathbb{R}^n)$. Then for any ball $\mathcal{E}_d(x,r)$ in \mathbb{R}^n

$$||I_{\alpha}^{d}(|f|)||_{WL_{p}(\mathcal{E}_{d}(x,r))} \gtrsim r^{\frac{n}{p}} \overline{I}_{\alpha,r}^{d}(|f|)(x).$$

Proof If $y \in \mathcal{E}_d(x, r)$ and $z \in {}^{\complement}\mathcal{E}_d(x, r)$, then $\rho(y - z) \le 2\rho(x - y)$ and

$$I_{\alpha}^{d}(|f|)(y) \ge \int_{\mathbb{C}_{\mathcal{E}_{d}}(x,r)} \frac{|f(z)|}{\rho(y-z)^{|d|-\alpha}} dz$$

$$\ge 2^{\alpha-|d|} \int_{\mathbb{C}_{\mathcal{E}_{d}}(x,r)} \frac{|f(z)|}{\rho(x-z)^{|d|-\alpha}} dz = 2^{\alpha-|d|} \overline{I}_{\alpha,r}^{d}(|f|)(x).$$

Hence1

$$||I_{\alpha}^{d}(|f|)||_{WL_{n}(\mathcal{E}_{d}(x,r))} \ge (v_{n}r^{|d|})^{\frac{1}{p}} 2^{\alpha-|d|} \overline{I}_{\alpha,r}^{d}(|f|)(x),$$

where v_n is the volume of the unit ball in \mathbb{R}^n .

Lemma 3.2 Let $0 , <math>0 < \alpha < |d|$ and $f \in L_1^{loc}(\mathbb{R}^n)$. Then for any ball $\mathcal{E}_d(x, r)$ in \mathbb{R}^n

$$||I_{\alpha}^{d}(|f|)||_{L_{p}(\mathcal{E}_{d}(x,r))} \approx ||I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,2r)})||_{L_{p}(\mathcal{E}_{d}(x,r))} + r^{\frac{n}{p}} \overline{I}_{\alpha,2r}^{d}(|f|)(x)$$
(3.1)

and

$$||I_{\alpha}^{d}(|f|)||_{WL_{p}(\mathcal{E}_{d}(x,r))} \approx ||I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,2r)})||_{WL_{p}(\mathcal{E}_{d}(x,r))} + r^{\frac{n}{p}} \overline{I}_{\alpha,2r}^{d}(|f|)(x).$$
(3.2)

Proof Clearly

$$\|I_{\alpha}^{d}(|f|)\|_{L_{p}(\mathcal{E}_{d}(x,r))} \lesssim \|I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,2r)})\|_{L_{p}(\mathcal{E}_{d}(x,r))} + \|I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{\mathcal{L}_{l}(x,2r)}})\|_{L_{p}(\mathcal{E}_{d}(x,r))}$$

and

$$||I_{\alpha}^{d}(|f|)||_{WL_{p}(\mathcal{E}_{d}(x,r))} \lesssim ||I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,2r)})||_{WL_{p}(\mathcal{E}_{d}(x,r))} + ||I_{\alpha}^{d}(|f|\chi_{\mathcal{C}_{\mathcal{E}_{d}(x,2r)}})||_{WL_{p}(\mathcal{E}_{d}(x,r))}.$$

If $y \in \mathcal{E}_d(x, r)$, $z \in {}^{\complement}\mathcal{E}_d(x, 2r)$, then $\rho(x - z)/2 \le \rho(y - z) \le 3\rho(x - z)/2$. Therefore,

$$\begin{split} \left\| I_{\alpha}^{d} \Big(|f| \chi_{\mathbb{C}_{\mathcal{E}_{d}(x,2r)}} \Big) \right\|_{WL_{p}(\mathcal{E}_{d}(x,r))} & \leq \left\| I_{\alpha}^{d} \Big(|f| \chi_{\mathbb{C}_{\mathcal{E}_{d}(x,2r)}} \Big) \right\|_{L_{p}(\mathcal{E}_{d}(x,r))} \\ & = \left(\int_{\mathcal{E}_{d}(x,r)} \left(\int_{\mathbb{C}_{\mathcal{E}_{d}(x,2r)}} \frac{f(z)}{\rho(y-z)^{|d|-\alpha}} \mathrm{d}z \right)^{p} \mathrm{d}y \right)^{\frac{1}{p}} \\ & \approx r^{\frac{|d|}{p}} \int_{\mathbb{C}_{\mathcal{E}_{d}(x,2r)}} \frac{|f(z)|}{\rho(x-z)^{|d|-\alpha}} \mathrm{d}z \\ & = r^{\frac{|d|}{p}} \overline{I}_{\alpha,2r}^{d} (|f|)(x), \end{split}$$

and the right-hand side inequalities in (3.1) and (3.2) follow.

The left-hand side inequalities in (3.1) and (3.2) follow by Lemma 3.1 and obvious inequalities

$$||I_{\alpha}^{d}(|f|)||_{L_{n}(\mathcal{E}_{d}(x,r))} \ge ||I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,r)})||_{L_{n}(\mathcal{E}_{d}(x,r))},$$

and

$$||I_{\alpha}^{d}(|f|)||_{WL_{p}(\mathcal{E}_{d}(x,r))} \ge ||I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,2r)})||_{WL_{p}(\mathcal{E}_{d}(x,r))}.$$

LEMMA 3.3 Let $1 \le p_1 < p_2 < \infty$ and $0 < \alpha < |d|$. The inequality

$$\|I_{\alpha}^{d}(f\chi_{\mathcal{E}_{d}(x,2r)})\|_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} \lesssim r^{\alpha-|d|\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} \|f\|_{L_{p_{1}}(\mathcal{E}_{d}(x,2r))}$$
(3.3)

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_{p_1}^{loc}(\mathbb{R}^n)$ if and only if in the case $p_1 > 1$

$$\alpha \ge |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right) \tag{3.4}$$

and in the case $p_1 = 1$

$$\alpha > |d| \left(1 - \frac{1}{p_2}\right).$$

Moreover for $1 < p_2 < \infty$ and $\alpha = |d|(1 - \frac{1}{p_2})$ the inequality

$$\|I_{\alpha}^{d}(f\chi_{\mathcal{E}_{d}(x,2r)})\|_{WL_{p_{2}}(\mathcal{E}_{d}(x,r))} \lesssim \|f\|_{L_{1}(\mathcal{E}_{d}(x,2r))}$$
(3.5)

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_1^{loc}(\mathbb{R}^n)$.

Proof Recall the well-known inequalities for the anisotropic Riesz potential [5]. If 1 , then

$$\|I_{|d|\left(\frac{1}{p}-\frac{1}{q}\right)}^{d}f\|_{L_{q}(\mathbb{R}^{n})} \lesssim \|f\|_{L_{p}(\mathbb{R}^{n})}.$$
 (3.6)

Also if $1 < q < \infty$, then

$$\|I_{|d|(1-\frac{1}{q})}^{d}f\|_{WL_{q}(\mathbb{R}^{n})} \lesssim \|f\|_{L_{1}(\mathbb{R}^{n})}.$$
(3.7)

If $1 < p_1 < p_2 < \infty$, inequality (3.4) holds and $z \in \mathcal{E}_d(x, r)$, then

$$I_{\alpha}^{d}\Big(|f|\chi_{\varepsilon_{d}(x,2r)}\Big)(z) \lesssim r^{\alpha-|d|\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}I_{|d|\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}^{d}\Big(|f|\chi_{\varepsilon_{d}(x,2r)}\Big)(z),$$

and by (3.6)

$$||I_{\alpha}^{d}(|f|\chi_{\mathcal{E}_{d}(x,2r)})||_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} \lesssim r^{\alpha-|d|(\frac{1}{p_{1}}-\frac{1}{p_{2}})}||f||_{L_{p_{1}}(\mathcal{E}_{d}(x,2r))}.$$

If $1 < p_2 < \infty$ and inequality (3.5) holds then by (3.7)

$$\begin{split} \|I_{\alpha}^{d}\Big(|f|\chi_{\mathcal{E}_{d}(x,2r)}\Big)\|_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} &\leq \|\Big(I_{\alpha}^{d}\Big(|f|\chi_{\mathcal{E}_{d}(x,2r)}\Big)\Big)^{*}\|_{L_{p_{2}}(0,\,|\mathcal{E}_{d}(x,r)|)} \\ &\leq \sup_{0 < t \leq |\mathcal{E}_{d}(x,r)|} t^{1-\frac{\alpha}{|d|}}\Big(I_{\alpha}^{d}\Big(|f|\chi_{\mathcal{E}_{d}(x,2r)}\Big)\Big)^{*}(t)\|t^{\frac{\alpha}{|d|}-1}\|_{L_{p_{2}}(0,\,|\mathcal{E}_{d}(x,r)|)} \\ &\approx r^{\alpha-|d|}\Big(^{1-\frac{1}{p_{2}}}\Big)\Big\|I_{\alpha}^{d}\Big(|f|\chi_{\mathcal{E}_{d}(x,2r)}\Big)\Big\|_{WL_{\frac{|d|}{|d|-\alpha}}(\mathcal{E}_{d}(x,r))} \\ &\lesssim r^{\alpha-|d|}\Big(^{1-\frac{1}{p_{2}}}\Big)\|f\|_{L_{1}(\mathcal{E}_{d}(x,2r))}. \end{split}$$

If $p_1 \ge 1$ and $\alpha < |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$, then inequality (3.3) cannot hold for all $f \in L^{\mathrm{loc}}_{p_1}(\mathbb{R}^n)$. Indeed if $f \in L_{p_1}(\mathbb{R}^n)$ and $f \ne 0$ then by passing in (3.3) to the limit as $r \to +\infty$ we arrive at a contradiction.

Assume that $p_1 = 1$, $1 < p_2 < \infty$, $\alpha = |d|(1 - \frac{1}{p_2})$ and $f \in L_1(\mathbb{R}^n)$. Then by passing to the limit in (3.3) as $r \to +\infty$ we get

$$||I_{\alpha}^{d}f||_{L_{p_{\gamma}}(\mathbb{R}^{n})} \lesssim ||f||_{L_{1}(\mathbb{R}^{n})},$$

which, according to known results [5], is not possible.

COROLLARY 3.4 Let

$$1 < p_1 \le \infty, \ 0 < p_2 \le \infty \ or \ p_1 = 1, \quad 0 < p_2 < \infty, \quad and \ |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)_+ < \alpha < |d|,$$

$$(3.8)$$

or

$$1 < p_1 < p_2 < \infty \quad and \quad \alpha = |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right).$$
 (3.9)

Then the inequality

$$\|I_{\alpha}^{d}(f\chi_{\mathcal{E}_{d}(x,2r)})\|_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} \lesssim r^{\alpha-|d|\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} \|f\|_{L_{p_{1}}(\mathcal{E}_{d}(x,2r))}$$

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_{p_1}^{loc}(\mathbb{R}^n)$.

Moreover for $1 < p_2 < \infty$ and $\alpha = |d| (1 - \frac{1}{p_2})^{p_1}$, then the inequality

$$||I_{\alpha}^{d}(f\chi_{\varepsilon_{d}(x,2r)})||_{WL_{p_{2}}(\varepsilon_{d}(x,r))} \lesssim ||f||_{L_{1}(\varepsilon_{d}(x,2r))}$$

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_1^{loc}(\mathbb{R}^n)$.

Proof If $p_2 > p_1$, the statement follows by Lemma 3.3.

If $p_2 = p_1$, then by applying Minkowski's inequality for integrals we have

$$\begin{split} \left\| I_{\alpha}^{d} \Big(f \chi_{\varepsilon_{d}(x,2r)} \Big) \right\|_{L_{p_{1}}(\mathcal{E}_{d}(x,r))} &\leq \left\| \int_{\mathcal{E}_{d}(x,2r)} \frac{\left| \left(f \chi_{\varepsilon_{d}(x,2r)} \right) (y) \right|}{\rho(\cdot - y)^{|d| - \alpha}} \mathrm{d}y \right\|_{L_{p_{1}}(\mathcal{E}_{d}(x,r))} \\ &\leq \left\| \int_{\mathcal{E}_{d}(0,,3r)} \frac{\left| \left(f \chi_{\varepsilon_{d}(x,2r)} \right) (\cdot - u) \right|}{\rho(u)^{|d| - \alpha}} \mathrm{d}u \right\|_{L_{p_{1}}(\mathbb{R}^{n})} \\ &\leq \int_{\mathcal{E}_{d}(0,,3r)} \frac{\mathrm{d}u}{\rho(u)^{|d| - \alpha}} \left\| f \chi_{\varepsilon_{d}(x,2r)} \right\|_{L_{p_{1}}(\mathbb{R}^{n})} \\ &\lesssim r^{\alpha} \| f \|_{L_{p_{1}}(\mathcal{E}_{d}(x,2r))}. \end{split}$$

If $p_2 < p_1$, then by applying Hölder's inequality and this inequality we get

$$\begin{split} & \| I_{\alpha}^{d}(f\chi_{\mathcal{E}_{d}(x,2r)}) \|_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} \\ & \lesssim r^{\frac{|d|}{p_{2}} \frac{|d|}{p_{1}}} \| I_{\alpha}^{d}(f\chi_{\mathcal{E}_{d}(x,2r)}) \|_{L_{p_{1}}(\mathcal{E}_{d}(x,r))} \\ & \lesssim r^{\alpha - |d| \left(\frac{1}{p_{1}} - \frac{1}{p_{2}}\right)} \| f \|_{L_{p_{1}}(\mathcal{E}_{d}(x,2r))}. \end{split}$$

Lemma 3.2 and Corollary 3.4 imply the following statement.

Lemma 3.5 Let condition (3.8) or condition (3.9) be satisfied. Then the inequality

$$||I_{\alpha}^{d}f||_{L_{p_{1}}(\mathcal{E}_{d}(x,r))} \lesssim r^{\alpha-|d|\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)}||f||_{L_{p_{1}}(\mathcal{E}_{d}(x,2r))} + r^{\frac{|d|}{p_{2}}}\overline{I}_{\alpha,2r}^{d}(|f|)(x)$$
(3.10)

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_{p_1}^{loc}(\mathbb{R}^n)$.

Moreover, for $1 < p_2 < \infty$ and $\alpha = |d|(1 - \frac{1}{p_2})$ the inequality

$$||I_{\alpha}^{d}f||_{WL_{p_{1}}(\mathcal{E}_{d}(x,r))} \lesssim ||f||_{L_{1}(\mathcal{E}_{d}(x,2r))} + r^{\frac{|d|}{p_{2}}} \overline{I}_{\alpha,2r}^{d}(|f|)(x)$$
(3.11)

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_1^{loc}(\mathbb{R}^n)$.

Lemma 3.6 Let the condition (3.8) or condition (3.9) be satisfied. Then the inequality

$$||I_{\alpha}^{d}f||_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} \lesssim r^{\frac{|d|}{p_{2}}} \int_{r}^{\infty} ||f||_{L_{p_{1}}(\mathcal{E}_{d}(x,t))} \frac{\mathrm{d}t}{\frac{|d|}{t^{p_{1}}} - \alpha + 1}$$
(3.12)

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_{p_1}^{loc}(\mathbb{R}^n)$.

Proof Note that if $\alpha \ge \frac{|d|}{p_1}$ and f is not equivalent to 0 on \mathbb{R}^n , then the right-hand side of (3.12) is infinite, and in this case inequality (3.12) is trivial.

Let $\alpha < \frac{|d|}{p_1}$. By Lemma 6 in [23] and Hölder's inequality

$$\begin{split} r^{\frac{|d|}{p_2}} \overline{I}_{\alpha,2r}^d(|f|)(x) &= r^{\frac{|d|}{p_2}} \int_{\mathbb{C}_{\mathcal{E}_d(x,2r)}} \frac{|f(y)|}{\rho(x-y)^{|d|-\alpha}} \mathrm{d}y \\ &= (|d|-\alpha) \, r^{\frac{|d|}{p_2}} \int_{2r}^{\infty} \left(\int_{2r \leq \rho(x-y) \leq t} |f(y)| \mathrm{d}y \right) \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \\ &\leq (|d|-\alpha) \, r^{\frac{|d|}{p_2}} \int_{2r}^{\infty} \|f\|_{L_1(\mathcal{E}_d(x,t))} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \\ &\lesssim r^{\frac{|d|}{p_2}} \int_{2r}^{\infty} \|f\|_{L_{p_1}(\mathcal{E}_d(x,t))} \frac{\mathrm{d}t}{t^{p_1-\alpha+1}}. \end{split}$$

On the other hand,

$$\begin{split} r^{\alpha-|d|\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)} &\|f\|_{L_{p_{1}}\left(\mathcal{E}_{d}\left(x,2r\right)\right)} \\ &= \left(\frac{|d|}{p_{1}}-\alpha\right) 2^{\alpha-\frac{|d|}{p_{1}}} r^{\frac{|d|}{p_{2}}} \|f\|_{L_{p_{1}}\left(\mathcal{E}_{d}\left(x,2r\right)\right)} \int_{2r}^{\infty} \frac{\mathrm{d}t}{t^{\frac{|d|}{p_{1}}-\alpha+1}} \\ &\lesssim r^{\frac{|d|}{p_{2}}} \int_{2r}^{\infty} \|f\|_{L_{p_{1}}\left(\mathcal{E}_{d}\left(x,t\right)\right)} \frac{\mathrm{d}t}{\frac{|d|}{t^{p_{1}}}-\alpha+1}. \end{split}$$

Hence the statement of the lemma follows by inequalities (3.10) and (3.11).

Remark 3.7 Note that inequality (37) in [24]

$$||I_{\alpha}^{d}f||_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} \lesssim r^{\frac{|d|}{p_{2}}-\delta} \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,t)} |f(y)|^{p_{1}} dy \right) \frac{dt}{t^{|d|-(\alpha+\delta)p_{1}+1}} \right)^{\frac{1}{p_{1}}}$$

follows from the inequality (3.12) by applying Hölder's inequality.

Indeed for any $\delta > 0$ by (3.12)

$$\begin{split} \|I_{\alpha}^{d}f\|_{L_{p_{2}}(\mathcal{E}_{d}(x,r))} &\lesssim r^{\frac{|d|}{p_{2}}} \int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,t)} |f(y)|^{p_{1}} \mathrm{d}y \right)^{\frac{1}{p_{1}}} \frac{\mathrm{d}t}{t^{\frac{|d|}{p_{1}} - (\alpha + \delta) + \frac{1}{p_{1}} + \delta + \frac{1}{p_{1}'}}} \\ &\lesssim r^{\frac{|d|}{p_{2}}} \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,t)} |f(y)|^{p_{1}} \mathrm{d}y \right) \frac{\mathrm{d}t}{t^{|d| - (\alpha + \delta) p_{1} + 1}} \right)^{\frac{1}{p_{1}}} \left(\int_{r}^{\infty} \frac{\mathrm{d}t}{t^{p_{1}'\delta + 1}} \right)^{\frac{1}{p_{1}'}} \\ &\lesssim r^{\frac{|d|}{p_{2}} - \delta} \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,t)} |f(y)|^{p_{1}} \mathrm{d}y \right) \frac{\mathrm{d}t}{t^{|d| - (\alpha + \delta) p_{1} + 1}} \right)^{\frac{1}{p_{1}}}. \end{split}$$

Lemma 3.8 Let $0 , <math>0 < \alpha < |d|$. Then the inequality

$$||I_{\alpha}^{d}(|f|)||_{WL_{p}(\mathcal{E}_{d}(x,r))} \gtrsim r^{\frac{|d|}{p}} \int_{r}^{\infty} ||f||_{L_{1}(\mathcal{E}_{d}(x,t))} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}}$$
$$\gtrsim r^{\alpha-|d|\left(1-\frac{1}{p}\right)} ||f||_{L_{1}(\mathcal{E}_{d}(x,2r))}$$

holds for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_1^{loc}(\mathbb{R}^n)$.

Proof For all $y \in \mathcal{E}_d(x,r)$ $\rho(y-z) \le 2r$ if $z \in \mathcal{E}_d(x,r)$ and $\rho(y-z) \le 2\rho(x-z)$ if $z \in {}^{\complement}\mathcal{E}_d(x,r)$, therefore

$$\begin{split} I_{\alpha}^{d}(|f|)(y) &= \int_{\mathcal{E}_{d}(x,r)} \frac{|f(z)|}{\rho(y-z)^{|d|-\alpha}} \, \mathrm{d}z + \int_{\mathbb{C}_{\mathcal{E}_{d}(x,r)}} \frac{|f(z)|}{\rho(y-z)^{|d|-\alpha}} \, \mathrm{d}z \\ &\geq (2r)^{\alpha-|d|} \int_{\mathcal{E}_{d}(x,r)} |f(z)| \, \mathrm{d}z + 2^{\alpha-|d|} \int_{\mathbb{C}_{\mathcal{E}_{d}(x,r)}} \frac{|f(z)|}{\rho(x-z)^{|d|-\alpha}} \, \mathrm{d}z \\ &= (|d|-\alpha)2^{\alpha-|d|} \int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,r)} |f(z)| \, \mathrm{d}z \right) \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \\ &+ (|d|-\alpha)2^{\alpha-|d|} \int_{\mathbb{C}_{\mathcal{E}_{d}(x,r)}} \left(\int_{\rho(x-z)}^{\infty} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \right) |f(z)| \, \mathrm{d}z \\ &= (|d|-\alpha)2^{\alpha-|d|} \left(\int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,r)} |f(z)| \, \mathrm{d}z \right) \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \right) \\ &+ \int_{r}^{\infty} \left(\int_{\mathcal{E}_{d}(x,l) \setminus \mathcal{E}_{d}(x,r)} |f(z)| \, \mathrm{d}z \right) \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \\ &= (|d|-\alpha)2^{\alpha-|d|} \int_{r}^{\infty} \|f\|_{L_{1}(\mathcal{E}_{d}(x,t))} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}}. \end{split}$$

Hence the first of the desired inequalities follows.²

The second one follows since

$$r^{\frac{|d|}{p}} \int_{r}^{\infty} \|f\|_{L_{1}(\mathcal{E}_{d}(x,t))} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}} \geq r^{\frac{|d|}{p}} \int_{2r}^{\infty} \|f\|_{L_{1}(\mathcal{E}_{d}(x,t))} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}}$$

$$\gtrsim r^{\alpha-|d|\left(1-\frac{1}{p}\right)} \|f\|_{L_{1}(\mathcal{E}_{d}(x,2r))}.$$

Theorem 3.9 (1) Let $0 and <math>|d|(1 - \frac{1}{p})_+ < \alpha < |d|$. Then the equivalences

$$||I_{\alpha}^{d}(|f|)||_{WL_{p}(\mathcal{E}_{d}(x,r))} \approx ||I_{\alpha}^{d}(|f|)||_{L_{p}(\mathcal{E}_{d}(x,r))}$$

$$\approx r^{\frac{|d|}{p}} \overline{I}_{\alpha,r}^{d}(|f|)(x) + r^{\alpha - |d|} (1 - \frac{1}{p}) ||f||_{L_{1}(\mathcal{E}_{d}(x,2r))}$$

$$\approx r^{\frac{|d|}{p}} \int_{r}^{\infty} ||f||_{L_{1}(\mathcal{E}_{d}(x,t))} \frac{\mathrm{d}t}{t^{|d|-\alpha+1}}$$
(3.13)

hold for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_1^{loc}(\mathbb{R}^n)$.

(2) Let $1 and <math>\alpha = |d|(1 - \frac{1}{p})$. Then the equivalences

$$\left\| I_{|d|(1-\frac{1}{p})}^{d}(|f|) \right\|_{WL_{p}(\mathcal{E}_{d}(x,r))} \approx r^{\frac{|d|}{p}} \overline{I}_{|d|(1-\frac{1}{p}),r}^{d}(|f|)(x) + \|f\|_{L_{1}(\mathcal{E}_{d}(x,2r))}
\approx r^{\frac{|d|}{p}} \int_{r}^{\infty} \|f\|_{L_{1}(\mathcal{E}_{d}(x,t))} \frac{dt}{\frac{|d|}{t^{p}}+1}$$
(3.14)

hold for any ball $\mathcal{E}_d(x,r) \subset \mathbb{R}^n$ and for all $f \in L_1^{loc}(\mathbb{R}^n)$.

Proof The second equivalence in (3.13) for both $\|I_{\alpha}^{d}(|f|)\|_{WL_{p}(\mathcal{E}_{d}(x,r))}$ and $\|I_{\alpha}^{d}(|f|)\|_{L_{p}(\mathcal{E}_{d}(x,r))}$ and the first equivalence in (3.14) follow by Lemma 3.5 (estimate above) and Lemmas 3.1 and 3.8 (estimate below). The third equivalence in (3.13) for both $\|I_{\alpha}^{d}(|f|)\|_{WL_{p}(\mathcal{E}_{d}(x,r))}$ and $\|I_{\alpha}^{d}(|f|)\|_{L_{p}(\mathcal{E}_{d}(x,r))}$ and the second equivalence in (3.14) follow by Lemmas 3.6 and 3.8.

4. Anisotropic Riesz potential and Hardy operator

Let $\mathfrak{M}(0,\infty)$ be the set of all Lebesgue measurable functions on $(0,\infty)$ and $\mathfrak{M}^+(0,\infty)$ its subset consisting of all non-negative functions on $(0,\infty)$. We denote by $\mathfrak{M}^+(0,\infty;\downarrow)$ the cone of all functions in $\mathfrak{M}^+(0,\infty)$, which are non-increasing on $(0,\infty)$ and we set

$$\mathbb{A} = \left\{ \varphi \in \mathfrak{M}^+(0, \infty; \downarrow) : \lim_{t \to \infty} \varphi(t) = 0 \right\}.$$

Let H be the Hardy operator

$$(Hg)(t) := \int_0^t g(r) dr, \quad 0 < t < \infty.$$

Lemma 4.1 Let condition (3.8) or condition (3.9) be satisfied. Moreover, let $0 < \theta_2 \le \infty$ and $w_2 \in \Omega_{\theta_2}$.

Then

$$\|I_{\alpha}^{d}f\|_{LM_{p_{2}\theta_{2},w_{2},d}} \lesssim \|Hg_{p_{1}}\|_{L_{\theta_{2},\nu_{2}}(0,\infty)}$$
(4.1)

for all $f \in L_{p_1}^{loc}(\mathbb{R}^n)$, where

$$g_{p_1}(t) = \left(\int_{\mathcal{E}_d(0,t^{-\frac{1}{\sigma})}} |f(y)|^{p_1} dy\right)^{\frac{1}{p_1}}, \quad \sigma = \frac{|d|}{p_1} - \alpha > 0,$$

and

$$\nu_2(r) = w_2(r^{-\frac{1}{\sigma}})r^{-\frac{|d|}{\sigma p_2} - \frac{1}{\theta_2 \sigma} - \frac{1}{\theta_2}}.$$
(4.2)

Moreover, if $p_1 = 1$, $0 < p_2 < \infty$ and $|d|(1 - \frac{1}{p_2})_+ < \alpha < |d|$, then

$$\|I_{\alpha}^{d}f\|_{WLM_{p_{2}\theta_{2},w_{2},d}} \approx \|I_{\alpha}^{d}f\|_{LM_{p_{2}\theta_{2},w_{2},d}} \approx \|Hg_{1}\|_{L_{\theta_{2},v_{2}}(0,\infty)}$$

for all non-negative functions $f \in L_1^{loc}(\mathbb{R}^n)$.

Also if
$$1 < p_2 < \infty$$
 and $\alpha = |d|(1 - \frac{1}{p_2})$, then
$$\|I_{\alpha}^d f\|_{WLM_{p,\theta_2,w_2,d}} \approx \|Hg_1\|_{L_{\theta_2,\upsilon_2}(0,\infty)}$$

for all non-negative functions $f \in L_1^{loc}(\mathbb{R}^n)$.

Proof By Lemma 3.6 we have

$$\begin{split} \|I_{\alpha}^{d}f\|_{LM_{p_{2}\theta_{2},w_{2},d}} &\lesssim \left\|w_{2}(r)r^{\frac{|d|}{p_{2}}}\int_{r}^{\infty} \|f\|_{L_{p_{1}}(\mathcal{E}_{d}(0,t))} \frac{\mathrm{d}t}{t^{\sigma+1}}\right\|_{L_{\theta_{2}(0,\infty)}} \\ &\approx \left\|w_{2}(r)r^{\frac{|d|}{p_{2}}}\int_{0}^{r^{-\sigma}} \|f\|_{L_{p_{1}}(\mathcal{E}_{d}(0,\tau^{-\frac{1}{\sigma}}))} \mathrm{d}\tau\right\|_{L_{\theta_{2}(0,\infty)}} \\ &= \left\|w_{2}(r)r^{\frac{|d|}{p_{2}}}\int_{0}^{r^{-\sigma}} g_{p_{1}}(\tau)\mathrm{d}\tau\right\|_{L_{\theta_{2}(0,\infty)}} \\ &= \left\|w_{2}(\rho^{-\frac{1}{\sigma}})\rho^{-\frac{|d|}{\sigma p_{2}} - \frac{1}{\theta_{2}}(Hg_{p_{1}}(\rho))}\right\|_{L_{\theta_{2}(0,\infty)}} \\ &= \|Hg_{p_{1}}\|_{L_{\theta_{2},\nu_{2}}(0,\infty)}. \end{split}$$

The second and third statements of the lemma follow by applying Theorem 3.9 also.

Theorem 4.2 Let condition (3.8) or condition (3.9) be satisfied. Moreover, let $0 < \theta_1$, $\theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$.

Then I_{α}^d is bounded from $LM_{p\theta,w,d}$ to $LM_{p_1\theta_1,w_1,d}$ if, and in the case $p_1=1$, $0 < p_2 < \infty$ and $|d|(1-\frac{1}{p_2})_+ < \alpha < |d|$ only if the operator H is bounded from $L_{\theta_1,\nu_1}(0,\infty)$ to $L_{\theta_2,\nu_2}(0,\infty)$ on the cone $\mathbb A$, that is

$$||Hg||_{L_{\theta_1,\nu_1}(0,\infty)} \lesssim ||g||_{L_{\theta_1,\nu_1}(0,\infty)}$$
 (4.3)

for all functions $g \in \mathbb{A}$, where

$$v_1(r) = w_1(r^{-\frac{1}{\sigma}})r^{-\frac{1}{\theta_1\sigma}\frac{1}{\theta_1}}$$
(4.4)

and v_2 is defined by equality (4.2).

Moreover, if $p_1=1$, $0 < p_2 < \infty$ and $|d|(1-\frac{1}{p_2})_+ < \alpha < |d|$ or $1 < p_2 < \infty$ and $\alpha = |d|(1-\frac{1}{p_2})$, then I_{α}^d is bounded from $LM_{1\theta_1,w_1,d}$ to $WLM_{p_2\theta_2,w_2,d}$ if and only if the operator H is bounded from $L_{\theta_1,v_1}(0,\infty)$ to $L_{\theta_2,v_2}(0,\infty)$ on the cone A.

Proof Assume that the operator H is bounded from $L_{\theta_1,\nu_1}(0,\infty)$ to $L_{\theta_2,\nu_2}(0,\infty)$ on the cone \mathbb{A} . Since $g_{\nu_1} \in \mathbb{A}$, by Lemma 4.1 we have

$$||I_{\alpha}^{d}f||_{LM_{p,\theta_{2},w_{2},d}} \lesssim ||Hg_{p_{1}}||_{L_{\theta_{2},v_{2}}(0,\infty)} \lesssim ||g_{p_{1}}||_{L_{\theta_{1},v_{1}}(0,\infty)}.$$

Note that

$$\begin{split} \|g_{p_1}\|_{L_{\theta_1,\nu_1}(0,\infty)} &= \|\nu_1(t)\|f\|_{L_{p_1}(\mathcal{E}_d(0,\,t^{-\frac{1}{\theta}}))}\|_{L_{\theta_1,\nu_1}(0,\infty)} \\ &\approx \|\nu_1(\rho^{-\sigma})\rho^{-\frac{\sigma+1}{\theta_1}}\|f\|_{L_{p_1}(\mathcal{E}_d(0,\rho))}\|_{L_{\theta_1,\nu_1}(0,\infty)} \\ &= \|w_1(\rho)\|f\|_{L_{p_1}(\mathcal{E}_d(0,\rho))}\|_{L_{\theta_1,\nu_1}(0,\infty)} \\ &= \|f\|_{LM_{p_1\theta_1,\nu_1,d}}. \end{split}$$

Hence it follows that I_{α}^d is bounded from $LM_{p\theta,w,d}$ to $LM_{p_1\theta_1,w_1,d}$.

Assume that I_{α}^d is bounded from $LM_{1\theta_1,w_1,d}$ to $LM_{p_1\theta_1,w_1,d}$. Then for all non-negative $f \in L_1^{loc}(\mathbb{R}^n)$

$$\|Hg_{p_1}\|_{L_{\theta_2,\nu_2}(0,\infty)} \approx \|I_{\alpha}^d f\|_{LM_{p_2\theta_2,\nu_2,d}} \lesssim \|f\|_{LM_{1\theta_1,\nu_1,d}} \approx \|g_{p_1}\|_{L_{\theta_1,\nu_1}(0,\infty)}. \tag{4.5}$$

Let $g \in \mathbb{A}$ be locally absolutely continuous on $(0, \infty)$. Consider the non-negative measurable function h on $(0, \infty)$ defined uniquely up to equivalence by the equality

$$g(t) = \|h(|\cdot|)\|_{L_{p_1}(\mathcal{E}_d(0, t^{-\frac{1}{\sigma}}))} = (|d|v_n)^{\frac{1}{p_1}} \left(\int_0^{t^{-\frac{1}{\sigma}}} h(\rho)^{p_1} \rho^{|d|-1} d\rho \right)^{\frac{1}{p_1}}.$$

If we take in (4.5) $f(x) = h(\rho(x))$ then $g_{p_1} = g$ and (4.5) implies that

$$||Hg||_{L_{\theta_1,\nu_1}(0,\infty)} \lesssim ||g||_{L_{\theta_1,\nu_1}(0,\infty)}.$$
 (4.6)

Finally if g is an arbitrary function in \mathbb{A} , then there exist functions $g_n \in \mathbb{A}$ which are locally absolutely continuous on $(0, \infty)$ and $g_n \nearrow g$ on $(0, \infty)$ as $|d| \to \infty$. Therefore by passing to the limit it follows that inequality (4.6) holds for all $g \in \mathbb{A}$.

5. Necessary and sufficient conditions

In order to obtain sufficient conditions on the weight functions ensuring boundedness of I_{α}^d , we shall apply Theorem 4.2 and the known necessary and sufficient conditions ensuring boundedness of the Hardy operator H from one weighted Lebesgue space to another one on the cone \mathbb{A} (see, e.g. [28,29]).

Theorem 5.1 Let condition (3.8) or condition (3.9) be satisfied. Moreover, let $0 < \theta_1$, $\theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$, $w_2 \in \Omega_{\theta_2}$.

Then the operator I_{α}^d is bounded from $LM_{p_1\theta_1, w_1, d}$ to $LM_{p_2\theta_2, w_2, d}$ if and in the case $p_1 = 1$ only if,

(a) $1 < \theta_1 \le \theta_2 < \infty$, then

$$B_{1}^{1} := \sup_{t>0} \left(\int_{t}^{\infty} w_{2}^{\theta_{2}}(r) r^{\theta_{2}\left(\alpha - |d|\left(\frac{1}{\rho_{1}} - \frac{1}{\rho_{2}}\right)\right)} dr \right)^{\frac{1}{\theta_{2}}} \left(\int_{t}^{\infty} w_{1}^{\theta_{1}}(r) dr \right)^{-\frac{1}{\theta_{1}}} < \infty, \tag{5.1}$$

and

$$B_{2}^{1} := \sup_{t>0} \left(\int_{0}^{t} w_{2}^{\theta_{2}}(r) r^{\theta_{2}^{|\underline{d}|}} \mathrm{d}r \right)^{\frac{1}{\theta_{2}}} \left(\int_{t}^{\infty} \frac{w_{1}^{\theta_{1}}(r) r^{\theta_{1}^{\prime}} \left(\alpha - \frac{|\underline{d}|}{p_{1}}\right)}{\left(\int_{r}^{\infty} w_{1}^{\theta_{1}}(\rho) \mathrm{d}\rho\right)^{\theta_{1}^{\prime}}} \mathrm{d}r \right)^{\frac{1}{\theta_{1}^{\prime}}} < \infty.$$
 (5.2)

(b) $0 < \theta_1 \le 1, \ 0 < \theta_1 \le \theta_2 < \infty, \ then \ B_1^1 < \infty \ and$

$$B_2^2 := \sup_{t>0} t^{\alpha - \frac{|d|}{p_1}} \left(\int_0^t w_2^{\theta_2}(r) r^{\theta_2 \frac{|d|}{p_2}} dr \right)^{\frac{1}{\theta_2}} \left(\int_t^\infty w_1^{\theta_1}(r) dr \right)^{-\frac{1}{\theta_1}} < \infty.$$
 (5.3)

(c) $1 < \theta_1 < \infty$, $0 < \theta_2 < \theta_1 < \infty$, $\theta_2 \neq 1$, then

$$B_1^3 := \left(\int_0^\infty \left(\frac{\int_t^\infty w_2^{\theta_2}(r) r^{\theta_2 \left(\alpha - |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)\right)} \mathrm{d}r}{\int_t^\infty w_1^{\theta_1}(r) \mathrm{d}r} \right)^{\frac{\theta_2}{\theta_1 - \theta_2}} w_2^{\theta_2}(t) t^{\theta_2 \left(\alpha - |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)\right)} \mathrm{d}t \right)^{\frac{\theta_1 - \theta_2}{\theta_1 \theta_2}} < \infty,$$

and

$$\begin{split} B_2^3 := \left(\int_0^\infty \left[\left(\int_0^t w_2^{\theta_2}(r) r^{\theta_2 \frac{|d|}{\rho_2}} \mathrm{d}r \right)^{\frac{1}{\theta_2}} \left(\int_t^\infty \frac{w_1^{\theta_1}(r) r^{\theta_1'\left(\alpha - \frac{|d|}{\rho_1}\right)}}{\left(\int_r^\infty w_1^{\theta_1}(\rho) \mathrm{d}\rho \right)^{\theta_1'}} \mathrm{d}r \right)^{\frac{\theta_2 - 1}{\theta_2}} \right]^{\frac{\theta_1 \theta_2}{\theta_1 - \theta_2}} \\ \times \frac{w_1^{\theta_1}(t) t^{\theta_1'\left(\alpha - \frac{|d|}{\rho_1}\right)}}{\left(\int_t^\infty w_1^{\theta_1}(\rho) \mathrm{d}\rho \right)^{\theta_1'}} \mathrm{d}t \right)^{\frac{\theta_1 - \theta_2}{\theta_1 - \theta_2}} < \infty. \end{split}$$

(d) $1 = \theta_2 < \theta_1 < \infty$, then

$$B_1^4 := \left(\int_0^\infty \left(\frac{\int_t^\infty w_2(r) r^{\alpha - |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)} \mathrm{d}r}{\int_t^\infty w_1^{\theta_1}(r) \mathrm{d}r} \right)^{\frac{1}{\theta_1 - 1}} w_2(t) t^{\alpha - |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)} \mathrm{d}t \right)^{\frac{\theta_1 - 1}{\theta_1}} < \infty,$$

and

$$B_{2}^{4} := \left(\int_{0}^{\infty} \left(\frac{\int_{t}^{\infty} w_{2}(r) r^{\alpha - |d| \left(\frac{1}{p_{1}} - \frac{1}{p_{2}}\right)} dr + t^{\alpha - \frac{|d|}{p_{1}}} \int_{0}^{t} w_{2}(r) r^{\frac{|d|}{p_{2}}} dr}{\int_{t}^{\infty} w_{1}^{\theta_{1}}(r) dr} \right)^{\theta'_{1} - 1} \times t^{\alpha - \frac{|d|}{p_{1}}} \left(\int_{0}^{t} w_{2}(r) r^{\frac{|d|}{p_{2}}} dr \right) \frac{dt}{t}^{\theta'_{1}} < \infty.$$

(e) $0 < \theta_2 < \theta_1 = 1$, then

$$B_1^5 := \left(\int_0^\infty \left(\frac{\int_t^\infty w_2^{\theta_2}(r) r^{\theta_2\left(\alpha - |d|\left(\frac{1}{p_1} - \frac{1}{p_2}\right)\right)} \mathrm{d}r}{\int_t^\infty w_1(r) \mathrm{d}r} \right)^{\frac{\theta_2}{1 - \theta_2}} w_2^{\theta_2}(t) t^{\theta_2\left(\alpha - |d|\left(\frac{1}{p_1} - \frac{1}{p_2}\right)\right)} \mathrm{d}t \right)^{\frac{1 - \theta_2}{\theta_2}} < \infty,$$

and

$$B_2^5 := \left(\int_0^\infty \left(\int_0^t w_2^{\theta_2}(r) r^{\frac{\theta_2|\underline{d}|}{p_2}} \mathrm{d}r \right)^{\frac{\theta_2}{1-\theta_2}} \left(\inf_{t < s < \infty} s^{\frac{|\underline{d}|}{p_1} - \alpha} \int_s^\infty w_1(\rho) \mathrm{d}\rho \right)^{\frac{\theta_2}{\theta_2 - 1}} w_2^{\theta_2}(t) t^{\frac{\theta_2|\underline{d}|}{p_2}} \mathrm{d}t \right)^{\frac{1-\theta_2}{\theta_2}} < \infty.$$

(f) $0 < \theta_2 < \theta_1 < 1$, then $B_1^3 < \infty$ and

$$B_2^6:=\left(\int_0^\infty\sup_{t\leq s<\infty}\frac{s^{\left(\alpha-\frac{|d|}{p_1}\right)\frac{\theta_1\theta_2}{\theta_1-\theta_2}}}{\left(\int_s^\infty w_1^{\theta_1}(\rho)\mathrm{d}\rho\right)^{\frac{\theta_2}{\theta_1-\theta_2}}}\left(\int_0^t w_2^{\theta_2}(r)r^{\theta_2\frac{|d|}{p_2}}\mathrm{d}r\right)^{\frac{\theta_2}{\theta_1-\theta_2}}w_2^{\theta_2}(t)t^{\theta_2\frac{|d|}{p_2}}\mathrm{d}t\right)^{\frac{\theta_1-\theta_2}{\theta_1\theta_2}}<\infty.$$

(g) $0 < \theta_1 \le 1$, $\theta_2 = \infty$, then

$$B^{7} := \operatorname*{ess\,sup}_{0 < t \leq s < \infty} \frac{w_{2}(t)t^{\frac{|d|}{p_{2}}}}{s^{p_{1}} - \alpha \left(\int_{s}^{\infty} w_{1}^{\theta_{1}}(r) \mathrm{d}r\right)^{\frac{1}{\theta_{1}}}} < \infty.$$

(h) $1 < \theta_1 < \infty$, $\theta_2 = \infty$, then

$$B^{8} := \operatorname{ess\,sup}_{t>0} w_{2}(t) t^{\frac{|d|}{p_{2}}} \left(\int_{t}^{\infty} \frac{r^{\theta'_{1}\left(\alpha - \frac{|d|}{p_{1}}\right)}}{\left(\int_{r}^{\infty} w_{1}^{\theta_{1}}(s) \mathrm{d}s\right)^{\theta'_{1} - 1}} \frac{\mathrm{d}r}{r} \right)^{\frac{1}{\theta'_{1}}} < \infty.$$

(i) $\theta_1 = \infty$, $0 < \theta_2 < \infty$, then

$$B^{10} := \left(\int_0^\infty \left(t^{\frac{|d|}{p_1} - \alpha} \int_t^\infty \frac{s^{\frac{-|d|}{p_1} - 1} ds}{\operatorname{ess\,sup}_{s < y < \infty} w_1(y)} \right)^{\theta_2} w_2^{\theta_2}(t) t^{\theta_2 \left(\alpha - |d| \left(\frac{1}{p_1} - \frac{1}{p_2} \right) \right)} dt \right)^{\frac{1}{\theta_2}} < \infty.$$

(j) $\theta_1 = \theta_2 = \infty$, then

$$B^{9} := \operatorname{ess\,sup}_{t>0} w_{2}(t) t^{\frac{|d|}{p_{2}}} \int_{t}^{\infty} \frac{s^{\alpha - \frac{|d|}{p_{1}} - 1}}{\operatorname{ess\,sup}_{s < v < \infty} w_{1}(y)} \, \mathrm{d}s < \infty.$$

Moreover, if $p_1=1$, $0 < p_2 < \infty$ and $|d|(1-\frac{1}{p_2})_+ < \alpha < |d|$ or $1 < p_2 < \infty$ and $\alpha = |d|(1-\frac{1}{p_2})$, then I_{α}^d is bounded from $LM_{1\theta_1,w_1,d}$ to $WLM_{p_2\theta_2,w_2,d}$ if and only if conditions (a)–(j) are satisfied.

Proof From results in [28,29] it follows that conditions (a)–(j) are necessary and sufficient for inequality (4.3) to hold, where v_1 and v_2 are defined by (4.2) and (4.4) respectively.

For example, let $1 < \theta_1 \le \theta_2 < \infty$, then by [28,29] inequality (4.3) holds if and only if

$$A_1^1 := \sup_{t>0} \left(\int_0^t v_2^{\theta_2}(s) ds \right)^{\frac{1}{\theta_2}} \left(\int_0^t v_1^{\theta_1}(s) ds \right)^{-\frac{1}{\theta_1}} < \infty,$$

and

$$A_2^1 := \sup_{t>0} \left(\int_t^\infty v_2^{\theta_2}(s) \right)^{\frac{1}{\theta_2}} \left(\int_0^t \frac{v_1^{\theta_1}(s)s^{\theta_1'}}{\left(\int_0^s v_2^{\theta_2}(\tau) \mathrm{d}s \right)^{\theta_1'}} \mathrm{d}s \right)^{\frac{1}{\theta_1'}} < \infty.$$

If v_1 and v_2 are defined by (4.2) and (4.4), respectively, then by using the substitute $r = s^{-\frac{1}{\sigma}}$ we get

$$A_1^1 := \sup_{t>0} \left(\int_0^t w_2^{\theta_2}(s^{-\frac{1}{\sigma}}) s^{-\frac{|d|\theta_2}{\sigma p_2} - \frac{1}{\sigma} - 1} \mathrm{d}s \right)^{\frac{1}{\theta_2}} \left(\int_0^t w_1^{\theta_1}(s^{-\frac{1}{\sigma}}) r^{-\frac{1}{\sigma} - 1} \mathrm{d}s \right)^{-\frac{1}{\theta_1}} \approx B_1^1$$

and similarly $A_2^1 \approx B_2^1$.

Hence the statement follows by Theorem 4.2.

Remark 5.2 Note that two conditions (5.1) and (5.3) are equivalent to anisotropic variant of the Burenkov–Guliyevs condition

$$\left\| w_2(r) \left(\frac{r}{t+r} \right)^{|d|/p_2} \right\|_{L_{\theta_1}(0,\infty)} \le c \|w_1\|_{L_{\theta_1}(t,\infty)} \tag{5.4}$$

for all t>0, where c>0 is independent of t.

COROLLARY 5.3 Let condition (3.8) or condition (3.9) be satisfied. Moreover, let functions $w_1 \in \Omega_{p_1,\infty,d}$ and $w_2 \in \Omega_{p_2,\infty,d}$ satisfy the following condition:

$$\sup_{t>0} w_2(t) t^{\frac{|d|}{p_2}} \int_t^\infty \frac{s^{\alpha - \frac{|d|}{p_1} - 1}}{\operatorname{ess } \sup_{s < \tau < \infty} w_1(\tau)} \mathrm{d}s < \infty. \tag{5.5}$$

Then I_{α}^d is bounded from $\mathcal{M}_{p_1,w_1,d}$ to $\mathcal{M}_{p_2,w_2,d}$.

Proof Clearly boundedness of I^d_{α} from $LM_{p_1 \infty, w_1, d}$ to $LM_{p_2 \infty, w_2, d}$ implies boundedness of I^d_{α} from $GM_{p_1 \infty, w_1, d} = \mathcal{M}_{p_1, w_1, d}$ to $GM_{p_2 \infty, w_2, d} = \mathcal{M}_{p_2, w_2, d}$.

Remark 5.4 Let $1 < p_1 < p_2 < \infty$, $\alpha = |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$. It is obvious that if condition (1.3) holds, then condition (5.5) holds too. Moreover for non-increasing continuous functions w_1 conditions (1.3) and (5.5) coincide. However, in general, condition (5.5) does not imply condition (1.3). For example, the functions

$$w_1(r) = \chi_{(1,\infty)}(r)r^{-\beta}, \quad w_2(t) = \frac{1}{t^{\beta} + 1}, \quad 0 < \beta < \frac{|d|}{p_1} - \alpha$$

satisfy condition (5.5) but do not satisfy condition (1.3).

THEOREM 5.5 (1) Let $1 < p_1 < p_2 < \infty$, $\alpha = |d|(\frac{1}{p_1} - \frac{1}{p_2})$, $0 < \theta_1 < \infty$ and $\theta_1 \le \theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$, then condition (5.4) is necessary and sufficient for boundedness of I_{α}^d from $LM_{p_1\theta_1,w_1,d}$ to $LM_{p_2\theta_2,w_2,d}$.

(2) Let $1 \le p_1 < p_2 < \infty$, $\alpha = |d|(\frac{1}{p_1} - \frac{1}{p_2})$, $0 < \theta_1 < \infty$ and $\theta_1 \le \theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$, then condition (5.4) is necessary and sufficient for boundedness of I_{α}^d from $LM_{p_1\theta_1, w_1, d}$ to $WLM_{p_2\theta_2, w_2, d}$.

Proof If $0 < \theta_1 \le 1$, $0 < \theta_1 \le \theta_2 \le \infty$, then the statement of the theorem is proved in [24,25]. Let $1 < \theta_1 \le \theta_2 < \infty$. Since

$$\begin{split} B_{2}^{1} &= \sup_{t>0} \left(\int_{0}^{t} w_{2}^{\theta_{2}}(r) r^{\theta_{2}\frac{|d|}{\rho_{2}}} \mathrm{d}r \right)^{\frac{1}{\theta_{2}}} \left(\int_{t}^{\infty} \frac{w_{1}^{\theta_{1}}(r) r^{\theta_{1}'} \left(\alpha - \frac{|d|}{\rho_{1}}\right)}{\left(\int_{r}^{\infty} w_{1}^{\theta_{1}}(\rho) \mathrm{d}\rho \right)^{\theta_{1}'}} \mathrm{d}r \right)^{\frac{1}{\theta_{1}'}} \\ &\leq \sup_{t>0} t^{\alpha - \frac{|d|}{\rho_{1}}} \left(\int_{0}^{t} w_{2}^{\theta_{2}}(r) r^{\theta_{2}\frac{|d|}{\rho_{2}}} \mathrm{d}r \right)^{\frac{1}{\theta_{2}}} \left(\int_{t}^{\infty} \frac{w_{1}^{\theta_{1}}(r)}{\left(\int_{r}^{\infty} w_{1}^{\theta_{1}}(\rho) \mathrm{d}\rho \right)^{\theta_{1}'}} \mathrm{d}r \right)^{\frac{1}{\theta_{1}'}} \\ &\approx \sup_{t>0} t^{\alpha - \frac{|d|}{\rho_{1}}} \left(\int_{0}^{t} w_{2}^{\theta_{2}}(r) r^{\theta_{2}\frac{|d|}{\rho_{2}}} \mathrm{d}r \right)^{\frac{1}{\theta_{2}}} \left(-\int_{t}^{\infty} \mathrm{d} \left(\int_{r}^{\infty} w_{1}^{\theta_{1}}(\rho) \mathrm{d}\rho \right)^{1-\theta_{1}'} \right)^{\frac{1}{\theta_{1}'}} \\ &= \sup_{t>0} t^{\alpha - \frac{|d|}{\rho_{1}}} \left(\int_{0}^{t} w_{2}^{\theta_{2}}(r) r^{\theta_{2}\frac{|d|}{\rho_{2}}} \mathrm{d}r \right)^{\frac{1}{\theta_{2}}} \left(\int_{t}^{\infty} w_{1}^{\theta_{1}}(r) \mathrm{d}r \right)^{-\frac{1}{\theta_{1}}} = B_{2}^{2}, \end{split}$$

sufficiency of (5.1) and (5.3) follows by Theorem 5.1, part (a). Hence condition (5.4) is sufficient (by Remark 5.2) and necessary (by Theorem 1.3, part 1) for boundedness of I_{α}^d from $LM_{p_1\theta_1,w_1,d}$ to $LM_{p_2\theta_2,w_2,d}$. The case $1 < \theta_1 < \infty$, $\theta_2 = \infty$ is similar, because in this case $B^8 \le B_2^2$ by the same argument as above.

The proof of sufficiency for the second statement is similar. As for necessity one should note that boundedness of I_{α}^d from $LM_{p_1\theta_1,w_1,d}$ to $WLM_{p_2\theta_2,w_2,d}$ implies boundedness of the fractional maximal operator M_{α}^d from $LM_{p_1\theta_1,w_1,d}$ to $WLM_{p_2\theta_2,w_2,d}$ and that condition (5.4) is necessary for boundedness of M_{α}^d from $LM_{p_1\theta_1,w_1,d}$ to $WLM_{p_2\theta_2,w_2,d}$ [16].

Corollary 5.6 Let $1 < p_1 \le p_2 < \infty$, $\alpha = |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$, $0 < \theta_1 < \infty$ and $\theta_1 \le \theta_2 \le \infty$, $w_2 \in \Omega_{\theta_2}$ and

$$\left\| w_2(r) \left(\frac{r}{t+r} \right)^{\frac{|d|}{p_2}} \right\|_{L_{\theta_2}(0,\infty)} < \infty$$

for all t>0. Moreover, if $\theta_2=\infty$ and $\theta_1<\infty$ it is also assumed that

$$\lim_{t \to \infty} \left\| w_2(r) \left(\frac{r}{t+r} \right)^{\frac{|d|}{p_2}} \right\|_{L_{\infty}(0,\infty)} = 0.$$

Then

(1) I_{α}^d is bounded from $LM_{p_1\theta_1, w_1^*, d}$ to $LM_{p_2\theta_2, w_2, d}$, where w_1^* is a non-increasing continuous function on $(0, \infty)$ defined by

$$\|w_1^*\|_{L_{\theta_1}(t,\infty)} = \left\|w_2(r) \left(\frac{r}{t+r}\right)^{\frac{|d|}{p_2}}\right\|_{L_{\theta_2}(0,\infty)}, \quad t \in (0,\infty).$$

(2) If $w_1 \in \Omega_{\theta_1}$ and I_{α}^d is bounded from $LM_{p_1\theta_1, w_1, d}$ to $LM_{p_2\theta_2, w_2, d}$, then

$$LM_{p_1\theta_1,\,w_1,\,d}\subset LM_{p_1\theta_1,\,w_1^*,\,d}.$$

(Hence $LM_{p_1\theta_1, w_1^*, d}$ is the maximal among spaces $LM_{p_1\theta_1, w_1, d}$ for which I_{α}^d is bounded from $LM_{p_1\theta_1, w_1, d}$ to $LM_{p_2\theta_2, w_2, d}$.)

Proof Since condition (5.4) is also necessary and sufficient for boundedness of the fractional maximal operator M_{α}^{d} [19], the proof of Corollary 5.6 is also the same as for the case of M_{α}^{d} .

An analogue of Corollary 5.6 also holds for the case in which $LM_{p_2\theta_2, w_2, d}$ is replaced by $WLM_{p_2\theta_2, w_2, d}$.

COROLLARY 5.7 Let $1 < p_1 \le p_2 < \infty$, $\alpha = |d| \left(\frac{1}{p_1} - \frac{1}{p_2}\right)$, $w_1 \in \Omega_{p_1}$ and $w_2 \in \Omega_{p_2}$, then condition (5.4) is necessary and sufficient for boundedness of I_{α}^d from L_{p_1,W_1} to L_{p_2,W_2} , where $W_1(x) = \|w_1\|_{L_{p_1}(\rho(x),\infty)}$, $W_2(x) = \|w_2\|_{L_{p_2}(\rho(x),\infty)}$.

Proof It suffices to take into account that for 0

$$||f||_{LM_{pp,w,d}} = ||f||_{L_{p,W}},$$

where for all $x \in \mathbb{R}^n$ $W(x) = ||w||_{L_p(\rho(x), \infty)}$ [21].

It is interesting to note that condition (5.4) has the form that differs from the known, necessary and sufficient conditions discussed in detail, for example, in [30].

Example 5.8 Let the condition (3.8) or condition (3.9) be satisfied. Moreover, let $1 < \theta_1 \le \theta_2 < \infty$, and β be such that

$$\beta + \frac{1}{\theta_2} < 0, \quad \beta + \frac{|d|}{p_2} + \frac{1}{\theta_2} > 0, \quad \beta + \frac{|d|}{p_2} + \frac{1}{\theta_2} + \alpha - \frac{|d|}{p_1} < 0,$$

then it is easy to calculate that the functions $w_1(t) = t^{\beta + \frac{|d|}{p_2} + \frac{1}{\theta_2} + \alpha - \frac{|d|}{\theta_1} \frac{1}{\theta_1}}$, $w_2(t) = t^{\beta}$ satisfy the condition (a) of Theorem 5.1. Thus I_{α}^d is bounded from $LM_{p\theta,w,d}$ to $LM_{p_1\theta_1,w_1,d}$.

6. Concluding remarks

The assumption made at the beginning of this article $d_i \ge 1$, i = 1, ..., n, is not essential. One may assume that $d_i > 0$, i = 1, ..., n. However, under this assumption the function $\rho(x - y)$, $x, y \in \mathbb{R}^n$ is in general a quasi-distance, which does note cause any problem.

Also note that if $\nu > 0$ then

$$I_{\nu\alpha}^{\nu d} = I_{\alpha}^{d} \quad \forall \nu > 0.$$

$$||f||_{L_p(\mathcal{E}_d(0,r))} = ||f||_{L_p(\mathcal{E}_{vd}(0,r^{1/\nu}))}.$$

LEMMA 6.1 Let $1 < p_1 < p_2 < \infty$, $0 < \theta_1$, $\theta_2 \le \infty$, $w_1 \in \Omega_{\theta_1}$ and $w_2 \in \Omega_{\theta_2}$. Then for v > 0

$$\|I_{\alpha}^{d}f\|_{LM_{p_{1}\theta_{1},w_{1},d}\to LM_{p_{2}\theta_{2},w_{2},d}}=\|I_{v\alpha}^{vd}f\|_{LM_{p_{1}\theta_{1},w_{1}(\rho^{v})\rho^{\frac{v-1}{\theta_{1}}},vd}\to LM_{p_{2}\theta_{2},w_{2}(\rho^{v})\rho^{\frac{v-1}{\theta_{2}}},vd}}.$$

Proof

$$\begin{split} \|I_{\alpha}^{d}f\|_{LM_{p_{1}\theta_{1},w_{1},d}} + LM_{p_{2}\theta_{2},w_{2},d} &= \sup_{f \approx 0, f \in LM_{p_{1}\theta_{1},w_{1},d}} \frac{\|I_{\alpha}^{d}f\|_{LM_{p_{2}\theta_{2},w_{2},d}}}{\|f\|_{LM_{p_{1}\theta_{1},w_{1},d}}} \\ &= \sup_{f \approx 0, f \in LM_{p_{1}\theta_{1},w_{1},d}} \frac{\|w_{2}(r)\|I_{\alpha}^{d}f\|_{L_{p}(\mathcal{E}_{d}(0,r))}\|_{L_{\theta_{2}}(0,\infty)}}{w_{1}(r)\|f\|_{L_{p}(\mathcal{E}_{d}(0,r))}\|_{L_{\theta_{1}}(0,\infty)}} \\ &= \sup_{f \approx 0, f \in LM_{p_{1}\theta_{1},w_{1},d}} \frac{\|w_{2}(r)\|I_{v\alpha}^{d}f\|_{L_{p}(\mathcal{E}_{wd}(0,r^{1/\nu}))}\|_{L_{\theta_{2}}(0,\infty)}}{w_{1}(r)\|f\|_{L_{p}(\mathcal{E}_{vd}(0,r^{1/\nu}))}\|_{L_{\theta_{1}}(0,\infty)}} \\ &= v^{1/\theta_{2}-1/\theta_{1}} \sup_{f \approx 0, f \in LM_{p_{1}\theta_{1},w_{1},d}} \frac{\|w_{2}(\rho^{\nu})\rho^{\frac{\nu-1}{\theta_{2}}}\|I_{v\alpha}^{\nu}f\|_{L_{p}(\mathcal{E}_{vd}(0,\rho))}\|_{L_{\theta_{2}}(0,\infty)}}{w_{1}(\rho^{\nu})\rho^{\frac{\nu-1}{\theta_{1}}}\|f\|_{L_{p}(\mathcal{E}_{vd}(0,\rho))}\|_{L_{\theta_{1}}(0,\infty)}} \\ &= \|I_{v\alpha}^{\nu}f\|_{LM} \xrightarrow[p_{1}\theta_{1},w_{1}(\rho^{\nu})\rho^{\frac{\nu-1}{\theta_{1}}},w_{1},d} \xrightarrow{p_{2}\theta_{2},w_{2}(\rho^{\nu})\rho^{\frac{\nu-1}{\theta_{2}}}} \|f\|_{L_{p}(\mathcal{E}_{vd}(0,\rho))}\|_{L_{\theta_{1}}(0,\infty)}} \blacksquare \end{split}$$

Acknowledgements

The research of Akbulut and Guliyev were partially supported by the grant of Ahi Evran University Science Research Project (Kirsehir, Turkey), FBA-10-05 and by the Scientific and

Technological Research Council of Turkey (TUBITAK Project No: 110T695). The research of Guliyev was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1.

Notes

- 1. We apply the following simple statement. If Ω is a measurable set in \mathbb{R}^n , M > 0 and for almost all $y \in \Omega$ $g(y) \ge M$, then for any $0 <math>||g||_{WL_p(\Omega)} \ge M |\Omega|^{\frac{1}{p}}$.
- 2. See endnote 1.

References

- [1] O.V. Besov, V.P. Il'in, and P.I. Lizorkin, *The L_p-estimates of a certain class of non-isotropically singular integrals*, Dokl. Akad. Nauk SSSR 169 (1966), pp. 1250–1253 (in Russian).
- [2] E.B. Fabes and N. Rivère, Singular integrals with mixed homogeneity, Stud. Math. 27 (1966), pp. 19–38.
- [3] M. Bramanti and M.C. Cerutti, *Commutators of singular integrals on homogeneous spaces*, Boll. Un. Mat. Ital. B 10(7) (1996), pp. 843–883.
- [4] E.M. Stein, Singular Integrals and Differentiability of Functions, Princeton University Press, Princeton, NJ, 1970.
- [5] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
- [6] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Am. Math. Soc. 43 (1938), pp. 126–166.
- [7] S. Spanne, Sur l'interpolation entre les espaces $\mathcal{L}_k^{p,\Phi}$, Ann. Schola Norm. Sup. Pisa 20 (1966), pp. 625–648.
- [8] D.R. Adams, A note on Riesz potentials, Duke Math. 42 (1975), pp. 765–778.
- [9] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. 7 (1987), pp. 273–279.
- [10] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in \mathbb{R}^n , DSc dissertation, Mat. Inst. Steklova, Moscow, 1994, pp. 1–329 (in Russian).
- [11] V.S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups, Some Applications, Elm, Baku, 1999, pp. 1–332 (in Russian).
- [12] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. (2009), p. 20, Art. ID 503948.
- [13] D. Fan, S. Lu, and D. Yang, *Boundedness operators in Morrey spaces on homogeneous spaces and its applications*, Acta Math. Sin. (Engl. Ser.) 14 (1998), pp. 625–634.
- [14] V.S. Guliyev and R.Ch. Mustafayev, *Integral operators of potential type in spaces of homogeneous type*, Dokl. Ross. Akad. Nauk 354(6) (1997), pp. 730–732 (in Russian).
- [15] V.S. Guliyev and R.Ch. Mustafayev, Fractional integrals in spaces of functions defined on spaces of homogeneous type, Anal. Math. 24(3) (1998), pp. 181–200 (in Russian).
- [16] A. Akbulut, I. Ekincioglu, A. Serbetci, and T.V. Tararykova, *Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces*, (submitted).
- [17] E.V. Guliyev, Sh.A. Muradova, and A. Eroglu, Necessary and sufficient conditions for boundedness of the anisotropic maximal operator in the local anisotropic Morrey-type spaces, Proc. A. Razmadze Math. Inst. 153 (2010), pp. 1–24.

- [18] V. Burenkov, A. Gogatishvili, V.S. Guliyev, and R. Mustafayev, *Boundedness of the fractional maximal operator in local Morrey-type spaces*, Complex Var. Elliptic Eqns. 55(8–10) (2010), pp. 739–758.
- [19] V. Burenkov, A. Gogatishvili, V.S. Guliyev, and R. Mustafayev, *Boundedness of the fractional maximal operator in local Morrey-type spaces*, Potential Anal. 35 (2011), pp. 1–21.
- [20] V.I. Burenkov and H.V. Guliyev, *Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces*, Dokl. Math. 68(1) (2003), pp. 107–110; Transl. Dokl. Ross. Akad. Nauk. Matematika, 391(5) (2003), pp. 591–594.
- [21] V.I. Burenkov and H.V. Guliyev, *Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces*, Stud. Math. 163(2) (2004), pp. 157–176.
- [22] V.I. Burenkov, H.V. Guliyev, and V.S. Guliyev, Necessary and sufficient conditions for the boundedness of the fractional maximal operator in the local Morrey-type spaces, Dokl. Math. 74(1) (2006), pp. 540–544; Trans. Dokl. Ross. Akad. Nauk. Mat. 409(4) (2006), pp. 443–447.
- [23] V.I. Burenkov, H.V. Guliyev, and V.S. Guliyev, *Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces*, J. Comput. Appl. Math. 208(1) (2007), pp. 280–301.
- [24] V.I. Burenkov, H.V. Guliyev, and V.S. Guliyev, Necessary and sufficient conditions for the boundedness of the Riesz operator in the local Morrey-type spaces, Dokl. Math. 75(1) (2007), pp. 103–107; Trans. Dokl. Ross. Akad. Nauk. Mat. 412(5) (2007), pp. 585–589.
- [25] V.I. Burenkov and V.S. Guliyev, Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces, Potential Anal. 30(3) (2009), pp. 211–249.
- [26] V.I. Burenkov, V.S. Guliyev, A. Serbetci, and T.V. Tararykova, *Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces*, Eurasian Math. J. 1(1) (2010), pp. 32–53.
- [27] V.I. Burenkov, V.S. Guliyev, T.V. Tararykova, and A. Serbetci, *Necessary and sufficient conditions for the boundedness of genuine singular integral operators in the local Morrey-type spaces*, Dokl. Math. 78(2) (2008), pp. 651–654; Trans. Dokl. Ross. Akad. Nauk. Mat. 422(1) (2008), pp. 11–14.
- [28] M. Carro, L. Pick, J. Soria, and V.D. Stepanov, *On embeddings between classical Lorentz spaces*, Math. Ineq. Appl. 4(3) (2001), pp. 397–428.
- [29] M. Carro, A. Gogatishvili, J. Martin, and L. Pick, Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Oper. Theory 59(2) (2008), pp. 309–332.
- [30] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monogr aphs and Surveys in Pure Applied Mathematics, Vol. 92, Longman, Harlow, 1998.