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Boundedness of the parametric Marcinkiewicz
integral operator and its commutators on

generalized Morrey spaces

Seymur S. Aliev and Vagif S. Guliev

Abstract. In this paper we study the boundedness of the parametric Marcinkiewicz oper-
ator ��� on generalized Morrey spaces Mp;' . We find the sufficient conditions on the pair
.'1; '2/ which ensure the boundedness of the operators ��� from one generalized Mor-
rey space Mp;'1 to another Mp;'2 , 1 < p < 1, and from the space M1;'1 to the weak
space WM1;'2 . As an application of the above result, the boundedness of the commutator
of Marcinkiewicz operators Œa; ���� on generalized Morrey spaces is also obtained. In the
case a 2 BMO.Rn/, we find the sufficient conditions on the pair .'1; '2/which ensure the
boundedness of the operators Œa; ���� from one generalized Morrey spaceMp;'1 to another
Mp;'2 , 1 < p <1, and from the spaceM1;'1 to the weak spaceWM1;'2 . In all the cases
the conditions for boundedness are given in terms of Zygmund-type integral inequalities
on .'1; '2/ which do not require any assumption on the monotonicity of '1; '2.

Keywords. Parametric Marcinkiewicz operator, generalized Morrey space, commutator,
BMO.

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.

1 Introduction

For x 2 Rn and r > 0, let B.x; r/ denote the open ball centered at x of radius
r , CB.x; r/ denote its complement and jB.x; r/j be the Lebesgue measure of the
ball B.x; r/. Let Sn�1 D ¹x 2 Rn W jxj D 1º be the unit sphere of Rn .n � 2/
equipped with the normalized Lebesgue measure d� D d�.x0/.

In [20], Stein defined the Marcinkiewicz integral for higher dimensions. Let �
satisfy the following conditions.
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196 S. S. Aliev and V. S. Guliev

(i) � is a homogeneous function of degree zero on Rn. That is,

�.tx/ D �.x/ (1.1)

for all t > 0 and x 2 Rn.

(ii) � has mean zero on Sn�1. That is,Z
Sn�1

�.x0/d�.x0/ D 0; (1.2)

where x0 D x=jxj for any x ¤ 0.

(iii) � 2 L1.Sn�1/.

The Marcinkiewicz integral operator �� of higher dimension is defined by

��.f /.x/ D

�Z 1
0

jF�;t .f /.x/j
2dt

t3

� 1
2

;

where

F�;t .f /.x/ D

Z
jx�yj�t

�.x � y/

jx � yjn�1
f .y/dy:

Remark 1.1. We easily see that the Marcinkiewicz integral operator of higher di-
mension �� can be regarded as a generalized version of the classical Marcin-
kiewicz integral in the one-dimensional case. Also, it is easy to see that ��� is a
special case of the Littlewood–Paley g-function if we take

g.x/ D �.x0/jxj�nC1�jxj�1.jxj/:

We say that � 2 Lip˛.S
n�1/, 0 < ˛ � 1, if there exists a constant C > 0 such

that j�.x0/ ��.y0/j � C jx0 � y0j˛ for all x0; y0 2 Sn�1.
In [20], Stein proved the following results.

Theorem 1.2 (E. M. Stein). (a) If � satisfies (1.1), � 2 L1.Sn�1/ and � is odd,
then �� is bounded on Lp.Rn/ for 1 < p <1.

(b) If � satisfies (1.1), (1.2) and � 2 Lip˛.S
n�1/, 0 < ˛ � 1, then �� is of

weak type .1; 1/. That is, there exists a constant C such that for any t > 0 and
f 2 L1.Rn/, ˇ̌®

x 2 Rn W ��.f /.x/ > t
¯ˇ̌
�
C

t

Z
Rn
jf .x/jdx:
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Boundedness of the parametric Marcinkiewicz integral operator 197

(c) If � satisfies (1.1), (1.2) and � 2 Lip˛.S
n�1/, 0 < ˛ � 1, then �� is of type

.p; p/ for 1 < p � 2. That is, there exists a constant Ap such that for any
f 2 Lp.Rn/,

k��.f /kLp � Apkf kLp :

The Lp boundedness of �� has been studied extensively. See [2, 15, 20, 21]
among others. A survey of the past studies can be found in [12]. Recently, the
following result has been obtained in [1]:

Theorem 1.3. If � 2 L.logL/1=2.Sn�1/ and satisfies (1.2), then �� is bounded
on Lp.Rn/ for 1 < p <1. The exponent 1=2 is the best possible one.

Let us turn to the parameter case. In 1960, Hörmander [15] considered the Lp
boundedness for a class of parametric Marcinkiewicz integral ��f .x/, which is
defined by

�
�
�.f /.x/ D

�Z 1
0

ˇ̌̌̌
1

t�

Z
jx�yj�t

�.x � y/

jx � yjn��
f .y/dy

ˇ̌̌̌2
dt

t

� 1
2

;

where 0 < � < n. It is easy to see that when � D 1, ��� is just �� introduced by
Stein in [20].

Theorem 1.4 (Hörmander). If � 2 Lip˛.S
n�1/, 0 < ˛ � 1, satisfies conditions

(1.1), (1.2), then ��� is bounded on Lp.Rn/ for 1 < p < 1. Moreover, there
exists a constant Ap such that for any f 2 Lp.Rn/ and 0 < � < n,

k�
�
�.f /kLp � Apkf kLp :

In the present work, we shall prove the boundedness of the Marcinkiewicz oper-
ator ��� from one generalized Morrey spaceMp;'1 to anotherMp;'2 , 1 < p <1,
and from the space M1;'1 to the weak space WM1;'2 . In the case a 2 BMO.Rn/,
we find the sufficient conditions on the pair .'1; '2/ which ensure the bounded-
ness of the operators Œa; ���� from one generalized Morrey spaceMp;'1 to another
Mp;'2 , 1 < p <1 and from the space M1;'1 to the weak space WM1;'2 .

By A . B we mean that A � CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A � B and say that A
and B are equivalent.

2 Generalized Morrey spaces

The classical Morrey spaces Mp;� were originally introduced by Morrey in [17]
to study the local behavior of solutions to second order elliptic partial differential
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198 S. S. Aliev and V. S. Guliev

equations. For the properties and applications of classical Morrey spaces, we refer
the readers to [14, 16].

We denote byMp;��Mp;�.Rn/ the Morrey space of all functions f 2Lloc
p .R

n/

with finite quasinorm

kf kMp;� D sup
x2Rn; r>0

r�
�
p kf kLp.B.x;r//;

where 1 � p <1 and 0 � � � n.
Note that Mp;0 D Lp.Rn/ and Mp;n D L1.Rn/. If � < 0 or � > n, then

Mp;� D ‚, where ‚ is the set of all functions equivalent to 0 on Rn.
We also denote by WMp;� � WMp;�.Rn/ the weak Morrey space of all func-

tions f 2 WLloc
p .R

n/ for which (see, for example, [18, 19])

kf kWMp;� D sup
x2Rn; r>0

r�
�
p kf kWLp.B.x;r// <1;

where WLp.B.x; r// denotes the weak Lp-space of measurable functions f for
which

kf kWLp.B.x;r// � kf�B.x;r/kWLp.Rn/

D sup
t>0

t
ˇ̌®
y 2 B.x; r/ W jf .y/j > t

¯ˇ̌ 1
p

D sup
t>0

t
1
p .f�B.x;r//

�.t/ <1:

Here g� denotes the non-increasing rearrangement of the function g.

Definition 2.1. Let '.x; r/ be a positive measurable function on Rn � .0;1/ and
1 � p <1. We denote by Mp;' � Mp;'.Rn/ the generalized Morrey space, the
space of all functions f 2 Lloc

p .R
n/ with finite quasinorm

kf kMp;' D sup
x2Rn;r>0

'.x; r/�1jB.x; r/j�
1
p kf kLp.B.x;r//:

Also, we denote by WMp;' � WMp;'.Rn/ the weak generalized Morrey space
of all functions f 2 WLloc

p .R
n/ for which

kf kWMp;' D sup
x2Rn;r>0

'.x; r/�1jB.x; r/j�
1
p kf kWLp.B.x;r// <1:

According to this definition, we recover the spaces Mp;� and WMp;� under the

choice '.x; r/ D r
��n
p :

Mp;� DMp;'
ˇ̌
'.x;r/Dr

��n
p
; WMp;� D WMp;'

ˇ̌
'.x;r/Dr

��n
p
:
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Boundedness of the parametric Marcinkiewicz integral operator 199

3 Marcinkiewicz operator in the spaces Mp;'

In this section we are going to use the following statement on the boundedness of
the Hardy operator

.Hg/.t/ WD
1

t

Z t

0

g.r/dr; 0 < t <1:

Theorem 3.1 ([5]). The inequality

ess sup
t>0

w.t/Hg.t/ � c ess sup
t>0

v.t/g.t/

holds for all non-negative and non-increasing g on .0;1/ if and only if

A WD sup
t>0

w.t/

t

Z t

0

dr

ess sup0<s<r v.s/
<1;

and c � A.

Lemma 3.2. Let 1 � p < 1 and let � 2 Lip˛.S
n�1/, 0 < ˛ � 1, satisfy

conditions (1.1), (1.2). Then, for 1 < p <1 the inequality

k�
�
�.f /kLp.B.x0;r// . r

n
p

Z 1
2r

t�
n
p
�1
kf kLp.B.x0;t//dt

holds for any ball B.x0; r/, 0 < � < n, and for all f 2 Lloc
p .R

n/.
Moreover, for p D 1 the inequality

k�
�
�.f /kWL1.B.x0;r// . rn

Z 1
2r

t�n�1kf kL1.B.x0;t//dt (3.1)

holds for any ball B.x0; r/, 0 < � < n, and for all f 2 Lloc
1 .R

n/.

Proof. Let p 2 .1;1/. For arbitrary x0 2 Rn, set B D B.x0; r/ for the ball
centered at x0 and of radius r . We represent f as

f D f1 C f2; f1.y/ D f .y/�2B.y/; f2.y/ D f .y/�C.2B/.y/; r > 0;

(3.2)
and have

k�
�
�.f /kLp.B/ � k�

�
�.f1/kLp.B/ C k�

�
�.f2/kLp.B/:

Since f1 2 Lp.Rn/, �
�
�.f1/ 2 Lp.R

n/ and from the boundedness of T in
Lp.Rn/ we have

k�
�
�.f1/kLp.B/ � k�

�
�.f1/kLp.Rn/ . kf1kLp.Rn/ D kf kLp.2B/:
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200 S. S. Aliev and V. S. Guliev

It is clear that x 2 B , y 2 C.2B/ implies 1
2
jx0 � yj � jx � yj �

3
2
jx0 � yj.

Then by the Minkowski inequality and conditions on �, we get

�
�
�.f2/.x/ �

Z
Rn

j�.x � y/j

jx � yjn��
jf2.y/j

�Z 1
jx�yj

dt

t1C2�

� 1
2

dy

.
Z

C.2B/

jf .y/j

jx � yjn
dy

.
Z

C.2B/

jf .y/j

jx0 � yjn
dy: (3.3)

By Fubini’s theorem we haveZ
C.2B/

jf .y/j

jx0 � yjn
dy �

Z
C.2B/

jf .y/j

Z 1
jx0�yj

dt

tnC1
dy

D

Z 1
2r

Z
2r�jx0�yj<t

jf .y/jdy
dt

tnC1

.
Z 1
2r

Z
B.x0;t/

jf .y/jdy
dt

tnC1
:

Applying Hölder’s inequality, we getZ
C.2B/

jf .y/j

jx0 � yjn
dy .

Z 1
2r

kf kLp.B.x0;t//
dt

t
n
p
C1
: (3.4)

Moreover, for all p 2 Œ1;1/ the inequality

k�
�
�.f2/kLp.B/ . r

n
p

Z 1
2r

kf kLp.B.x0;t//
dt

t
n
p
C1
: (3.5)

is valid. Thus

k�
�
�.f /kLp.B/ . kf kLp.2B/ C r

n
p

Z 1
2r

kf kLp.B.x0;t//
dt

t
n
p
C1
:

On the other hand,

kf kLp.2B/ � r
n
p kf kLp.2B/

Z 1
2r

dt

t
n
p
C1

. r
n
p

Z 1
2r

kf kLp.B.x0;t//
dt

t
n
p
C1
: (3.6)
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Boundedness of the parametric Marcinkiewicz integral operator 201

Thus

k�
�
�.f /kLp.B/ . r

n
p

Z 1
2r

kf kLp.B.x0;t//
dt

t
n
p
C1
:

Let p D 1. From the weak .1; 1/ boundedness of ��� it follows that

k�
�
�.f1/kWL1.B/ � k�

�
�.f1/kWL1.Rn/ . kf1kL1.Rn/

D kf kL1.2B/ . rn
Z 1
2r

Z
B.x0;t/

jf .y/jdy
dt

tnC1
: (3.7)

Then by (3.5) and (3.7) we get the inequality (3.1).

Theorem 3.3. Let 0 < � < n, 1 � p <1 and .'1; '2/ satisfy the conditionZ 1
r

ess inft<s<1 '1.x; s/s
n
p

t
n
p
C1

dt � C'2.x; r/; (3.8)

where C does not depend on x and r . Let � 2 Lip˛.S
n�1/, 0 < ˛ � 1, satisfy

conditions (1.1), (1.2). Then the operator ��� is bounded fromMp;'1 toMp;'2 for
p > 1 and from M1;'1 to WM1;'2 . Also for p > 1

k�
�
�.f /kMp;'2 . kf kMp;'1 ;

and for p D 1
k�

�
�.f /kWM1;'2 . kf kM1;'1 :

Proof. By Lemma 3.2 and Theorem 3.1 we have for p > 1

k�
�
�.f /kMp;'2 . sup

x2Rn; r>0
'2.x; r/

�1

Z 1
r

kf kLp.B.x;t//
dt

t
n
p
C1

� sup
x2Rn; r>0

'2.x; r/
�1

Z r
� np

0

kf k
Lp.B.x;t

�
p
n //
dt

D sup
x2Rn; r>0

'2.x; r
�
p
n /�1

Z r

0

kf k
Lp.B.x;t

�
p
n //
dt

. sup
x2Rn;r>0

'1.x; r
�
p
n /�1rkf k

Lp.B.x;r
�
p
n //
D kf kMp;'1

and for p D 1

k�
�
�.f /kWM1;'2 . sup

x2Rn; r>0
'2.x; r/

�1

Z 1
r

kf kL1.B.x;t//
dt

tnC1

� sup
x2Rn; r>0

'2.x; r/
�1

Z r�n

0

kf kL1.B.x;t�n//dt
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202 S. S. Aliev and V. S. Guliev

D sup
x2Rn; r>0

'2.x; r
� 1
n /�1

Z r

0

kf k
L1.B.x;t

� 1n //
dt

. sup
x2Rn;r>0

'1.x; r
� 1
n /�1rkf k

L1.B.x;r
� 1n //

D kf kM1;'1 :

4 Commutators of the parametric Marcinkiewicz operator
in the spaces Mp;'

It is well known that the commutator is an important integral operator and plays a
key role in harmonic analysis. In 1965, Calderón [3, 4] studied a kind of commu-
tators appearing in Cauchy integral problems of Lip-line. Let K be a Calderón–
Zygmund singular integral operator and a 2 BMO.Rn/. A well-known result of
Coifman, Rochberg and Weiss [10] states that the commutator operator Œa;K�f D
K.af / � aKf is bounded on Lp.Rn/ for 1 < p < 1. The commutator of
Calderón–Zygmund operators plays an important role in studying the regularity of
solutions of elliptic partial differential equations of second order (see, for example,
[6–9, 11, 13]).

First we introduce the definition of the space of BMO.Rn/.

Definition 4.1. Suppose that f 2 Lloc
1 .R

n/, let

kf k� D sup
x2Rn;r>0

1

jB.x; r/j

Z
B.x;r/

jf .y/ � fB.x;r/jdy <1;

where

fB.x;r/ D
1

jB.x; r/j

Z
B.x;r/

f .y/dy:

Define
BMO.Rn/ D

®
f 2 Lloc

1 .R
n/ W kf k� <1

¯
:

Modulo constants, the space BMO.Rn/ is a Banach space with respect to the
norm k�k�.

Remark 4.2. (1) John–Nirenberg inequality: There are constants C1, C2 > 0,
such that for all f 2 BMO.Rn/ and ˇ > 0ˇ̌®

x 2 B W jf .x/ � fB j > ˇ
¯ˇ̌
� C1jBje

�C2ˇ=kf k� ; 8B � Rn:
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Boundedness of the parametric Marcinkiewicz integral operator 203

(2) The John–Nirenberg inequality implies that

kf k� � sup
x2Rn;r>0

�
1

jB.x; r/j

Z
B.x;r/

jf .y/ � fB.x;r/j
pdy

� 1
p

(4.1)

for 1 < p <1.

(3) Let f 2 BMO.Rn/. Then there is a constant C > 0 such that

jfB.x;r/ � fB.x;t/j � Ckf k� ln
t

r
for 0 < 2r < t; (4.2)

where C is independent of f , x, r and t .

For b 2 Lloc
1 .R

n/, the commutator Œb; ���� formed by b and the parametric
Marcinkiewicz integral ���, 0 < � < n, is defined by

Œb; �
�
��f .x/ D

�Z 1
0

ˇ̌̌̌
1

t�

Z
jx�yj�t

�.x � y/

jx � yjn��
.b.x/ � b.y//f .y/dy

ˇ̌̌̌2
dt

t

� 1
2

:

Lemma 4.3. Let 1 � p <1, a 2 BMO.Rn/, and let � 2 Lip˛.S
n�1/, 0 < ˛ �

1, satisfy conditions (1.1), (1.2). Then, for 1 < p <1 the inequality

Œa; ����f Lp.B.x0;r// . kak�r
n
p

Z 1
2r

�
1C ln

t

r

�
t�

n
p
�1
kf kLp.B.x0;t//dt

holds for any ball B.x0; r/, 0 < � < n, and for all f 2 Lloc
p .R

n/.
Moreover, for p D 1 the inequality

Œa; ����f WL1.B.x0;r// . kak�rn
Z 1
2r

�
1C ln

t

r

�
t�n�1kf kL1.B.x0;t//dt

(4.3)
holds for any ball B.x0; r/, 0 < � < n, and for all f 2 Lloc

1 .R
n/.

Proof. For arbitrary x0 2 Rn, set B D B.x0; r/ for the ball centered at x0 and of
radius r . Write f D f1 C f2 with f1 D f�2B and f2 D f�C.2B/. HenceŒa; ����f Lp.B/ � Œa; ����f1Lp.B/ C Œa; ����f2Lp.B/:
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204 S. S. Aliev and V. S. Guliev

From the boundedness of Œa; ���� in Lp.Rn/ it follows thatŒa; ����f1Lp.B/ � Œa; ����f1Lp.Rn/
. kak�kf1kLp.Rn/ D kak�kf kLp.2B/:

For x 2 B we haveˇ̌
Œa; �

�
��f2.x/

ˇ̌
.
Z

Rn

ja.y/ � a.x/j

jx � yjn
jf .y/jdy

�

Z
C.2B/

ja.y/ � a.x/j

jx0 � yjn
jf .y/jdy:

Then

Œa; ����f2Lp.B/ .
�Z
B

�Z
C.2B/

ja.y/ � a.x/j

jx0 � yjn
jf .y/jdy

�p
dx

� 1
p

.
�Z
B

�Z
C.2B/

ja.y/ � aB j

jx0 � yjn
jf .y/jdy

�p
dx

� 1
p

C

�Z
B

�Z
C.2B/

ja.x/ � aB j

jx0 � yjn
jf .y/jdy

�p
dx

� 1
p

D I1 C I2:

Let us estimate I1.

I1 � r
n
p

Z
C.2B/

ja.y/ � aB j

jx0 � yjn
jf .y/jdy

� r
n
p

Z
C.2B/

ja.y/ � aB j jf .y/j

Z 1
jx0�yj

dt

tnC1
dy

� r
n
p

Z 1
2r

Z
2r�jx0�yj�t

ja.y/ � aB j jf .y/jdy
dt

tnC1

. r
n
p

Z 1
2r

Z
B.x0;t/

ja.y/ � aB j jf .y/jdy
dt

tnC1
:

Applying Hölder’s inequality, by (4.1), (4.2) we get

I1 . r
n
p

Z 1
2r

Z
B.x0;t/

ja.y/ � aB.x0;t/j jf .y/jdy
dt

tnC1

C r
n
p

Z 1
2r

jaB.x0;r/ � aB.x0;t/j

Z
B.x0;t/

jf .y/jdy
dt

tnC1
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Boundedness of the parametric Marcinkiewicz integral operator 205

. r
n
p

Z 1
2r

�Z
B.x0;t/

ja.y/ � aB.x0;t/j
p0dy

� 1
p0

kf kLp.B.x0;t//
dt

tnC1

C r
n
p

Z 1
2r

jaB.x0;r/ � aB.x0;t/j

Z
B.x0;t/

kf kLp.B.x0;t//
dt

t
n
p
C1

. kak�r
n
p

Z 1
2r

�
1C ln

t

r

�
kf kLp.B.x0;t//

dt

t
n
p
C1
:

In order to estimate I2 note that

I2 �

�Z
B

ja.x/ � aB j
pdx

� 1
p
Z

C.2B/

jf .y/j

jx0 � yjn
dy:

By (4.1), we get

I2 . kak�r
n
p

Z
C.2B/

jf .y/j

jx0 � yjn
dy:

Thus, by (3.4)

I2 . kak�r
n
p

Z 1
2r

kf kLp.B.x0;t//
dt

t
n
p
C1
:

Summing I1 and I2, for all p 2 Œ1;1/ we getŒa; ����f2Lp.B/ . kak�r
n
p

Z 1
2r

�
1C ln

t

r

�
kf kLp.B.x0;t//

dt

t
n
p
C1
: (4.4)

Finally,Œa; ����f Lp.B/
. kak�kf kLp.2B/ C kak�r

n
p

Z 1
2r

�
1C ln

t

r

�
kf kLp.B.x0;t//

dt

t
n
p
C1
;

and the statement of Lemma 4.3 follows by (3.6).
Let p D 1. From the weak .1; 1/ boundedness of Œa; ���� and (3.6) it follows

that Œa; ����f1WL1.B/ � Œa; ����f1WL1.Rn/
. kak�kf1kL1.Rn/ D kak�kf kL1.2B/

. kak�rn
Z 1
2r

kf kL1.B.x0;t//
dt

tnC1
: (4.5)

Then from (4.4) and (4.5) we get the inequality (4.3).
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The following theorem is true.

Theorem 4.4. Let 1 � p <1, 0 < � < n, a 2 BMO.Rn/ and let .'1; '2/ satisfy
the conditionZ 1

r

�
1C ln

t

r

�ess inft<s<1 '1.x; s/s
n
p

t
n
p
C1

dt � C'2.x; r/; (4.6)

where C does not depend on x and r . Let � 2 Lip˛.S
n�1/, 0 < ˛ � 1, satisfy

conditions (1.1), (1.2). Then the operator Œa; ���� is bounded fromMp;'1 toMp;'2
for p > 1 and bounded from M1;'1 to WM1;'2 .

Moreover, for p > 1Œa; ����f Mp;'2 . kak�kf kMp;'1 ;

and for p D 1, Œa; ����f WM1;'2 . kak�kf kM1;'1 :

Proof. The statement of Theorem 4.4 follows by Lemma 4.3 and Theorem 3.1 in
the same manner as in the proof of Theorem 3.3.

Corollary 4.5. Let 1 � p < 1, .'1; '2/ satisfy condition (4.6), a 2 BMO.Rn/
and let � 2 Lip˛.S

n�1/, 0 < ˛ � 1, satisfy conditions (1.1), (1.2). Then the
operator Œa; ��� is bounded from Mp;'1 to Mp;'2 for p > 1 and from M1;'1 to
WM1;'2 .
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