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Boundedness of the parametric Marcinkiewicz
integral operator and its commutators on
generalized Morrey spaces

Seymur S. Aliev and Vagif S. Guliev

Abstract. In this paper we study the boundedness of the parametric Marcinkiewicz oper-
ator /Lg on generalized Morrey spaces M, ,. We find the sufficient conditions on the pair
(¢1, ¢2) which ensure the boundedness of the operators /L‘;z from one generalized Mor-
rey space M, ,, to another M, ,,, 1 < p < oo, and from the space M, ,, to the weak
space WM ,,. As an application of the above result, the boundedness of the commutator
of Marcinkiewicz operators [a, pfg’z] on generalized Morrey spaces is also obtained. In the
case a € BMO(R"), we find the sufficient conditions on the pair (¢1, ¢2) which ensure the
boundedness of the operators [a, ug] from one generalized Morrey space M), ,, to another
M,y 4,, 1 < p < 00, and from the space M, to the weak space WM 4,. In all the cases
the conditions for boundedness are given in terms of Zygmund-type integral inequalities
on (¢1, ¢2) which do not require any assumption on the monotonicity of 1, ¢,.

Keywords. Parametric Marcinkiewicz operator, generalized Morrey space, commutator,
BMO.

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.

1 Introduction

For x € R” and r > 0, let B(x,r) denote the open ball centered at x of radius
r, °B(x,r) denote its complement and | B(x, r)| be the Lebesgue measure of the
ball B(x,r). Let S"~1 = {x € R" : |x| = 1} be the unit sphere of R” (n > 2)
equipped with the normalized Lebesgue measure do = do (x’).

In [20], Stein defined the Marcinkiewicz integral for higher dimensions. Let €2
satisfy the following conditions.
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196 S.S. Aliev and V. S. Guliev

(i) 2 is a homogeneous function of degree zero on R”. That is,
Qtx) = Q(x) (1.1)

forallt > 0 and x € R”.

(i) © has mean zero on S”~!. That is,
/ Q(x")do(x") =0, (1.2)
Sn—1

where x’ = x/|x| for any x # 0.

(ili) Q € L(S"71).

The Marcinkiewicz integral operator g of higher dimension is defined by

o I
m(f)<x>=( /0 |FQ,,(f)(x)|2t—3’) |

where

Faa(/)(x) = / 2Oy,

|x—y|<t |x - J’|n_1

Remark 1.1. We easily see that the Marcinkiewicz integral operator of higher di-
mension pg can be regarded as a generalized version of the classical Marcin-
kiewicz integral in the one-dimensional case. Also, it is easy to see that :“/s)z isa
special case of the Littlewood—Paley g-function if we take

g(x) = Q) x [Ty <a (IxD.

We say that Q € Lip,, (S™ 1), 0 < « < 1, if there exists a constant C > 0 such
that |Q(x") — Q)| < C|x’ — y'|* forall X', y’ € "1
In [20], Stein proved the following results.

Theorem 1.2 (E. M. Stein). (a) If Q2 satisfies (1.1), Q@ € L1(S"™ ') and Q is odd,
then g is bounded on L,(R™) for 1 < p < ooc.

(b) If Q2 satisfies (1.1), (1.2) and 2 € Lipa(S”_l), 0 < a <1, then ug is of
weak type (1, 1). That is, there exists a constant C such that for any t > 0 and
S € Li(R™),

C
|{x eR": ua(f)x) > t}| < 7/Rn|f(x)|dx'
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Boundedness of the parametric Marcinkiewicz integral operator 197

(¢) If Q satisfies (1.1), (1.2) and Q2 € Lipa(S"_l), 0 <a <1, then ugq is of type
(p. p) for 1 < p < 2. That is, there exists a constant Ap such that for any
J e Lp(R"),
I (N, < Apll flL,-

The L, boundedness of i1 has been studied extensively. See [2, 15,20, 21]
among others. A survey of the past studies can be found in [12]. Recently, the
following result has been obtained in [1]:

Theorem 1.3. If Q@ € L(log L)Y/2(S"~) and satisfies (1.2), then pq is bounded
on L,(R") for 1 < p < oo. The exponent 1/2 is the best possible one.

Let us turn to the parameter case. In 1960, Hormander [15] considered the L,

boundedness for a class of parametric Marcinkiewicz integral pg f(x), which is

defined by
00 2d 1
e = (| )

where 0 < p < n. Itis easy to see that when p = 1, ,u?z is just ;g introduced by
Stein in [20].

1 Qx —y)
[| @D gy

tP x—y|<t |x_y|n—p

Theorem 1.4 (Hormander). If Q € Lip,(S"™!), 0 < a < 1, satisfies conditions
(1.1), (1.2), then pL?Z is bounded on L,(R") for 1 < p < oo. Moreover, there
exists a constant Ap such that for any f € L,(R") and 0 < p < n,

It (DL, < Apll flL,-

In the present work, we shall prove the boundedness of the Marcinkiewicz oper-
ator M?z from one generalized Morrey space M, o, to another Mp, 4,, 1 < p < o0,
and from the space M 4, to the weak space WM 4,. In the case a € BMO(R"),
we find the sufficient conditions on the pair (¢1, ¢2) which ensure the bounded-
ness of the operators [a, ;L:-’Z] from one generalized Morrey space M, o, to another
My ., 1 < p < oo and from the space M1 ,, to the weak space WM 4, .

By A < B we mean that A < CB with some positive constant C independent
of appropriate quantities. If A < B and B < A, we write A ~ B and say that A
and B are equivalent.

2 Generalized Morrey spaces

The classical Morrey spaces M), ; were originally introduced by Morrey in [17]
to study the local behavior of solutions to second order elliptic partial differential
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198 S.S. Aliev and V. S. Guliev

equations. For the properties and applications of classical Morrey spaces, we refer
the readers to [14, 16].

We denote by M), ; = M), ; (R") the Morrey space of all functions f'€ L}fc (R™)
with finite quasinorm

A
If s, = sup ro 2l fllL,Bex,r)
xeR”? r>0

where ] < p <ocoand0 <A <n.

Note that Mp o = Lp(R") and M, = Loo(R™). If A < 0 or A > n, then
M A = ©®, where O is the set of all functions equivalent to 0 on R”.

We also denote by WM, ; = WM, ; (R") the weak Morrey space of all func-
tions f € WL}?" (R™) for which (see, for example, [18,19])

_A
I fllwm,, =  sup  r 2| fllwL,B,r) <00
x€R”, r>0
where WL, (B(x,r)) denotes the weak L,-space of measurable functions f for
which

IS lwr, B = 1/ xBe.nlwL,®m)

= ful())t|{y € B(x,r): | f(y)| > t}|%

1
=sup’” (fXB(x,r))*(t) < 00.
t>0
Here g* denotes the non-increasing rearrangement of the function g.

Definition 2.1. Let ¢(x, r) be a positive measurable function on R” x (0, co) and
1 < p < 0co. We denote by M, , = M, ,(R") the generalized Morrey space, the
space of all functions f € L?C (R™) with finite quasinorm

- 1
1f M, = sup @O, )T B, N)TZ 1 fllL, By

xeR”,r>0

Also, we denote by WM, , = WM, ,(R") the weak generalized Morrey space
of all functions /€ WL *(R") for which

1

I flwm,, = sup @, r) B H)"7 | fllwe, B < 0o

xeR” r>0

According to this definition, we recover the spaces M), 3 and WM, , under the
A—n
choice p(x,r) =r » :

My = My Aen WM, , = WM,

A—n A—n .
p(x,r)=r P p(x,r)=r P
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Boundedness of the parametric Marcinkiewicz integral operator 199

3 Marcinkiewicz operator in the spaces M, ,
In this section we are going to use the following statement on the boundedness of

the Hardy operator

(Hg)(t) := ;/Otg(r)dr, 0<1?<o0.

Theorem 3.1 ([5]). The inequality

esssupw(t)Hg(t) < cesssupv(t)g(t)
t>0 t>0

holds for all non-negative and non-increasing g on (0, 00) if and only if

w(t) [! dr
A = sup © < 00,
t>0 1 Jo esssupgos, v(s)

and ¢ ~ A.

Lemma 3.2.Let | < p < oo and let @ € Lip,(S"™!), 0 < a < 1, satisfy
conditions (1.1), (1.2). Then, for 1 < p < oo the inequality

o0
g (L, (Bexory) S r”/ 172 f L, (Beroy dt

2r
holds for any ball B(xo,r), 0 < p <n, and forall f € Lg’C(R").
Moreover, for p = 1 the inequality

o0

I (DIWL, (BGor) S r"/ 7N F L, (B At (3.1)

2r

holds for any ball B(xo,r), 0 < p < n, and forall f € LIIOC(R”).

Proof. Let p € (1,00). For arbitrary xo € R”, set B = B(xg, r) for the ball
centered at x¢ and of radius . We represent f as

f=hn+/fa, AO)=FDx2s(y), L20)=fDxee(y), r>0,
(3.2)
and have

g (NI, By < 1D, ) + g (DL, 8)-

Since f1 € Lp(R"), /Llszz(fl) € L,(R") and from the boundedness of 7" in
L,(R™) we have

g (O, @) < kgD L,y S Il =1 fllL,@8)-
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200 S.S. Aliev and V. S. Guliev

It is clear that x € B, y € ©(2B) implies 3|xo — y| < |x — y| < 2|xo — yI.
Then by the Minkowski inequality and conditions on €2, we get

Qx — ©  di \?
1o (f2)(x) szanfz(y)l(/ _yltthzp) dy

|x - yln—p |x

S oL,

@B) |x =y

[ O, o

2B) |xo — y|"

By Fubini’s theorem we have

Lf(») / © dt
———dy ~ /(I ——=dy
l(ZB) |xo — y|" ¢(2B) xo—y| 11!
o dt
— dy ——
f2 , /2 0l

</°°/ L ldy-2L
~ 2r JB(xo,t) Y ytn_H'

Applying Holder’s inequality, we get
SO / * dt
————dy < - 3.4
ﬁ(zB) o — 0~ L ”f”Lp(B(xO’t))ﬁ“ G4

Moreover, for all p € [1, co) the inequality

o0

n dt
I epcer <% [ 1Sy atsnm 6:3)

is valid. Thus

o0

n dt
g (L, S W fllL, ) +17 /Zr ||f||Lp(B(x0,t))F-

On the other hand,
n & t
Ifl,em ~ 1 L,em [ e
r p
N di 3.6
s | ||f||Lp(B(x0,t))t%ﬁ- (3.6)
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Boundedness of the parametric Marcinkiewicz integral operator 201

Thus

o0

Iy = 75 [ 1 e aam o
2r tp
Let p = 1. From the weak (1, 1) boundedness of ug it follows that
Il D lwe, ey < lwgUDlwe,®ny < 1AL, ®ey
“Wleen s [ [ ol @D
0 Jar JBow 1
Then by (3.5) and (3.7) we get the inequality (3.1). |

Theorem 3.3. Let 0 < p < n, 1 < p < 0o and (p1, @2) satisfy the condition

n
/oo essinfy<g<co 01(x,5)s?
-

] dt < Cga(x,r), (3.8)
4

where C does not depend on x and r. Let Q € Lip,(S"™1), 0 < a < 1, satisfy
conditions (1.1), (1.2). Then the operator :“?2 is bounded from My, 4, to Mp o, for
p > 1 and from M 4, to WMy 4,. Also for p > 1

11 () bty ey S 1 bty

and for p =1
G Wty oy S S b1y, -

Proof. By Lemma 3.2 and Theorem 3.1 we have for p > 1

[ dt
e (O, ,, S sup  @a(x,7) 1/ IIfIIL,;(B<x,z))tﬂﬁ
r P

xeR” r>0

,
~ -1
~ o e [y

x€R”, r>0

ASTS]

:
_ )
= sw gl [l gy

xeR”, r>0

P
< -2, 1 _
- xeﬂzl';lg>0 (P](X,r n) r”f“Lp(B(x,r—%)) ”f”Mp,w1

and for p =1

1 [ dt
e, < sp o™ [ It
r

xeR”, r>0
—n

,
A  sup (pz(X,r)_l/O I ALy (B, eyt

xeR”?, r>0
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202 S.S. Aliev and V. S. Guliev

_ -1 "
= s a0

xeR”?, r>0

1
< su X, r n —1y
Nxe]R"Pr>O¢1( )L sty

=1/ Int1, - .

4 Commutators of the parametric Marcinkiewicz operator
in the spaces M, ,

It is well known that the commutator is an important integral operator and plays a
key role in harmonic analysis. In 1965, Calderdn [3, 4] studied a kind of commu-
tators appearing in Cauchy integral problems of Lip-line. Let K be a Calderén—
Zygmund singular integral operator and a € BMO(R"). A well-known result of
Coifman, Rochberg and Weiss [10] states that the commutator operator [a, K] f =
K(af) —aKf is bounded on L,(R") for 1 < p < oo. The commutator of
Calder6n—Zygmund operators plays an important role in studying the regularity of
solutions of elliptic partial differential equations of second order (see, for example,
[6-9,11,13]).
First we introduce the definition of the space of BMO(R").

Definition 4.1. Suppose that f € LI*°(R"), let

1
[fll«=sup ——= | f(¥) = fBGx,m|dy < oo,
T cernr=0 1B e Cor)
where
TBGr) = o S(y)dy.
Con |B(x,r)| B(x,r)
Define

BMO(R") = {f € L\*(R") : || f|lx < o0}.

Modulo constants, the space BMO(R") is a Banach space with respect to the
norm |||

Remark 4.2. (1) John—Nirenberg inequality: There are constants C;, C; > 0,
such that for all f € BMO(R”) and 8 > 0

[{x € B:|f(x)— fg| > B}| < C1|Ble"P/I/1- vp c R".
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Boundedness of the parametric Marcinkiewicz integral operator 203

(2) The John—Nirenberg inequality implies that

1
1 P
Ifle~ sup ( |f(y>—f3(x,r)|l’dy) @1

x€R”,r>0 |B(x,r)| B(x,r)

forl < p < o0.

(3) Let f € BMO(R"). Then there is a constant C > 0 such that

t
|/ = fBan| = CllfllxIn— for 0 <2r <t (4.2)

where C is independent of f, x, r and .

For b € LY*(R"), the commutator [b, ;1,?2] formed by b and the parametric
Marcinkiewicz integral M?z’ 0 < p < n, is defined by
24\ 2
) -

b, 11 (x) = ( [ h

Lemma4.3. Let | < p < 0o, a € BMO(R"), and let Q € Lip,(S"™ 1), 0 <a <
1, satisfy conditions (1.1), (1.2). Then, for 1 < p < oo the inequality

: /| SO )~ b)) ()

tP x—y|<t |)C - y|n—p

n [ I\ _n_
||[a»ué;1f||L,,<B<xO,r»5“a”*"”/ (140 )57 e e

2r
holds for any ball B(xo,r), 0 < p <n, and forall f € Lg’C(R").
Moreover, for p = 1 the inequality

* I\, —n—1
(1 +1In ;)t | f 1L, (B(xo.0)) @t
4.3)

[TV P e

holds for any ball B(xo,r), 0 < p < n, and forall f € LIIOC(R").

Proof. For arbitrary xog € R”, set B = B(x¢, r) for the ball centered at xo and of
radius 7. Write /' = f1 + f2 with fi = fy2p and f> = fxc(2p). Hence

o P o
|la, gl f ”Lp(B) < |la. ugl fi ”Lp(B) + [la. nglfo HLP(B)'
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204 S.S. Aliev and V. S. Guliev

From the boundedness of [a, ,u‘;z] in L,(R") it follows that

lla. Q1] 1,y =l Q) 1], ey
< lallell fill, @ = lall«lf L, @8)-

For x € B we have

fa.nfl w5 [ %w)w

c2B) |xo—yl
Then

p
- 12l gm) < ( B( () - a(x)||f(y)ldy) dx)

c2B) |xo—y|"
<(f(/
B

S =

Ia(y) ag|

c(2B) |Xo yl"

la) asl, )|dy) dx)"

=

_|_

p
( ( "’(x) ,,'If(y)ldy) dx)
c(2B) |x0— Y|
1.

Let us estimate /7.

NS

11 r

%

[ M“lf'mw
c(2B) |Xo0— Y|

0%

re la(y) —ag| | f()] ———dy
l(Z [x0—yI ntl

’ dt
re a(v) —a P
/2, ferXO_ylit| () = a1 S OIdy g

P et —aslloidy g
r aly)—ap ey -
2r JBGxo) e+l
Applying Holder’s inequality, by (4.1), (4.2) we get

n o0
Iy <re / [ la(y) — ap(xo,0
2r JB(xg,t)

n [ dt
+re laB(xo.r) — 4B(xo.0)] If(y)la'y,,—le
2r B(x0,t) 4

%

A

dt
|f()’)|dyW
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Boundedness of the parametric Marcinkiewicz integral operator 205

1
7

< n © p/d 4 dt
e B(xo’t)la(y)—aB(xo,z)l V) I Loy

r

n [ dt
+r7 | laBo.r) — 4B(xo.0)l 1AL, Beo.) 7
2r B(xo,t) tr

< n o0 141 t dt
Slaler? | (14 )1 i paeom

2r

In order to estimate /, note that

g 1)
~ —anl?
= (/Bla(x) 45| dx) ﬂ(zB) |xo — y|" dy

By (4.1), we get
Bslalrd [ g,

@B) |xo0 — y|"
Thus, by (3.4)
T AT r
2 * - Lp(B(xo,l))t%+1 .

Summing /; and I, for all p € [1, o00) we get

w81 fel, gy S laler® [ (14517 T
P Q L,(B) ~ * or r Lp(B(x(),t))t%_}_l' :

Finally,

|| [a’ﬂlsjz]f”L,,(B)

< lalll £z, 8 + laller /

2r

t dt
(110 )1 e o =7

and the statement of Lemma 4.3 follows by (3.6).
Let p = 1. From the weak (1, 1) boundedness of [a, ug] and (3.6) it follows
that

lla. u@) i lwe, 8y = Na.nQ)fillwr, @n)
< llall«ll Allz, ey = llall<ll f Iz, 2B)

o dt
Shaler” [ lngeon g @9

Then from (4.4) and (4.5) we get the inequality (4.3). O
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206 S.S. Aliev and V. S. Guliev

The following theorem is true.

Theorem 4.4. Let 1 < p < 00,0 < p <n, a € BMO(R") and let (¢1, ¢2) satisfy
the condition

o t inf ) G
/ (1 tn _) ess infy <s<oo @1(x,5)s 7 dt < Conlx.r). 4.6)
r r

B

where C does not depend on x and r. Let Q € Lip,(S™!), 0 < a < 1, satisfy
conditions (1.1), (1.2). Then the operator [a, ;,L?Z] is bounded from M, o, to Mp. 4,
for p > 1 and bounded from M1 o, to WM ,.

Moreover, for p > 1
@ 181 f ., S Iallell £l

and for p = 1,
120 T, Vel o,

Proof. The statement of Theorem 4.4 follows by Lemma 4.3 and Theorem 3.1 in
the same manner as in the proof of Theorem 3.3. o

Corollary 4.5. Let 1 < p < o0, (1, ¢2) satisfy condition (4.6), a € BMO(R")
and let Q € Lipa(S”_l), 0 < a < 1, satisfy conditions (1.1), (1.2). Then the
operator [a, ug) is bounded from My o, to My o, for p > 1 and from My 4, to
WMi.,4,.
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