Acta Mathematica Sinica, English Series

Dec., 2011, Vol. 27, No. 12, pp. 2361-2370 Acta Mathematica Sinica,
Published online: November 15, 2011 Eng[’sh Series

DOL: 10'1007/310114'011'9516'X © Springer-Verlag Berlin Heidelberg &
Http://www.ActaMath.com The Editorial Office of AMS 2011

Boundedness of the Anisotropic Maximal and Anisotropic Singular
Integral Operators in Generalized Morrey Spaces

Vagif S. GULIYEV
Department of Mathematics, Ahi Fvran University, Kirsehir 40200, Turkey
and
Institute of Mathematics and Mechanics, ANAS, Baku AZ1141, Azerbaijan
E-mail: vagif@guliyev.com

Rza Ch. MUSTAFAYEV
Institute of Mathematics and Mechanics, ANAS, Baku AZ1141, Azerbaijan

E-mail: rzamustafayev@mail.az

Abstract In this paper we give the conditions on the pair (wi,w2) which ensures the boundedness
of the anisotropic maximal operator and anisotropic singular integral operators from one generalized
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1 Introduction and main results

The theory of boundedness of classical operators of real analysis, such as maximal operator and
singular integral operators etc, from one weighted Lebesgue space to another one is well studied
by now. These results have good applications in the theory of partial differential equations.
However, in the theory of partial differential equations, along with weighted Lebesgue spaces,
general Morrey-type spaces also play an important role.

Let o = (a1,...,ap), &y > 1, i =1,....n, o] = > o; and t%¢ = (tMzq,...,t%z,).
Following [1, 2], the function F(z,p) = Y1, 2?p~2%, considered for any fixed € R", is a
decreasing one with respect to p > 0 and the equation F'(z, p) = 1 is uniquely solvable in p(x).
It is a simple matter to check that p(z —y) defines a distance between any two points z, y € R™.
Thus R”, endowed with the metric p, results in a homogeneous metric space (see [1-3]). The

balls with respect to p(z), centered at the origin and of radius r are simply the ellipsoids

T20¢1 fr20¢n
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with Lebesgue measure |£,.(0)| = C(n)rl®l. Tt is easy to see that £ (0) = S"~! with respect to
the Euclidean one.
Let f € L'°°(R™). The anisotropic maximal function M f is defined by

M - d7
f(z) jggg“/m) y)|dy

where |E(z,t)| is the Lebesgue measure of the ellipsoid €(z,t) centered at x.

The boundedness of the maximal operator M in Morrey spaces M, x was proven in [4]
(isotropic case) and in generalized Morrey spaces My, p € (1,00) with a function w(z, )
satisfying suitable doubling and integral conditions ZNPM‘ (see Section 2) in [5]. In more general
substations, namely in local and global Morrey type spaces, the boundedness of the maximal
operator M has been investigated in [6-14].

Definition 1.1  The function k(z;§) : R™ x (R™\{0}) — R is called a variable Calderdén—
Zygmund type kernel with mized homogeneity if

i) For every fixed x the function k(x;-) is a constant kernel satisfying:

) k(z;) € C=(R"\{0});
i) <m#%>—u*MMr£>t>0-
ic)  Jono1 k(z;€)doe =0 and [, |k(x;€)|doe < oo;

ii) For every multiindex 3, the inequality supgcgn— |D k(xz;€)| < C(PB) is satisfied indepen-
dently of x.

Note that in the isotropic case o; = 1,4 = 1,...,n and thus |a| = n, Definition 1.1 gives rise
to the classical Calderén-Zygmund kernels (see, for example, [15] and [16]). One more example
iswhena; =---=a,_1 =1, a, = a > 1. In this case we obtain the parabolic kernels studied
by Jones in [17] and discussed in [2].

We consider the following anisotropic singular integral

Tf@) =p. [ Koo = )f)dy (1)

with a variable Calderén—Zygmund type kernel k(z,&), z € R™, £ € R™ \ {0}, satisfying a
mixed homogeneity condition i,). The boundedeness of the operator T in L,(R™), p € (1, c0)
was proven in [1, 2] and in Morrey spaces M, in [18] (isotropic case). The boundedness
of the operator T in generalized Morrey spaces M, ,, p € (1,00) with a function w(z,r)
satisfying suitable doubling and integral conditions Z~p7‘a‘ in [19] (isotropic case in [5]), and the
boundedness of the operator 1" from M, ., to M, ., 1 < p < oo satisfying integral conditions
(wr,w2) € §p7|a| were proven in [12, 13]. Our goal is to extend results in [6, 12-14] with a
pair (wy,ws) satisfying more large integral conditions Z,, |4|. In [7-13] the boundedness of the
singular integral operators in local and global Morrey-type spaces has been investigated. Note
that the global Morrey-type space is a more general space than the generalized Morrey space.

By A < B we mean that A < CB with some positive constant C independent of the
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

2 Generalized Morrey Spaces and Preliminary Results

Morrey spaces M,,  were introduced by Morrey in 1938 [20] and defined as follows:
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For0<A<n, 1<p<oo, feMpx iffeL};’C(]R”) and
DY
||f||Mp,>\ = Hf”MpA(Rn) = xeﬂs}llgvor Pl LBy < o0

where B(z,r) is the open ball centered at z of radius r. Note that M, o = L,(R") and
Mpn = Lo(R™). If A < 0 or A > n, then My, x = O, where O is the set of all functions
equivalent to 0 on R™.

These spaces appeared to be quite useful in the study of the local behaviour of solutions
to partial differential equations, apriori estimates and other topics in the theory of partial
differential equations.

We also denote by WM, 5 the weak Morrey space of all functions f € WLLOC(R”) for which

1w atyn = 1wty @y = 502 772 [ fllwe, () < oo
TER™, r>0
where WL, denotes the weak L,-space.

If in place of the power function 7* in the definition of M, x we consider any positive
measurable function w(z,r), then it becomes the generalized Morrey space M, .

Definition 2.1 Let w(z,r) be a positive measurable function on R™ x (0,00) and 1 < p < oo.

We denote by M, ., the generalized Morrey space, the space of all functions f € L;,OC(R") with

finite quasinorm

1l py.

Denote by WM, , the weak generalized Morrey space of all functions f € WLLOC(R") for
which

_1
[fllam, @y = sup  w(@, ) ?||fllL,(Br)-
zeR™ r>0

1
1 lwa, . = llwam, @y = sap - w(@r)”?[lfllwe, B < oo
' ’ ZER™, >0

Definition 2.2 Let wy(z,7), wa(z,r) be two positive measurable functions on R™ x (0, c0).
We say that (w1,ws) belongs to the class Zp ., p € [0,00), m > 0, if there is a constant C such
that, for any x € R™ and for any t > 0,
(/oo (essmf““”wl(z’s)) ; dr)p <@ e 0,00) 2.1)
¢ rm T tm

and

ess sup es31nfy <5 <00 1 (2, 5) < ng(x,t), if p=0. (2.2)

t<r<oo rm tm
Definition 2.3 Let wy(z,7), wa(z,r) be two positive measurable functions on R™ x (0, 00).
We say that (w1, ws) belongs to the class me, p € ]0,00), m > 0 if there is a constant C such
that, for any x € R™ and for any t > 0,

(/oo (wl(x,r)>11° dr)p . ng(x,t), if pe(0,00) (2.3)

‘ rm T tm

and

t
ess sup wi,7) < ng(x, )
Tnm tm

t<r<oo

. if p=0. (2.4)

Note that ép,m C Z,m for p €[0,00), m > 0.
The following property for the class Z, ., p € [0,00), m > 0 is valid.
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Lemma 2.4 ([6]) Let m > 0. Then

U Zom € Zom.

0<p<oo

Proof  Assume that (w1,ws) € Z,,, for some p € (0,00). Then for any s € (¢, o),

wa(z,t) S (/Oo (essinfr<7<oo wl(x,T)) , dr)p
tm ¢ rm r

 (essinf,crcoowi(x, T) v dr\?

(L () )

) e’} dr p
essinf wy(z, ) ™o
s<T<00 s TP +

essinfgcrcoowi(x,7)

vV Vv

Q

Sm

Thus,

wolx,t ess inf wilx, T

2( ) ) Zesssup §<T<00 1( ) )

tm t<s<oo sm
This proves that
U Zom € Zom. 0
0<p<co

Remark Let w(t) =t". Then (w,w) € Zy,, but (w,w) & Z, ,, for any p € (0, c0).

In [19] Softova proved the following statement, containing in the isotropic case Nakai’s result
in [5].
Theorem 2.5 Let 1 < p < co. Moreover, let w(t), t > 0, be a positive measurable function

satisfying the following conditions: there exists ¢ > 0 such that
0<r<t<2r=clulr) <wt) <cw(r) (2.5)

and (w,w) € 21,|a|.
Then for 1 < p < oo the operators M and T are bounded from M,, ., to M, ., and forp =1
the operators M and T are bounded from My, to WMy,,.

The following statement, containing Softova results in [19] was proved by Guliyev in [12]
for singular integrals defined on homogeneous Folland—-Stein groups [21] (see also [13, 14]).

Theorem 2.6 Let1 <p < oo and (wy,ws) € gp"a|(R”). Then for 1 < p < oo the operators
M and T are bounded from M, ., to M, ., and for p =1 the operators M and T are bounded
from My o, to WM, ,.
Sufficient conditions on w for the boundedness of the maximal operator and singular integral
operators in generalized Morrey spaces M, ,,(R™) have been obtained in [5-14, 19, 22-28].
Let 9(0,00) be the set of all Lebesgue-measurable functions on (0, 00) and (0, 00) its
subset consisting of all nonnegative functions on (0,00). We denote by 9T (0, 00; 1) the cone

of all functions in 9" (0, 0o) which are non-decreasing on (0, 00) and

A= {np € M (0,00;7) : tE%IJr o(t) = O}.
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Let u be a continuous and non-negative function on (0,00). We define the supremal operator
Sy on g € M(0,00) by

(Sug)(t) := ugllL.ito), te€(0,00).
The following theorem was proved in [10].

Theorem 2.7 Let v1, v2 be non-negative measurable functions satisfying 0 < |lv1||L_,00)
< o0 for any t >0 and u be a continuous non-negative function on (0, 00).

Then the operator S,, is bounded from Lo 4, (0,00) t0 Lo, (0,00) on the cone A if and
only if
oaSu(oal7Y ooyt mioe) < 00 (26)

We are going to use the following statement on the boundedness of the Hardy operator

1 t
(Hg)(t) :== ; / g(rydr, 0 <t < oo.
0
Theorem 2.8 ([29]) The inequality

esssupw(t)Hg(t) < cesssupv(t)g(t) (2.7)
t>0 t>0

holds for all non-negative and non-increasing g on (0,00) if and only if

t) [ d
A :=sup w(t) / 8 < 00, (2.8)
>0 t Jo €SSSUPgcycs v(y)

and c~ A.

3 The Anisotropic Maximal Operator in Generalized Morrey Spaces
We need the following two lemmas (see [14]).

Lemma 3.1 Let 1 <p < oo. Then for any ellipsoid € = E(x,r) in R™ the inequality
lol e
IMfllz,E@ry) SIfllo, @y 77 tS;lQPt U £llz, ) (3.1)

holds for all f € L;"C(}R”).

Moreover, the inequality
1M fllw L @)y S NIl @arny) + 7! Sup Vi PR (3:2)

holds for all f € L*¢(R™).
Proof Let 1 < p < oco. It is obvious that for any ellipsoid £ = £(z, ) the following inequality
holds

IMfllz, ) < IM(Fxee)lle,e) + 1M (fxree)llL,e)-
By continuity of the operator M : L,(R™) — L,(R"), 1 < p < oo we have

1M (fxee)ll, e S Nl e

Let y be an arbitrary point from &. If E(y,t) N {R™\(2E)} # 0, then ¢ > r. Indeed, if z €
E(y,1) N {R™\(26)}, then t > p(z,9) > plz,) — ple,y) > 2r — 7 =
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On the other hand £(y,t) N {R™\(2&)} C £(x,2t). Indeed, z € E(y,t) N{R™\(2€)}, then we
get p(z,z) < p(z,y) + p(y,xz) < t+r < 2t. Hence

1
M(fxgn y) =sup / fek
(Fxre\26) () >0 |€(y,1)] s<y,t>m{Rn\<25>}| =

1
< glel sup f(2)|d=
P le (20 Jeean )
1
=2lel sup |f(2)|dz.

t>2r |E(T, )] Je(an)
Therefore, for all y € £ we have

M(fxan o)) <27 sip o [ fCe (33)

t>2r
Thus

M < + €] ( su d )
| f||L,,(5) Hf||Lp(25) 1] t>2ﬁi 1€ (2, 1) - f(y)dy

Let p = 1. It is obvious that for any ellipsoid £ = £(z,r) the following inequality holds:
M fllwe,e) < IM(Fxee)llwe, e + M (fxrmee) lwe,e)-
By continuity of the operator M : L1 (R"™) — WLy (R") we have
IM(fxee)llwee) S Iz ce)-
Then by (3.3), we get the inequality (3.2). O
Lemma 3.2 Let 1 <p < co. Then for any ellipsoid € = E(x,r) in R™, the inequality
l] _lal
IMfllL,@ry ST* supt™ » |[fllL, &) (3.4)
t>2r

holds for all f € Li*°(R™).

Moreover, the inequality

al

IMFllwry ey S Sup 1N f @) (3.5)
T

holds for all f € Li¢(R™).

Proof Let 1< p < co. Denote

. 1
My :=|E]|» (su
PP S e )] Sewn

Applying Hoélder’s inequality, we get

. 1 »
M < el (sup 1 ( / If(y)l”dy) )
t>2r |E(x,t)|» \JE(z,t)

1 1 117
Elr | su N Pd
(2 s (L 107))

> Sé(su ) ~ Ms.
2 €| t>21f;|5(x7t)|; 1 fllz, 2e) 2

|f<y>|dy), My = |10, o).

On the other hand,

Since by Lemma 3.1,
M £z, < M1+ Ma,
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we arrive at (3.4).
Let p = 1. The inequality (3.5) directly follows from (3.2). O

Theorem 3.3 Let p € [1,00) and (wi,w2) € Zg|q|(R™). Then for p > 1 the operator M
is bounded from M, ., to M,y.,, and for p = 1 the operator M is bounded from M, ., to
WMy ,.

Proof By Lemma 3.2 and Theorem 2.7, we get

1 ol _ el
1Ml aty oy S s wa(ar) o' (supt™ > | fllL, ey )
zER™ r>0 t>r

1
Sosup o wi@, ) Pl ey = 1fllmy., @)
z€R™ r>0

if p € (1,00); and

1Ml sty S sup way )™t (sup = 1y o))
z€ER™ r>0 t>r

< osup o wi(@, ) T flln @) = 1o, @)
zE€R™ r>0

if p=1. O

4 The Anisotropic Singular Integral Operator in Generalized Morrey Spaces

The following Lemma has been proved in [12] (see also [9, 13, 14]). For the sake of completeness,

we give the proof.

Lemma 4.1 Letpe€[l,00), f € L;,OC(R”) and for any o € R™,

X al
/1 £ Y F L oy dE < 00

Then Tf exists for a.e. x € R™ and for any xo € R™, r > 0 and p € (1,00)
lal [0 ol _
ITf Ly @omy <Cr e / £ T Al o dts (4.1)
2r
where constant C' > 0 does not depend on xg, r and f.
Moreover, for any xqg € R™ and r > 0,

1T fllw Ly (£ (2o < Crlal/ I F L e oy s (4.2)

2r
where constant C > 0 does not depend on xq, r and f.
Proof Let p € (1,00). For arbitrary xg € R", set £ = E(xq, ) for the ellipsoid centered at x
and of radius r. Write f = f1 + fo with fi = fx2e and fo = fxgn\(26). Since fi € Ly(R"),
T f1(x) exists for a.e. x € R™ and from the boundedness of T in L,(R™) (see [18]) it follows
that

ITfillz, ) < ITfillz, @y < Cllfill,®) = Cllflz, e,

where the constant C' > 0 is independent of f.
Now we prove that the non-singular integral T fo(x) exists for all x € £.

It is clear that z € £, y € R™\(2€) implies p(z — y) ~ p(zo — y) and we get

T fa(2)] S / lf ()l

| ‘dy.
R\ (26) P(To — y)!*
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By Fubini’s theorem, we have

e [ /oo "
dy =~ f dy
/n\(zg) p(l‘o - y)‘al R\ (2€) | ( )‘ o ) théH-l

dt
(v)|dy
~/27" /2r<p(ac0 y)<t tlel+1

dt
< |f(y)ldy :
/27" /S(xo,t) tlal+1
Applying Hoélder’s inequality, we get

[F ()] /°° dt
dy S | W llz,e@ot) i,
/"\(25) p(wo —y)lol 2r Fllz,cec O’t))t‘p‘ﬂ

Therefore T'f>(z) exists for all z € €. Since R™ = |, 4 E(wo, 1), we get the existence of T'f(x)
for a.e. g € R".

Moreover, for all p € [1,00), the inequality

lal  [° dt
sl 5 [ Wl o, (13)
2r
is valid. Thus

ol [ dt
17 f ) S Ilz,0 475 [ 1Ay etann 1oty
2r thrl

On the other hand,

lo| < dt laf [ dt
1 lleeey =% 111z, e / <r' / 1L, o) 1o, -
2r 2r tp+1

t‘(;l +1
Thus

lal [ dt
ITfllz,e ST 7 / 1Az, E@ot)) i, -
tor

2r
Let p = 1. From the weak (1,1) boundedness of T' (see [3]), it follows that

T fillwe, ey < T fillwe, @y < Cllfille, @y = CllfllL, e,

where the constant C' > 0 is independent of f.
Then by (4.3) we get the inequality (4.2). O

Theorem 4.2 Letp € [1,00) and (wi,ws) € 2, |q|. Then the anisotropic singular integral T f
exists for a.e. © € R™; and for p > 1 the operator T is bounded from M, ., (R™) to M, (R™),
and for p = 1 the operator T is bounded from My ,, (R™) to WM o, (R™). Moreover, forp > 1,

1Tl Mpy S My
and forp=1,

ITFllwriwy S, -
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Proof By Lemma 4.1 and Theorem 2.8, we have, for p > 1,

lol  [° dt
T < osu wo(x, 7 “rr /
1T fll ey @) S weRmpwo 2(z, 1) j ||fHLp(£(m,t))t‘(;|+1

_lal

Q

T A
su wolx,7) Pr P _ o dt
s waen)

P 11 r
= su wo(x,r lel)"r _ dt
xeRnPrw 2( ) 7‘/0 ||fHLp(E(:v,t lal )

< su wi(z, 77 1a1) " p _
N16R713>0 1( ) ) ”fHLp(S(m,T \ﬁ\))

= 1Mty oy )

and for p =1,

dt

o0
1T A 1w st cateey S _sup )0 [ oo i
zER™, r>0 r

—le]

r
X~ sup wg(.%',r)—lr\od / Hf||L1(5(I,t""“))dt
z€R™, >0 0

1 1 r
= su wolx, 7 lal)7t / _a dt
wER"B‘>O ( ) T 0 Hf”Ll(g(I,t \a\))

A

_ 1 _
sup_wnar ™) A,
1

1
zeR™ r>0 5(%7" la‘))

= [ fllamy o, ®n)- O

Corollary 4.3 ([12]) Letp € [1,00) and (w1,ws2) € ZNP)M(R”). Then for p > 1 the operator
T is bounded from M, ., (R™) to My ., (R™), and for p = 1 the operator T is bounded from
Ml,wl to WMl,wz-

Note that Theorem 2.6 and Corollary 4.3 coincide.
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