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1 Introduction and main results

The theory of boundedness of classical operators of real analysis, such as maximal operator and
singular integral operators etc, from one weighted Lebesgue space to another one is well studied
by now. These results have good applications in the theory of partial differential equations.
However, in the theory of partial differential equations, along with weighted Lebesgue spaces,
general Morrey-type spaces also play an important role.

Let α = (α1, . . . , αn), αi ≥ 1, i = 1, . . . , n, |α| =
∑n

i=1 αi and tαx ≡ (tα1x1, . . . , t
αnxn).

Following [1, 2], the function F (x, ρ) =
∑n

i=1 x2
i ρ

−2αi , considered for any fixed x ∈ R
n, is a

decreasing one with respect to ρ > 0 and the equation F (x, ρ) = 1 is uniquely solvable in ρ(x).
It is a simple matter to check that ρ(x−y) defines a distance between any two points x, y ∈ R

n.
Thus R

n, endowed with the metric ρ, results in a homogeneous metric space (see [1–3]). The
balls with respect to ρ(x), centered at the origin and of radius r are simply the ellipsoids

Er(0) =
{

x ∈ R
n :

x2
1

r2α1
+ · · · + x2

n

r2αn
< 1

}

,
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with Lebesgue measure |Er(0)| = C(n)r|α|. It is easy to see that E1(0) ≡ S
n−1 with respect to

the Euclidean one.
Let f ∈ Lloc

1 (Rn). The anisotropic maximal function Mf is defined by

Mf(x) = sup
t>0

1
|E(x, t)|

∫

E(x,t)

|f(y)|dy,

where |E(x, t)| is the Lebesgue measure of the ellipsoid E(x, t) centered at x.
The boundedness of the maximal operator M in Morrey spaces Mp,λ was proven in [4]

(isotropic case) and in generalized Morrey spaces Mp,ω, p ∈ (1,∞) with a function ω(x, r)
satisfying suitable doubling and integral conditions Z̃p,|α| (see Section 2) in [5]. In more general
substations, namely in local and global Morrey type spaces, the boundedness of the maximal
operator M has been investigated in [6–14].

Definition 1.1 The function k(x; ξ) : R
n × (Rn\{0}) → R is called a variable Calderón–

Zygmund type kernel with mixed homogeneity if
i) For every fixed x the function k(x; ·) is a constant kernel satisfying :
ia) k(x; ·) ∈ C∞(Rn\{0});
ib) k(x; tαξ) = μ−|α|k(x; ξ), t > 0;
ic)

∫
Sn−1 k(x; ξ)dσξ = 0 and

∫
Sn−1 |k(x; ξ)|dσξ < ∞;

ii) For every multiindex β, the inequality supξ∈Sn−1 |Dβ
ξ k(x; ξ)| ≤ C(β) is satisfied indepen-

dently of x.

Note that in the isotropic case αi = 1, i = 1, . . . , n and thus |α| = n, Definition 1.1 gives rise
to the classical Calderón–Zygmund kernels (see, for example, [15] and [16]). One more example
is when α1 = · · · = αn−1 = 1, αn = α ≥ 1. In this case we obtain the parabolic kernels studied
by Jones in [17] and discussed in [2].

We consider the following anisotropic singular integral

Tf(x) = p.v.
∫

Rn

k(x; x − y)f(y)dy (1.1)

with a variable Calderón–Zygmund type kernel k(x, ξ), x ∈ R
n, ξ ∈ R

n \ {0}, satisfying a
mixed homogeneity condition ib). The boundedeness of the operator T in Lp(Rn), p ∈ (1,∞)
was proven in [1, 2] and in Morrey spaces Mp,λ in [18] (isotropic case). The boundedness
of the operator T in generalized Morrey spaces Mp,ω , p ∈ (1,∞) with a function ω(x, r)
satisfying suitable doubling and integral conditions Z̃p,|α| in [19] (isotropic case in [5]), and the
boundedness of the operator T from Mp,ω1 to Mp,ω2 , 1 < p < ∞ satisfying integral conditions
(ω1, ω2) ∈ Z̃p,|α| were proven in [12, 13]. Our goal is to extend results in [6, 12–14] with a
pair (ω1, ω2) satisfying more large integral conditions Zp,|α|. In [7–13] the boundedness of the
singular integral operators in local and global Morrey-type spaces has been investigated. Note
that the global Morrey-type space is a more general space than the generalized Morrey space.

By A � B we mean that A ≤ CB with some positive constant C independent of the
appropriate quantities. If A � B and B � A, we write A ≈ B and say that A and B are
equivalent.

2 Generalized Morrey Spaces and Preliminary Results

Morrey spaces Mp,λ were introduced by Morrey in 1938 [20] and defined as follows:
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For 0 ≤ λ ≤ n, 1 ≤ p ≤ ∞, f ∈ Mp,λ if f ∈ Lloc
p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖Lp(B(x,r)) < ∞,

where B(x, r) is the open ball centered at x of radius r. Note that Mp,0 = Lp(Rn) and
Mp,n = L∞(Rn). If λ < 0 or λ > n, then Mp,λ = Θ, where Θ is the set of all functions
equivalent to 0 on R

n.
These spaces appeared to be quite useful in the study of the local behaviour of solutions

to partial differential equations, apriori estimates and other topics in the theory of partial
differential equations.

We also denote by WMp,λ the weak Morrey space of all functions f ∈ WLloc
p (Rn) for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) < ∞,

where WLp denotes the weak Lp-space.
If in place of the power function rλ in the definition of Mp,λ we consider any positive

measurable function ω(x, r), then it becomes the generalized Morrey space Mp,ω.

Definition 2.1 Let ω(x, r) be a positive measurable function on R
n × (0,∞) and 1 ≤ p < ∞.

We denote by Mp,ω the generalized Morrey space, the space of all functions f ∈ Lloc
p (Rn) with

finite quasinorm

‖f‖Mp,ω
≡ ‖f‖Mp,ω(Rn) = sup

x∈Rn,r>0
ω(x, r)−

1
p ‖f‖Lp(B(x,r)).

Denote by WMp,ω the weak generalized Morrey space of all functions f ∈ WLloc
p (Rn) for

which
‖f‖WMp,ω

≡ ‖f‖WMp,ω(Rn) = sup
x∈Rn, r>0

ω(x, r)−
1
p ‖f‖WLp(B(x,r)) < ∞.

Definition 2.2 Let ω1(x, r), ω2(x, r) be two positive measurable functions on R
n × (0,∞).

We say that (ω1, ω2) belongs to the class Zp,m, p ∈ [0,∞), m > 0, if there is a constant C such
that, for any x ∈ R

n and for any t > 0,
( ∫ ∞

t

(
ess infr<s<∞ ω1(x, s)

rm

) 1
p dr

r

)p

≤ C
ω2(x, t)

tm
, if p ∈ (0,∞) (2.1)

and

ess sup
t<r<∞

ess infr<s<∞ ω1(x, s)
rm

≤ C
ω2(x, t)

tm
, if p = 0. (2.2)

Definition 2.3 Let ω1(x, r), ω2(x, r) be two positive measurable functions on R
n × (0,∞).

We say that (ω1, ω2) belongs to the class Z̃p,m, p ∈ [0,∞), m > 0 if there is a constant C such
that, for any x ∈ R

n and for any t > 0,
( ∫ ∞

t

(
ω1(x, r)

rm

) 1
p dr

r

)p

≤ C
ω2(x, t)

tm
, if p ∈ (0,∞) (2.3)

and

ess sup
t<r<∞

ω1(x, r)
rm

≤ C
ω2(x, t)

tm
, if p = 0. (2.4)

Note that Z̃p,m ⊂ Zp,m for p ∈ [0,∞), m > 0.
The following property for the class Zp,m, p ∈ [0,∞), m > 0 is valid.
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Lemma 2.4 ([6]) Let m > 0. Then
⋃

0<p<∞
Zp,m ⊂ Z0,m.

Proof Assume that (ω1, ω2) ∈ Zp,m for some p ∈ (0,∞). Then for any s ∈ (t,∞),

ω2(x, t)
tm

�
( ∫ ∞

t

(
ess infr<τ<∞ ω1(x, τ )

rm

) 1
p dr

r

)p

�
( ∫ ∞

s

(
ess infr<τ<∞ ω1(x, τ )

rm

) 1
p dr

r

)p

� ess inf
s<τ<∞ω1(x, τ )

(∫ ∞

s

dr

r
m
p +1

)p

≈
ess infs<τ<∞ ω1(x, τ )

sm
.

Thus,
ω2(x, t)

tm
� ess sup

t<s<∞
ess infs<τ<∞ ω1(x, τ )

sm
.

This proves that
⋃

0<p<∞
Zp,m ⊂ Z0,m. �

Remark Let w(t) = tn. Then (ω, ω) ∈ Z0,n, but (ω, ω) �∈ Zp,n for any p ∈ (0,∞).

In [19] Softova proved the following statement, containing in the isotropic case Nakai’s result
in [5].

Theorem 2.5 Let 1 ≤ p < ∞. Moreover, let ω(t), t > 0, be a positive measurable function
satisfying the following conditions : there exists c > 0 such that

0 < r ≤ t ≤ 2r ⇒ c−1ω(r) ≤ ω(t) ≤ cω(r) (2.5)

and (ω, ω) ∈ Z̃1,|α|.
Then for 1 < p < ∞ the operators M and T are bounded from Mp,ω to Mp,ω and for p = 1

the operators M and T are bounded from M1,ω to WM1,ω.

The following statement, containing Softova results in [19] was proved by Guliyev in [12]
for singular integrals defined on homogeneous Folland–Stein groups [21] (see also [13, 14]).

Theorem 2.6 Let 1 ≤ p < ∞ and (ω1, ω2) ∈ Z̃p,|α|(Rn). Then for 1 < p < ∞ the operators
M and T are bounded from Mp,ω1 to Mp,ω2 and for p = 1 the operators M and T are bounded
from M1,ω1 to WM1,ω2 .

Sufficient conditions on ω for the boundedness of the maximal operator and singular integral
operators in generalized Morrey spaces Mp,ω(Rn) have been obtained in [5–14, 19, 22–28].

Let M(0,∞) be the set of all Lebesgue-measurable functions on (0,∞) and M+(0,∞) its
subset consisting of all nonnegative functions on (0,∞). We denote by M+(0,∞; ↑) the cone
of all functions in M+(0,∞) which are non-decreasing on (0,∞) and

A =
{

ϕ ∈ M+(0,∞; ↑) : lim
t→0+

ϕ(t) = 0
}
.
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Let u be a continuous and non-negative function on (0,∞). We define the supremal operator
Su on g ∈ M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [10].

Theorem 2.7 Let v1, v2 be non-negative measurable functions satisfying 0 < ‖v1‖L∞(t,∞)

< ∞ for any t > 0 and u be a continuous non-negative function on (0,∞).
Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and

only if

‖v2Su(‖v1‖−1
L∞(·,∞))‖L∞(0,∞) < ∞. (2.6)

We are going to use the following statement on the boundedness of the Hardy operator

(Hg)(t) :=
1
t

∫ t

0

g(r)dr, 0 < t < ∞.

Theorem 2.8 ([29]) The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t) (2.7)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A := sup
t>0

w(t)
t

∫ t

0

ds

ess sup0<y<s v(y)
< ∞, (2.8)

and c ≈ A.

3 The Anisotropic Maximal Operator in Generalized Morrey Spaces

We need the following two lemmas (see [14]).

Lemma 3.1 Let 1 < p < ∞. Then for any ellipsoid E = E(x, r) in R
n the inequality

‖Mf‖Lp(E(x,r)) � ‖f‖Lp(E(x,2r)) + r
|α|
p sup

t>2r
t−|α|‖f‖L1(E(x,t)) (3.1)

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

‖Mf‖WL1(E(x,r)) � ‖f‖L1(E(x,2r)) + r|α| sup
t>2r

t−|α|‖f‖L1(E(x,t)) (3.2)

holds for all f ∈ Lloc
1 (Rn).

Proof Let 1 < p < ∞. It is obvious that for any ellipsoid E = E(x, r) the following inequality
holds

‖Mf‖Lp(E) ≤ ‖M(fχ(2E))‖Lp(E) + ‖M(fχRn\(2E))‖Lp(E).

By continuity of the operator M : Lp(Rn) → Lp(Rn), 1 < p < ∞ we have

‖M(fχ(2E))‖Lp(E) � ‖f‖Lp(2E).

Let y be an arbitrary point from E . If E(y, t) ∩ {R
n\(2E)} �= ∅, then t > r. Indeed, if z ∈

E(y, t) ∩ {R
n\(2E)}, then t > ρ(z, y) ≥ ρ(z, x) − ρ(x, y) > 2r − r = r.
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On the other hand E(y, t)∩ {R
n\(2E)} ⊂ E(x, 2t). Indeed, z ∈ E(y, t)∩ {R

n\(2E)}, then we
get ρ(z, x) ≤ ρ(z, y) + ρ(y, x) < t + r < 2t. Hence

M(fχRn\(2E))(y) = sup
t>0

1
|E(y, t)|

∫

E(y,t)∩{Rn\(2E)}
|f(z)|dz

≤ 2|α| sup
t>r

1
|E(x, 2t)|

∫

E(x,2t)

|f(z)|dz

= 2|α| sup
t>2r

1
|E(x, t)|

∫

E(x,t)

|f(z)|dz.

Therefore, for all y ∈ E we have

M(fχRn\(2E))(y) ≤ 2|α| sup
t>2r

1
|E(x, t)|

∫

E(x,t)

|f(z)|dz. (3.3)

Thus

‖Mf‖Lp(E) � ‖f‖Lp(2E) + |E| 1p
(

sup
t>2r

1
|E(x, t)|

∫

E(x,t)

f(y)dy

)

.

Let p = 1. It is obvious that for any ellipsoid E = E(x, r) the following inequality holds:

‖Mf‖WL1(E) ≤ ‖M(fχ(2E))‖WL1(E) + ‖M(fχRn\(2E))‖WL1(E).

By continuity of the operator M : L1(Rn) → WL1(Rn) we have

‖M(fχ(2E))‖WL1(E) � ‖f‖L1(2E).

Then by (3.3), we get the inequality (3.2). �

Lemma 3.2 Let 1 < p < ∞. Then for any ellipsoid E = E(x, r) in R
n, the inequality

‖Mf‖Lp(E(x,r)) � r
|α|
p sup

t>2r
t−

|α|
p ‖f‖Lp(E(x,t)) (3.4)

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

‖Mf‖WL1(E(x,r)) � r|α| sup
t>2r

t−|α|‖f‖L1(E(x,t)) (3.5)

holds for all f ∈ Lloc
1 (Rn).

Proof Let 1 < p < ∞. Denote

M1 := |E| 1p
(

sup
t>2r

1
|E(x, t)|

∫

E(x,t)

|f(y)|dy

)

, M2 := ‖f‖Lp(2E).

Applying Hölder’s inequality, we get

M1 � |E| 1p
(

sup
t>2r

1

|E(x, t)| 1p
( ∫

E(x,t)

|f(y)|pdy

) 1
p
)

.

On the other hand,

|E| 1p
(

sup
t>2r

1

|E(x, t)| 1p
( ∫

E(x,t)

|f(y)|pdy

) 1
p
)

� |E| 1p
(

sup
t>2r

1

|E(x, t)| 1p
)

‖f‖Lp(2E) ≈ M2.

Since by Lemma 3.1,
‖Mf‖Lp(E) ≤ M1 + M2,
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we arrive at (3.4).
Let p = 1. The inequality (3.5) directly follows from (3.2). �

Theorem 3.3 Let p ∈ [1,∞) and (ω1, ω2) ∈ Z0,|α|(Rn). Then for p > 1 the operator M

is bounded from Mp,ω1 to Mp,ω2 , and for p = 1 the operator M is bounded from M1,ω1 to
WM1,ω2 .

Proof By Lemma 3.2 and Theorem 2.7, we get

‖Mf‖Mp,ω2 (Rn) � sup
x∈Rn,r>0

ω2(x, r)−
1
p r

|α|
p

(
sup
t>r

t−
|α|
p ‖f‖Lp(E(x,t))

)

� sup
x∈Rn,r>0

ω1(x, r)−
1
p ‖f‖Lp(E(x,t)) = ‖f‖Mp,ω1 (Rn),

if p ∈ (1,∞); and

‖Mf‖WM1,ω2 (Rn) � sup
x∈Rn,r>0

ω2(x, r)−1r|α|
(

sup
t>r

t−|α|‖f‖L1(E(x,t))

)

� sup
x∈Rn,r>0

ω1(x, r)−1‖f‖L1(E(x,t)) = ‖f‖M1,ω1 (Rn),

if p = 1. �

4 The Anisotropic Singular Integral Operator in Generalized Morrey Spaces

The following Lemma has been proved in [12] (see also [9, 13, 14]). For the sake of completeness,
we give the proof.

Lemma 4.1 Let p ∈ [1,∞), f ∈ Lloc
p (Rn) and for any x0 ∈ R

n,
∫ ∞

1

t−
|α|
p −1‖f‖Lp(E(x0,t))dt < ∞.

Then Tf exists for a.e. x ∈ R
n and for any x0 ∈ R

n, r > 0 and p ∈ (1,∞)

‖Tf‖Lp(E(x0,r)) ≤ C r
|α|
p

∫ ∞

2r

t−
|α|
p −1‖f‖Lp(E(x0,t))dt, (4.1)

where constant C > 0 does not depend on x0, r and f .
Moreover, for any x0 ∈ R

n and r > 0,

‖Tf‖WL1(E(x0,r)) ≤ C r|α|
∫ ∞

2r

t−|α|−1‖f‖L1(E(x0,t))dt, (4.2)

where constant C > 0 does not depend on x0, r and f .

Proof Let p ∈ (1,∞). For arbitrary x0 ∈ R
n, set E = E(x0, r) for the ellipsoid centered at x0

and of radius r. Write f = f1 + f2 with f1 = fχ2E and f2 = fχRn\(2E). Since f1 ∈ Lp(Rn),
Tf1(x) exists for a.e. x ∈ R

n and from the boundedness of T in Lp(Rn) (see [18]) it follows
that

‖Tf1‖Lp(E) ≤ ‖Tf1‖Lp(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2E),

where the constant C > 0 is independent of f.

Now we prove that the non-singular integral Tf2(x) exists for all x ∈ E .
It is clear that x ∈ E , y ∈ R

n\(2E) implies ρ(x − y) ∼ ρ(x0 − y) and we get

|Tf2(x)| �
∫

Rn\(2E)

|f(y)|
ρ(x0 − y)|α| dy.
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By Fubini’s theorem, we have
∫

Rn\(2E)

|f(y)|
ρ(x0 − y)|α| dy ≈

∫

Rn\(2E)

|f(y)|
∫ ∞

ρ(x0−y)

dt

t|α|+1
dy

≈

∫ ∞

2r

∫

2r≤ρ(x0−y)<t

|f(y)|dy
dt

t|α|+1

�
∫ ∞

2r

∫

E(x0,t)

|f(y)|dy
dt

t|α|+1
.

Applying Hölder’s inequality, we get
∫

Rn\(2E)

|f(y)|
ρ(x0 − y)|α| dy �

∫ ∞

2r

‖f‖Lp(E(x0,t))
dt

t
|α|
p +1

.

Therefore Tf2(x) exists for all x ∈ E . Since R
n =

⋃
r>0 E(x0, r), we get the existence of Tf(x)

for a.e. x0 ∈ R
n.

Moreover, for all p ∈ [1,∞), the inequality

‖Tf2‖Lp(E) � r
|α|
p

∫ ∞

2r

‖f‖Lp(E(x0,t))
dt

t
|α|
p +1

(4.3)

is valid. Thus

‖Tf‖Lp(E) � ‖f‖Lp(2E) + r
|α|
p

∫ ∞

2r

‖f‖Lp(E(x0,t))
dt

t
|α|
p +1

.

On the other hand,

‖f‖Lp(2E) ≈ r
|α|
p ‖f‖Lp(2E)

∫ ∞

2r

dt

t
|α|
p +1

� r
|α|
p

∫ ∞

2r

‖f‖Lp(E(x0,t))
dt

t
|α|
p +1

.

Thus

‖Tf‖Lp(E) � r
|α|
p

∫ ∞

2r

‖f‖Lp(E(x0,t))
dt

t
|α|
p +1

.

Let p = 1. From the weak (1, 1) boundedness of T (see [3]), it follows that

‖Tf1‖WL1(E) ≤ ‖Tf1‖WL1(Rn) ≤ C‖f1‖L1(Rn) = C‖f‖L1(2E),

where the constant C > 0 is independent of f.

Then by (4.3) we get the inequality (4.2). �

Theorem 4.2 Let p ∈ [1,∞) and (ω1, ω2) ∈ Zp,|α|. Then the anisotropic singular integral Tf

exists for a.e. x ∈ R
n; and for p > 1 the operator T is bounded from Mp,ω1(R

n) to Mp,ω2(R
n),

and for p = 1 the operator T is bounded from M1,ω1(R
n) to WM1,ω2(R

n). Moreover, for p > 1,

‖Tf‖Mp,ω2
� ‖f‖Mp,ω1

;

and for p = 1,

‖Tf‖WM1,ω2
� ‖f‖M1,ω1

.
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Proof By Lemma 4.1 and Theorem 2.8, we have, for p > 1,

‖Tf‖Mp,ω2 (Rn) � sup
x∈Rn, r>0

ω2(x, r)−
1
p r

|α|
p

∫ ∞

r

‖f‖Lp(E(x,t))
dt

t
|α|
p +1

≈ sup
x∈Rn, r>0

ω2(x, r)−
1
p r

|α|
p

∫ r
−|α|

p

0

‖f‖
Lp(E(x,t

− p
|α| ))

dt

= sup
x∈Rn, r>0

ω2(x, r−
p

|α| )−
1
p
1
r

∫ r

0

‖f‖
Lp(E(x,t

− p
|α| ))

dt

� sup
x∈Rn,r>0

ω1(x, r−
p

|α| )−
1
p ‖f‖

Lp(E(x,r
− p

|α| ))

= ‖f‖Mp,ω1 (Rn);

and for p = 1,

‖Tf‖WM1,ω2 (Rn) � sup
x∈Rn, r>0

ω2(x, r)−1r|α|
∫ ∞

r

‖f‖L1(E(x,t))
dt

tn+1

≈ sup
x∈Rn, r>0

ω2(x, r)−1r|α|
∫ r−|α|

0

‖f‖L1(E(x,t−|α|))dt

= sup
x∈Rn, r>0

ω2(x, r−
1

|α| )−1 1
r

∫ r

0

‖f‖
L1(E(x,t

− 1
|α| ))

dt

� sup
x∈Rn,r>0

ω1(x, r−
1

|α| )−1‖f‖
L1(E(x,r

− 1
|α| ))

= ‖f‖M1,ω1(Rn). �

Corollary 4.3 ([12]) Let p ∈ [1,∞) and (ω1, ω2) ∈ Z̃p,|α|(Rn). Then for p > 1 the operator
T is bounded from Mp,ω1(R

n) to Mp,ω2(R
n), and for p = 1 the operator T is bounded from

M1,ω1 to WM1,ω2 .

Note that Theorem 2.6 and Corollary 4.3 coincide.
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