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THE STEIN-WEISS TYPE INEQUALITIES
FOR THE B-RIESZ POTENTIALS

A. D. GADIJIEV, V. S. GULIYEV, A. SERBETCI AND E. V. GULIYEV

(Communicated by J. Pecaric)

Abstract. We establish two inequalities of Stein-Weiss type for the Riesz potential operator /oy
(B—Riesz potential operator) generated by the Laplace-Bessel differential operator Ag in the
weighted Lebesgue spaces L We obtain necessary and sufficient conditions on the pa-

PPy
rameters for the boundedness of I, from the spaces Lp /By to L PRI
In the limiting case p = Q/o we prove that the modified

to the weighted B — BMO

and from the spaces

Ll,lxlﬁ,y to the weak spaces W~Lq,\xH,y'

B— Riesz potential operator /5y is bounded from the spaces L
spaces BMOIxI*’",V‘

As applications, we get the boundedness of Iy, from the weighted B-Besov spaces
to the spaces . Furthermore, we prove two Sobolev embedding theorems on

Py

B B
PO, [x|Py q0,|x|* .y

weighted Lebesgue Lp /By and weighted B-Besov spaces B; 0,156y by using the fundamental

solution of the B-elliptic equation AZf/ .

1. Introduction and main results

Let R} | = {x= (x1,....,00) €R":x1 >0,...,x, >0}, 1 <k <n. We denote by
Lyy=Lyy(RY ) the set of all classes of measurable functions f with finite norm

1/p

ey = { [, 1f@PEax)  1<p<e,

k,+

where x' = (x1,...,xt), and ¥ = (¥1,..., &) is a multi-index consisting of fixed positive
numbers such that |y| =y +...+ 7 and (X')" =x!'....x]F. If p = oo, we assume

Loy = Lo = {f ¢ || fl| Lo, = €58 sUp| f(x)| <o}
)cG]R,’(’,Jr

For any measurable set £ C R}, let |E|y = [;(x)"dx. The weak L, space WL, =
WLp,y(RZA +), 1 < p < oo, is defined as the set of locally integrable functions f, with
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finite norm

||f||WLM:supr‘{xERZHr : |f(x)|>r}’y .
r>0

Let w be a weight function on R}

s i.e., w is a non-negative and measurable func-
tionon R} , , then for all measurable functions f on R} , the weighted Lebesgue space
Lpwy = Lpwy(RY ;) and the weak weighted Lebesgue space WL,y = WL,y (R} )

are defined by
Loy ={S : [1F Ly = WS llL,, < oo}
and

WLy wy={f:Ifllwen, = Wfllwe,, <o},

respectively.

The classical Riesz potential is an important technical tool in harmonic analysis,
theory of functions and partial differential equations. The potential and related topics
associated with the Laplace-Bessel differential operator

Lo9? 2 v d
Ag =Y B = Bi=—+4+2— i=1,...,k
B Z +2 8xl2+xi8xl- !

have been the research interests of many mathematicians such as B. Muckenhoupt and
E. Stein [26], K. Stempak [28], K. Trimeche [30], I. Kipriyanov [17], A. D. Gadjiev and
I. A. Aliev [8], L. Lyakhov [23], I. A. Aliev and B. Rubin [1], V. S. Guliyev [12]-[14],
and others.

In this paper we study the Riesz potential associated with Ap (B-Riesz potential)
defined by

layf@) = [ TW sy

k,+

and the modified B-Riesz potential by

1~owf (x) = /R

n
k,+

(710 = O, () FO)O )y

in weighted Lebesgue spaces L where T is B-shift operators is defined below,

p.JxlPy
B(x,r) ={y € R} : |x—y| <r} is the open ball centered at x with radius r in R}

and B, = B(0,r), CB,:RZ‘+\Br,and 0<a<Q,Q=n+ly|.

V. Kokilashvili and A. Meskhi [21] proved the Stein-Weiss inequality for the frac-
tional integral operator defined on nonhomogeneous spaces. In this paper we establish
two inequalities of Stein-Weiss type (see [27]) for the B-Riesz potential Iy . We give
the Stein-Weiss type inequality in Theorem 1, and a weak version of the Stein-Weiss
inequality in Theorem 2 for Ig y f .
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THEOREM 1. Let 0 < a < Q, I<p<g<e, B<Q/p, A<Q/q, B+A =20

(B+A>0,if p=q) 1/p—1/g=(a—B—A)/Qand f €L, s, Then luyf €
L, W% and the following inequality holds

1/q 1/p
(/ M*ﬂuﬁ@W@Wﬂ) <c</ M“V@VWVM> S
RY RY

k,+ k,+

where C is independent of f.

THEOREM 2. Let0<a<Q, 1 <g<e, B<0,A<Q/q, B+A20,1-1/g=
(a—P—A)/Qand f € Ly s y- Then loyf € WL, -2 , and the following inequality
holds

1/q c
Wyar) <z [ wfreieya @
(/{xeRg,+: x| Iy f ()| >} T JRy

where C is independent of f.

In the following, by using Stein-Weiss type Theorems 1 and 2, we obtain nec-
essary and sufficient conditions on the parameters for the boundedness of the B-Riesz
potential operator Iy from the spaces L, By 1O Lq‘\x\l‘y’ and from the spaces L, (B y
to the weak spaces WL alxt oy In the limiting case p = Q/a we prove that the modi-
fied B-Riesz potential operator I, is bounded from the space L

B-BMO space BMO\xH v

By 1O the weighted

THEOREM 3. Ler 0 < a < Q, 1< p<g<o, B<Q/p (BLO,if p=1)
A<Q/q(A<0,ifqg=c), a>B+A>0(B+A>0,if p=q)

DIfl<p<Q/(a— B —A), then the condition 1/p—1/q=(aa—B—A1)/Q is
necessary and sufficient for the boundedness of 1oy from me‘g’y to L%M’A,Y'

2)If p=1, thenthe condition 1 —1/q= (. — B —A)/Q is necessary and sufficient

for the boundedness of 1y y from Lllmﬁy to WLq WAy
NIf1<p=0/(oc— P —A), then the operator INO,,Y is bounded from Lp“x‘ﬁ‘y to
BMOy- - o

Moreover, if the integral Iy yf exists almost everywhere for f € L then

Ioyf € BMO\xH v and the following inequality holds

P[Py

ey fllsmoy, 5 , <CISL, 5

where C > 0 is independent of f.

REMARK 1. Note that in the case of k =1 the statements 1) and 2) in Theorem 3
were proved in [9], and the statement 3) in [10].
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Here the weighted B — BMO space BMO,,y is defined as the set of locally integrable
functions f with finite norm

[y = sup W(Br)A/B T2 f(x) = f, ()| ()T dly < oo,

n
)cE]Rk‘Jr ,r>0

and B — BMO space (see [13]) BMOy(R} | ) = BMOW(RZ&) , where
fo, (0= |81y [ T4y,

|B:ly = (n,k,y)r? and

C((ri+1)/2)[C(v/2)] "

o(nk,y) = / (X )dx = g0/ 27k
1

k
By i—

l

Besov spaces in the setting of the Bessel differential operator on (0,e0) is studied
by G. Altenburg [2], D. I. Cruz-Baez and J. Rodriguez, [5], M. Assal and H. Ben Ab-
dallah [3], and the setting of the Laplace-Bessel differential operator on R} . studied
by V. S. Guliyev, A. Serbetci and Z. V. Safarov [16].

In Theorem 4 we prove the boundedness of Iy, in the weighted Besov spaces
associated with the Laplace-Bessel differential operator on RZ, + (weighted B-Besov
spaces)

IT*F() = fOIIZ,,
;79,\4/,)/ = f: ||f||B;9‘w,y = ||f||LP,WJ’ + / |-X|Q+S9 = (x/))/dx <

n
Rk,+

3)
for a power weight w, 1 < p,0 < and 0 <s < 1.

THEOREM 4. Let 0<a<Q, l<p<g<e, B<Q/p', A<Q/q, 0 2P+ >
0(B+A>0,ifp=gq).

Ifl<p<Q/(a—=B—=A), 1/p—1/g=(a—B—-A)/0, 1<O<Loand 0<s<1,
then the operator Iy y is bounded from Bp@,\x\ﬁ,y to B;je,\x\*l,y' More precisely, there is
a constant C > 0 such that

I <C
Moy fliss, , <CIFls, o

holds for all f ¢ B;e,\x\ﬁﬁy'

It is known that (see [18], [19]) there exists a positive constant Cjy such that G(x) =

Co|x|>~€ is the fundamental solution of the Laplace-Bessel differential operator Ag.

THEOREM 5. [19] Let o is an even positive integer such that 0 < a0 < Q. If the
function f is finite, even with respect to the variables xi,...,x; having o continuous
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derivatives by the variables xi,...,x; and o/2 continuous derivatives by Xy 1,...,Xn,
then the potential Iy yf is a solution of the B-elliptic equation

Ay Pu(x) = f(x).

In the following we prove two Sobolev embedding theorems on weighted Lebesgue

. B . .
Lpﬂ‘ By and weighted B-Besov spaces Bp 0.8 y by using the fundamental solution of

the B-elliptic equation Ag/ 2 We expect that these results will be useful to investigate
the regularity properties of B-elliptic differential equations.
From Theorems 3 and 5 we have

THEOREM 6. Let f be defined as in Theorem 5 and o be an even positive integer,
0<a<Q, 1<p<q<e=, B<O/p (BLO,ifp=1),A<0/q(A<0,ifg=c),
azB+A20(f+A>0,if p=gq)

DIffel, s, 1<p<Q/(a—=B—A4), 1/p—1/q=(0—B—A)/Q, then the

following estimation holds:

o/2
lelle, i a, < CllASwlle, 5

where C > 0 is independent of u.
Iffel sy 1- 1/g=(oc— B —A)/Q, then the following estimation holds:

o/2
lulbwe, s, < ClAGule,

where C > 0 is independent of u.

From Theorems 4 and 5 we have

THEOREM 7. Let o be an even positive integer, 0 < 0 < Q, 1 < p < g < oo,
B<Q/p,A<Q/qg, aZB+A20(B+A>0,if p=q)

FFeB, 1 <p<Q/(@—B=2),1/p—1/g=(a—B-2)/Q, 1<0<=
and 0 < s < 1, then the following estimation holds:

[l s

< /2 ]
qe‘\x\*l‘y = CHAB uHB;G

b
JxBy

where C > 0 is independent of u.

2. Preliminaries

Denote the generalized shift operator (B—shift operator) by 77, acting according
to the law

A0 =Cpa [ oo [ £ ) =) dv()
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where (X',y)g = ((x1,y1)p,+---» Ok 30)p,) » (Kinyi)g = (7 —2XiinOSﬁi+yi2)%, 1<
k

i<k, dv(B)=TIIsin" '8 dB;...dB, 1<k<nand
i=1

Cpx=m"2 ﬁﬂ(}/ﬂr 1)/2)[C(%/2)]" =27 0 (2k,k,7).
i=1

We remark that the generalized shift operator 77 is closely connected with the
Laplace-Bessel differential operator Ag (see [17, 22, 23] for details). Furthermore, 7%
generates the corresponding B-convolution

(Fog= [ fOIeI)dy.

LEMMA 1. [9] Let 0 < a < Q. Then for 2|x| < |y|, x,y € R} ,, the following
inequality holds '
TV |x] %7€ — [y| €] <2070 |y[* =2 x]. 4)

We will need the following Hardy-type transforms defined on Ry _ :

i) = [ SO0V

and

W= [, FO)0)dy.

By
The following two theorems related to the boundedness of these transforms were proved
in [6] (see also [7], Section 1.1).

THEOREM A. Let 1 < g < oo. Suppose that v and w are a.e. positive functions
on R . Then
(a) The operator Hy is bounded from Ly .y to WLy, if and only if

1/q
A| =sup (ﬁ v (x) (x')ydx) supw ™! (x) < oo;
>0 By By

(b) The operator Hy is bounded from Ly ,,y to WLy if and only if

>0 CB,

Ay = sup </Bt v"(x)(x')ydx> v supw ™! (x) < oo

Moreover, there exist positive constants aj, j=1,...,4, depending only on q
such that a1A; < ||H|| € axAy and azA; < ||H' || € asA;.
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THEOREM B. Let 1 < p < g < oo. Suppose that v and w are a.e. positive func-
tions on R} . Then

(@) The operator Hy is bounded from Ly .y to Ly, if and only if

A3 = sup ( AB, ¥ (x) (x')mx) . ( /B | w? (x) (x')mx) " o,

p'=p/(p=1);
(b) The operator Hy is bounded from Ly .y to Ly if and only if

As=sup < /B () (x’)mx> v ( /CB, w? (x) (x’)mx) R

Moreover, there exist positive constants bj, j=1,...,4, depending only on p and
q such that b1Az < ||H|| < brAz and b3Ay < ||HI|| < byAy.

We will need the case that we substitute L,y with the homogeneous space
(X,p,u) in Theorems A and B in which X =R} , p(x,y) = |x—y| and du(x) =
(x)dx.

DEFINITION 1. The weight function w belongs to the class A,y for 1 < p, g <o,
if
p—1
1

sup [ 1Bl [ wi)oay | | 1Beean! [ w TT00 Ay | <o
"’ B(x,r) B(x,r)

and w belongs to Ay y, if there exists a positive constant C such that for any x € R} |
and r >0

B! [ W) dy < Cessinfw().
B(x,r) YEB(x,r)

The properties of the class A, , are analogous to those of the Muckenhoupt classes.
In particular, if w € Apy, then w € A, ¢y for a certain sufficiently small &€ > 0 and
w €Ay, y forany p; > p.

Note that, [x|* € Apy, 1 < p < oo, if and only if —% <a< %; and |x|* € Ay,
ifandonly if —Q < a <0.

For the B-maximal function (see [12, 13])

Myt () = sup B! [ 71010y

the following analogue of Muckenhoupt theorem (see [25]) is valid.

THEOREM C. 1. If f € Ly, and w € A1y, then Myf € WLy, and

1My fllwes s, < Crwyll 1z, ®)
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where Cy,,y depends only on y, k and n.
2IffelpwyandweApy, 1 <p<oo, then Myf € Lp,,y and

||MYf||Lp‘w,y < CpaW#HfHLp,w‘y’ (6)

where Cp,,y depends only on w, p, v, k and n.

Proof. Following [13] and [29], we define a maximal function on a space of ho-
mogeneous type (see [4]). By this we mean a topological space X equipped with a
continuous pseudometric P and a positive measure (i satisfying the doubling condi-
tion

W(E(x,2r)) < cu(E(x,r)), @)
where ¢ does not depend on x and r > 0. Here E(x,r) ={y € X : p(x,y) < r}. Denote

Maf () = sup(ECe) ™ [ 170)ldu(y)

r>0

Let (X,p, 1) be a homogeneous type space. It is known that the maximal function
M, is weighted weak (1,1) type, w € A; y, that is

/{xeX:MMf(x)n} w(x) du(x) < (%/XV(XNW(X) d,u(x)>7 3

and is weighted (p,p) type, 1 <p < e and w € Apy (see [20], [24]), that is

[ MAg P w(0? da() < Cpny [ 110" dut) ©)
In [13] and [29] it is proved that the following inequality
My f(x) < CMyf(x)

holds, where constant C > 0 does not depend on f and x.
In (8) and (9) if we take X =R} ,, p(x,y) = |x—y| and dpu(x) = (x')"dx, then
we have
1My fllpwvy < ClIMuS | povy < Cpawy I fllpowys 1< p <o,
andfor p=1

w(x) (¢)dx < / w(x) du(x)

/{xeRﬁ,Jr: My f(x)>7} {xeX : My f(x)>E}

<22 [ W) dut). O

T k+
REMARK 2. Note that in the case k = 1 Theorem C was proved in [11].

We will need the following Hardy-Littlewood-Sobolev theorem for I y .
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THEOREM D. Let 0 < oo < Q and 1 < p < Q/a. Then

1)If 1 < p<Q/a, then the condition 1/p—1/q= oa/Q is necessary and suffi-
cient for the boundedness of Io y from Ly y to Lyy.

2)If p =1, then the condition 1 —1/q = a/Q is necessary and sufficient for the
boundedness of 1oy from Liy to WLy .

3)If 1 < p=Q/a, then the operator To,’y is bounded from Ly to BMOy. More-
over, if the integral Iy yf exists almost everywhere for f € Ly y, then lo yf € BMO,
and the following inequality is valid

oy fllmo, <CIIf L,y

where C > 0 is independent of f .

REMARK 3. Note that statements 1) and 2) in Theorem D was proved in [8] in
the case k =1 and [12, 13] in the case k = n and [14, 23] in the case 1 < k < n, and
statement 3) in [13] in the case k= 1.

3. Proof of the theorems

Proof of Theorem 1. We write

(

1/q
x|+ Loy f(x)7 (x’)de> <h+b+1

q 1/q
z( [, ( / |f<y>|Ty|x|aQ<y'>wy> <x’>mx>
Tt Bl

q 1/q

x|~ Y| %2 (/)Y X\ dx

+</RZ#|| (/BZX\BX/ZIf(y)ITII <y>dy> ( >d>
q 1/q
x|7*e Y|4y X )Vdx .

+< [ (/c% FO) T2y )de> ( >m>

It is easy to check that if |y| < |x|/2, then |x| < |y|+ |x—y| < |x|/2+ |x—y|. Hence
|x|/2 < |x—y| and T7|x|*2 < (Jx[/2)* <. Indeed,

YA T
%0 =G [ (g 3| aviB)
0 0

U Y
> G [ oo [ =y =y aviB) (10
= b=y 2> (4]/2)" .

n
k,+

n
k,+

Then we get
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Further, taking into account the inequality —Ag < (Q—o)g—Q (i.e., a < Q/q +A)
we obtain

1/q
<A |x|(/1+aQ)q(x/)de> =Ct*H-0/d
By

1/
where C) = (%) . Similarly, by virtue of the condition Bp < Q(p—1)

(i.e., B < Q/p") it follows that
/ l/p, /
(/B x| PP (x’)”dx) =tV P

1/p
where C, = (%) i .

Summarizing these estimates we find that

1/q , 1/p
sup (/3 |x|(_x+°‘_Q)q(x’)ydx) (/ x| PP (x')ydx>
>0 B B;

=G Suptlx*ﬁ*}ﬁQ/q*Q/P < oo
>0

—a-B-A=0/p—0/q.

Now the first part of Theorem B gives us the inequality

1/p
I < 5aCi G20 ( / IXIﬁIf(X)I”(X’)VdX> .
RY +

If [y] > 2Ja], then [y] < x| + b —y| < [s]/2+ v — y]. Hence |y]/2 < [x—y| and the
inequality 7%|x|*~2 < (|y|/2)*¢ can be shown immediately by similar method that
of the inequality (10). Consequently, we get

k,+

1/q
s ([ (st )
Further, taking into account the inequality —Aq > —Q (i.e., A < Q/q) we have

1/q
(/B |x|_lq(x')ydx) = Cyt%/a*,

1/q
where C; = (f’_('i];/%) . By the condition Bp > ap—Q (ie., a <Q/p+P) it
follows that

1/p
< / IXI‘<B+Q‘°‘)P'(x’)de) _ Cy0IP-(0Ba)
B

_ o(nky) v
where Cy = (<1+<ﬁ—aJ/Q>p'—1) :
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Thus we find

1/q , 1/
sup (/ |x|_lq(x')ydx> (ﬂ |x|_(ﬁ+Q_a)p (x/)ydx>
t>0 B B;

=GCy Supta*ﬁ*}ﬁQ/q*Q/P < oo
>0

—a-B-A=0/p—0/q.

Now the second part of Theorem B gives us the inequality

1/p
I < byCyCy20 / WL P () dx )
Ry +
To estimate I, we consider the cases oo < Q/p and o > Q/p, separately. If
o < Q/p, then the condition

a=B+A+0/p—-0/q>0/p—0/q

implies g < p*, where p* = Qp/(Q — ap). Assume that g < p*. In the sequel we use
the notation
Dy={xeR}_ : 2k x| < 2Ky,
and N
Dy ={xeRy, : 22 < |x <22}
By Holder’s inequality with respect to the exponent p* /g and Theorem D we get

q 1/q
L= ( /R x|~ ( /B i fOI T IXI“‘Q(y’)ydy> (X’)de>

k,+

4 1/q
- e Y20 (y/ ,
- (2 /Dk . </32x\3|x|/2 FONT R0 de) (x )ydx>

keZ
* q/p”

p
<=/ (/ |f<y>|Ty|x|“Q<y'>wy> ()
kez \ YDk \VBax\B)y 2
r=a\ V4

—Agqp* ¥
X (/ |x] p*"jq (x/)ydx> '
Dy
. * a/p\ /4
< Cs <Z 2k[—lq+%‘1Q] (/ P (x')ydx) )
kEZ Dy,

=g a/p\ /4
<G (2 2 ( L |f<x>|f’<x'>wx) )
keZ Dy

1/p
<c ( L, |x|ﬁ|f<x>|f’<x'>wx> .

lay (f25,) ()
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If g = p*, then B+ A =0. By using directly Theorem D we get

; 1/p
pec (T | ")
keZ Dy

pi/p\ VP
<G 2kBp* ( | P(Vd ) )
s (kezz Jo 1

1/p
<Cu ( /. |x|ﬁp|f<x>|P<x'>de) .

k,+

*

Io y (fXD”k) (x)

For o > Q/p by Holder’s inequality with respect to the exponent p we get the follow-
ing inequality

a/p
p| [ b ( / |f<y>|p<y’>wy>
Ry + Bajx\Bjx 2

) a/p’ 1/a
<\ [ @) oy e
Byjai\Blai/2
On the other hand by using (2) and the inequality o > Q/p, we obtain
[ @ue o< [ ey @Oy
B \Bx| 2 Bo\Bx| 2
il 1
< / By, NB(x,t@9r)| dt
0 Y
‘x‘(an)p' - L
< B dt / B(x,t-9/")| dt
/0 |Boj|, d7+ qo-ow P& ) Y
’ had _0
< Cpy x| @O +Q+C12/ Tle-or'dr
|x|(—Q)p

= Cl3 |x|(OC—Q)p/+Q,

where the positive constant Ci3 does not depend on x. The latter estimate yields
1/q

q/p
L<Cu|Y / x| a0+ e/ / FOIPO)Ydy | ()Ydx
Dy Bo\Blx| 2

kEZ

1/q

q/p , ,
<c14<2 [, (L roroyay) st ononr (x')de>
kez’ Dk \/Dx

a/p\ /4
<Cu (2 k(=A+0a—0+0Q/p'+0/q)q (/5 |f(y)|”(y’)ydy> )
k

kEZ
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<Cu (kg% 200 [ wyas) W) "

a/p
<Ci ( /. |x|ﬂp|f<x)|f’<x’>ydx> .
Rk,+
Thus Theorem 1 is proved. [J

Proof of Theorem 2. We write

1/q
/ (x')¥dx <N+h+J;
{xeRy x4 |Ioc,7f(x) | >t}
1/q
_ / (xX')¥dx
{xeRy il Jp ) [T TV 00 dy>T/3}

1/q
+ / (xX')¥dx
DRy by g O TR0 dy>/3)

1/q
/ (xX')¥dx
{xeRy :fx| 4 Ie, y |fO) TY |32 (") dy>1/3}
2|x|

Then it is clear that

1/q
Ji < / (xX')dx .
{xeRy, 41207 9x|2=0-A i f(x)>7/3}

Further, taking into account the inequality —Ag < (Q—a)g—Q (i.e., c <QO—Q/q+
A) we have

A . x| (A=Y gy = €9 (-A+e-Qa+L,
By the condition 8 < 0 it follows that sup x| # =¢P.
By
Summarizing these estimates we find that

1/q
sup ([:B, |x|(—?t+a—Q)‘I(x/)7dx) s}glp |x|—ﬁ =C SuplQ/q_;H'O‘—Q—ﬁ c o

>0 >0
Soa—f-A=0-0/q

Now in the case p =1 the first part of Theorem A gives us the inequality

5 <G L ey

n
T kot
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where the positive constant Cj¢ does not depend on f.
Further, we have

1/q
5 < / (x")dx .
{xeRy 20 %x| A Hy (1f(v)|Iy|*2) (x)>7/3}

Taking into account the inequality —Ag > —Q (i.e., A < Q/q) we get

’ x| A (Y dx = CLy 9+,
1

where the positive constant C17 depends only on ¢« and A. Analogously, by virtue of
the condition B > o — Q it follows that

sup x| Pro-Q = ~Pra-C
Cp,
Then we obtain

1/q
sup < |X|M(x')ydx> sup |x|7ﬁ+o’7Q =Cp7 suth/"’}‘*O"Q’l3 < oo
>0 CB, t>0

Sa-p-A=0-0/q
Now in the case p = 1, from the second part of Theorem A we get the inequality

C
R [Pl ax
R+

T

where the positive constant Cig does not depend on f.
We now estimate J,. From 8+ A > 0 and Theorem D, we get

1/q
b= / (x')dx
<kez:Z {xeD: x4 Jg, \Bly 2 SO TP L)1 dy>2/3}

1/q
"dx
keZ {x€Dk Sy \Byg o M OIDIP Tl 6P =220 (/) dy>ct)

C 1/q
~19 B yd)
kGZ 5 5 VI (yrax )

1/q
2/ st >|<x’>de) .

1/q
/ ’yd
<kez (D lop (£ <->\-\ﬁx,;k)<x)\>cr}(x) x)
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Thus the proof of the theorem is completed. [

Proof of Theorem 3. Sufficiency part of Theorem 3 follows from Theorems 1
and 2.

Necessity. 1) Suppose that the operator I,y is bounded from L
and 1 <p<Q/(a—B—A2).

Define f;(x) =: f(¢x) for # > 0. Then it can be easily shown that

to L

plxlPy q,lx| =y

_Q_
il =77 PIfl,
PPy

b
p.xlBy

(Toyfi)(x) =t %Iy f (2x),
and

oy fil],
q,x|

= L],
x|~y q,|x|

xfl»}’

From the boundedness of Iy, we have
I <C
|| ayYfHLq,lxl’l,y ~ ||f||Lp,\x\B,y’

where C does not depend on f. Then we get

1oy £,
q,x|

. —_ 4o+ 0Q/q—2 Hla,yft

[P
q.]x| ="y
<CrrA il
By
_ CIOHQ/‘I*A*Q/P*ﬁ”fHL

PPy’
If1/p—1/q<(a—B—A)/Q,thenforall fE€L, 5, wehave HIa’nyLqJXMW —
Oast—0.
If1/p—1/q>(a~B—A)/Q,thenforall f€L, 5 wehave Hla’nyLq.Wl.y —
0ast— oo.

Therefore we obtain the equality 1 /p—1/g=(ax—B—1)/Q.

2) The proof of necessity for the case 2) is similar to that of the case 1); therefore
we omit it.

JHLet feLl, p,. 1<p= Q/(a— B —A). For given ¢t > 0 we denote
[i(x) = f) a8y (%), fa(x) = f(x) = fi(x), (11)
where X3, is the characteristic function of the set By,;. Then
INoc,yf(x) = INa,yfl (x) +I~a,yf2(x) = Fi(x) + F2(x),

where

A= [ (P01 O, 0)) 700y
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and
B = [ (TR0 "%, () F6)0)d.
2t
Note that the function f; has compact (bounded) support and thus
ar = —/ VI 2 () () dy
B2 \Bmin{1,21}
is finite.

Note also that

Fi(x)—ay= | T'|x[*Cf(y)(y)'dy— / y|“~Cr ) () dy
Bo\Buin(1,21)

By

+ Y% F )0y
Bo\Buin(1,21)
= [ PRy = Lo fi (4.
R+
Therefore

AW -al< [ WAy

R+
= [ Oy

B(x,2r)

Further, for x € B, y € B(x,2t) we have
Iy| < [x[+x —y| <3t

Consequently, for allx € B, we have
AW —al< [ b0 o] ') dy. (12
3t
By Theorem C and inequality (12), for (¢ — 8 —A)p = Q we have

17 TR (x) — ay| (£)dz
B

<cret [ g ( A |y|aQTy|f<x>|<y'>wy) ()dz

t

1/
e ( [T (My(f(x)))p(z')ydz) ’

1/p

<P (/B[ T? (My(f(x)))p (z’)ydz>
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1/p
< [ kPr 7 i) v )
B:

1/p
=C (/R” T? (XB, |x|ﬁp) (My(f(x)))p(z’)ydz>

k,+

1/p
—c ( L, 7 (1) <z')ydz>

k+

<ClIf e (13)

By

Denote
=/ bI“=2FO) )y
Bmax{l,Zt}\BZt

and estimate |F»(x) —ap| for x € B;:
Fa(0) —aa < fp  [fONT %2 = [y[* €] ya¥dy.
Cp
2t
Applying Lemma 1 and Holder’s inequality we get

IPa(v) = aal <20 [ 701wy
2t

) 1/p Oy 1/
<20t (o wPriiras) " (f, ICP )
t 1

< ClxfeP=1=2/P) 7)1,
By

< Clxl*!
SCU™ Al

< Claf* :
S
Note that if |x| <¢ and |z| < 2¢, then T?|x| < |x|+ |z|] < 3¢. Thus for (o —f —

A)p = O we obtain

IT*Fy(x) — aa] S T*|Fa(x) — o < Clxl* ||l By (14)
Denote
ap=ata=[ BTy
Bmax{l,Z[}

Finally, from (13) and (14) we have

supt*Q*’l /
x,t B,

Tl ()~ ag| /)y <CI £l

polxlPy
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INOWfH < 2Csupt_Q_)L
T liBmoy Xt B,

a0 —ag| 0y <CUfll,

Thus Theorem 3 is proved. [J
If we take p=¢g, B =0 or p=¢g, A =0 in Theorem 3, then we get the following

COROLLARY 1. I)Let 0 < a < Q/p, 1 < p < oo, then Iy y is bounded from L,
10 Ly y-
2)Let 0< < Q/p', 1 < p < oo, then Iy y is bounded from Ly xjoyto Lpy.

Proof of Theorem 4. By the definition of the weighted B-Besov spaces it suffices
to show that

y _ V£ _
1Pt =l e o, SCITF=Fle

It is easy to see that 7% commutes with Iy y, i.e., T'loyf = Ioy(T”f). Hence we
obtain

T oy f = loyf | = ey (T7F) = Toy f| < lay(IT°f = 1)

Taking L 4,[x| -4,y ~Orm on both sides of the last inequality, we obtain the desired result

by using the boundedness of Iy from L 6y 1O L ]

pilx qlx[~Ay

From Theorem 4 we get the following result on the boundedness of Iy 4 on the

B-Besov spaces B, =B’

poy — Tpo Ly

COROLLARY 2. Let 0<a<Q, 1<p<Q/a, 1/p—1/g=0/0, 1 <O <
and 0 < s <. Then the operator Iy is bounded from B q . 10 B 4 . More precisely,
there is a constant C > 0 such that

POy
ey B3, , < ClfllBs,,

holds for all f € B, v
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