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In this paper, we study the generalized anisotropic potential integral Kα,γ ⊗ f and anisotropic fractional
integral I�,α,γ f with rough kernels, associated with the Laplace–Bessel differential operator �B . We prove
that the operator f → Kα,γ ⊗ f is bounded from the Lorentz spaces Lp,r,γ (Rn

k,+) to Lq,s,γ (Rn
k,+) for

1 ≤ p < q ≤ ∞, 1 ≤ r ≤ s ≤ ∞. As a result of this, we get the necessary and sufficient conditions for the
boundedness of I�,α,γ from the Lorentz spaces Lp,s,γ (Rn

k,+) to Lq,r,γ (Rn
k,+), 1 < p < q < ∞, 1 ≤ r ≤

s ≤ ∞ and from L1,r,γ (Rn
k,+) to Lq,∞,γ (Rn

k,+) ≡ WLq,γ (Rn
k,+), 1 < q < ∞, 1 ≤ r ≤ ∞. Furthermore,

for the limiting case p = Q/α, we give an analogue of Adams’ theorem on the exponential integrability
of I�,α,γ in LQ/α,γ (Rn

k,+).

Keywords: Laplace–Bessel differential operator; generalized anisotropic potential integral; rough
anisotropic fractional integral; Lorentz spaces

2000 Mathematics Subject Classifications: 42B20; 42B25; 42B35

1. Introduction

Let R
n
k,+ be the part of the Euclidean space R

n of points x = (x ′, x ′′) defined by the inequalities
x1 > 0, . . . , xk > 0, x ′ = (x1, . . . , xk), x ′′ = (xk+1, . . . , xn), 1 ≤ k ≤ n, and γ = (γ1, . . . , γk) is
a multi-index consisting of fixed positive numbers such that |γ | = γ1 + · · · + γk and (x ′)γ =
x

γ1
1 · . . . · x

γk

k . Note that in the case k = n we assume x = x ′.
For x ∈ R

n and r > 0, let B(x, r) denote the open ball centred at x of radius r . Let d =
(d1, . . . , dn), di ≥ 1, i = 1, . . . , n, |d| = ∑n

i=1 di and tdx ≡ (td1x1, . . . , t
dnxn). By [3,5], the

function F(x, ρ) = ∑n
i=1 x2

i ρ
−2di , considered for any fixed x ∈ R

n, is a decreasing one with
respect to ρ > 0 and the equation F(x, ρ) = 1 is uniquely solvable. This unique solution will
be denoted by ρ(x). It is a simple matter to check that ρ(x − y) defines a distance between
any two points x, y ∈ R

n. Thus R
n, endowed with the metric ρ, defines a homogeneous metric
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space [3–5]. The balls with respect to ρ, centered at x of radius r , are just the ellipsoids

Ed(x, r) =
{
y ∈ R

n : (y1 − x1)
2

r2d1
+ · · · + (yn − xn)

2

r2dn
< 1

}
,

with the Lebesgue measure |Ed(0, r)|γ = ∫
Ed (0,r)

(x ′)γ dx = ω(n, k, γ )rQ, ω(n, k, γ ) =
|B(0, 1)|γ , Q = |d| + (d, γ ) and (d, γ ) = ∑n

i=1 diγi . If d = 1 ≡ (1, . . . , 1), then clearly ρ(x) =
|x| and E1(x, r) = B(x, r).

In this paper, we obtain some inequalities on the generalized anisotropic potential integrals
with rough kernels generated by the generalized shift operator of the form [15–17]

T yf (x) = Ck,γ

∫ π

0
· · ·

∫ π

0
f ((x ′, y ′)α, x ′′ − y ′′) dν(α),

where Ck,γ = π−k/2 ∏k
i=1(
((γi + 1)/2))/(
(γi/2)), x = (x ′, x ′′) ∈ R

n
k,+, (x ′, y ′)α = ((x1,

y1)α1 , . . . , (xk, yk)αk
),

(xi, yi)αi
=

√
x2

i − 2xiyi cos αi + y2
i , 1 ≤ i ≤ k, dν(α) =

k∏
i=1

sinγi−1 αi dαi, 1 ≤ k ≤ n.

Note that the generalized shift operator T y is closely related to the �B Laplace–Bessel
differential operator [15]

�B =
k∑

i=1

Bi +
n∑

i=k+1

∂2

∂x2
i

, k = 1, . . . , n,

where Bi = ∂2/∂x2
i + γi/xi∂/∂xi , γi > 0, i = 1, . . . , k.

Furthermore, T y generates the corresponding convolution

(f ⊗ g)(x) =
∫

R
n
k,+

f (y)T yg(x)(y ′)γ dy.

The fractional integrals and related topics associated with the Laplace–Bessel differential oper-
ator have been research areas for many mathematicians such as Kipriyanov [15], Lyakhov [17],
Aliev and Gadjiev [2], Gadjiev and Guliyev [6], Serbetci and Ekincioglu [21], Guliyev [7–11],
Guliyev et al. [12] and Guliyev and Garakhanova [14].

Suppose Kα,γ belongs to the weak LQ/(Q−α),γ (Rn
k,+), � ∈ LQ/(Q−α),γ (Sn−1

k,+ ), and let � be d-
homogeneous of degree zero on R

n
k,+, i.e. �(tdx) = �(x) for all t > 0, x ∈ R

n
k,+, where Sn−1

k,+ =
{x ∈ R

n
k,+ : |x|2 ≡ x2

1 + · · · + x2
n = 1}, and 0 < α < Q.

We define the generalized anisotropic potential integral by

(Kα,γ ⊗ f )(x) =
∫

R
n
k,+

Kα(y)T yf (x)(y ′)γ dy,

and the anisotropic fractional integral by

I�,α,γ f (x) =
∫

R
n
k,+

�(y)

ρ(y)Q−α
T yf (x)(y ′)γ dy

with rough kernels associated with the Laplace–Bessel differential operator �B . It is clear that
when � ≡ 1, I�,α,γ is the usual anisotropic Riesz potential Iα,γ , associated with �B [8,9].
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In this paper, we obtain a pointwise rearrangement estimate of the generalized anisotropic
potential integral Kα,γ ⊗ f by using the O’Neil inequality for the convolution given in [11] by
the authors. Then we prove that Kα,γ ⊗ f is bounded from the Lorentz spaces Lp,r,γ (Rn

k,+) to
Lq,s,γ (Rn

k,+), 1 ≤ p ≤ Q/α, 1 ≤ r ≤ s ≤ ∞, and 1/p − 1/q = α/Q, Q = |d| + (d, γ ), where
(d, γ ) = ∑n

i=1 diγi . As a result of this, we obtain the necessary and sufficient conditions for
the rough anisotropic fractional integral operator I�,α,γ to be bounded from the Lorentz spaces
Lp,s,γ (Rn

k,+) to Lq,r,γ (Rn
k,+), 1 < p < q < ∞, 1 ≤ r ≤ s ≤ ∞ and from the spaces L1,r,γ (Rn

k,+)

to WLq,γ (Rn
k,+), 1 < q < ∞, 1 ≤ r ≤ ∞. Finally, we give an analogue of Adams’ theorem on

the exponential integrability of anisotropic potential integrals with rough kernel I�,α,γ f for the
limiting case p = Q/α in LQ/α,γ (Rn

k,+).

2. Preliminaries

Denote by Lp,γ ≡ Lp,γ (Rn
k,+) the set of all classes of measurable functions f with finite norm

‖f ‖Lp,γ
=

(∫
R

n
k,+

|f (x)|p(x ′)γ dx

)1/p

, 1 ≤ p < ∞.

If p = ∞, we assume

L∞,γ (Rn
k,+) = L∞(Rn

k,+) =
{

f : ‖f ‖L∞,γ
= ess sup

x∈R
n
k,+

|f (x)| < ∞
}

.

Suppose f : R
n
k,+ → R is a measurable function, then the decreasing γ -rearrangement of f

defined on [0, ∞) by

f ∗
γ (t) = inf{s > 0 : f∗,γ (s) ≤ t}, (t ≥ 0)

where f∗,γ is the γ -distribution function of f [11,18] defined by

f∗,γ (s) ≡ |{x ∈ R
n
k,+ : |f (x)| > s}|γ

=
∫

{x∈R
n
k,+:|f (x)|>s}

(x ′)γ dx, s ≥ 0.

We denote by WLp,γ (Rn
k,+) the weak Lp,γ (Marcinkiewicz) space of all measurable functions

f with finite norm

‖f ‖WLp,γ
= sup

t>0
t1/pf ∗

γ (t) < ∞, 1 ≤ p < ∞.

We define a function f ∗∗
γ on (0, ∞) by f ∗∗

γ (t) = (1/t)
∫ t

0 f ∗
γ (s) ds, t > 0.

Definition 1 If 0 < p, q < ∞, then the Lorentz space Lp,q,γ (Rn
k,+) = Lp,q(R

n
k,+, (x ′)γ dx) is

the set of all classes of measurable functions f with the finite quasi-norm

‖f ‖p,q,γ ≡ ‖f ‖Lp,q,γ
=

(∫ ∞

0
(t1/pf ∗

γ (t))q
dt

t

)1/q

.

If 0 < p ≤ ∞, q = ∞, then Lp,∞,γ (Rn
k,+) = WLp,γ (Rn

k,+).
If 1 ≤ q ≤ p or p = q = ∞, then the functional ‖f ‖p,q,γ is a norm. If p = q = ∞, then the
space L∞,∞,γ (Rn

k,+) is denoted by L∞,γ (Rn
k,+).
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In the case 1 < p, q < ∞, we define

‖f ‖(p,q),γ =
(∫ ∞

0
(t1/pf ∗∗

γ (t))q
dt

t

)1/q

,

(with the usual modification if 0 < p ≤ ∞, q = ∞) which is a norm on Lp,q,γ (Rn
k,+) for 1 <

p < ∞, 1 ≤ q ≤ ∞ or p = q = ∞.
If 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, then

‖f ‖p,q,γ ≤ ‖f ‖(p,q),γ ≤ p′‖f ‖p,q,γ ,

where p′ = p/(p − 1). That is, the quasi-norms ‖f ‖p,q,γ and ‖f ‖(p,q),γ are equivalent.

3. Main results

In the following theorem, we give a pointwise rearrangement estimate of the generalized
anisotropic potential integral Kα,γ ⊗ f associated with the Laplace–Bessel differential operator
�B by using the O’Neil inequality for the convolutions obtained in Section 4 (see Theorem 5).

Theorem 1 Suppose that Kα,γ ∈ WLQ/(Q−α),γ (Rn
k,+), 0 < α < Q. Then for Kα,γ ⊗ f the

following inequalities hold

(Kα,γ ⊗ f )∗γ (t) ≤ (Kα,γ ⊗ f )∗∗
γ (t) ≤ A1

(
Q

α
tα/Q−1

∫ t

0
f ∗

γ (s) ds +
∫ ∞

t

sα/Q−1f ∗
γ (s) ds

)
,

(1)
where A1 = Ck,γ (Q/α)‖Kα‖WLQ/(Q−α),γ

.

Corollary 1 Suppose that � is d-homogeneous of degree zero on R
n
k,+ and � ∈

LQ/(Q−α),γ (Sn−1
k,+ ), 0 < α < Q. Then for the rough anisotropic fractional integral I�,α,γ f the

following inequalities hold

(I�,α,γ f )∗γ (t) ≤ (I�,α,γ f )∗∗
γ (t) ≤ A2

(
Q

α
tα/Q−1

∫ t

0
f ∗

γ (s) ds +
∫ ∞

t

sα/Q−1f ∗
γ (s) ds

)
,

where

A2 = Ck,γ

(
Q

α

) (
A

Q

)(Q−α)/Q

, A = ‖�‖Q/(Q−α)

LQ/(Q−α),γ (Sn−1
k,+ )

.

Corollary 2 For the anisotropic Riesz potential

Iα,γ f (x) =
∫

R
n
k,+

T yρ(x)α−Qf (y)(y ′)γ dy, 0 < α < Q,

the following inequalities hold

(Iα,γ f )∗γ (t) ≤ (Iα,γ f )∗∗
γ (t) ≤ A3

(
Q

α
tα/Q−1

∫ t

0
f ∗

γ (s) ds +
∫ ∞

t

sα/Q−1f ∗
γ (s) ds

)
,

where A3 = Ck,γ (Q/α)ω(n, k, γ )(Q−α)/Q.
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One of the main purposes of this paper is to give the following Hardy–Littlewood–Sobolev
inequality for the generalized anisotropic potential integral Kα,γ ⊗ f associated with the Laplace–
Bessel differential operator �B in the Lorentz spaces.

Theorem 2 (Hardy–Littlewood–Sobolev theorem for Kα,γ ⊗ f in the Lorentz spaces) Let 0 <

α < Q, 1 ≤ p < q < ∞, and Kα,γ ∈ WLQ/(Q−α),γ (Rn
k,+). Then

(1) If 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, f ∈ Lp,r,γ (Rn
k,+) and 1/p − 1/q = α/Q, then Kα,γ ⊗

f ∈ Lq,s,γ (Rn
k,+) and

‖Kα,γ ⊗ f ‖Lq,s,γ
≤ A1K(p, q, r, s)‖f ‖Lp,r,γ

,

where K(p, q, r, s) = ((Q/α)(p′)1/s(p′s ′/r ′)1/r ′ + (qr/s)1/sq1/r ′
), p′ = p/(p − 1).

(2) If p = 1, 1 ≤ r ≤ ∞, f ∈ L1,r,γ (Rn
k,+) and 1 − 1/q = α/Q, then Kα,γ ⊗ f ∈ WLq,γ (Rn

k,+)

and

‖Kα,γ ⊗ f ‖WLq,γ
≤ A1

(
Q

α
+ 1

)
‖f ‖L1,r,γ

.

(3) If p = Q/α, r = 1, and f ∈ LQ/α,1,γ (Rn
k,+), then Kα,γ ⊗ f ∈ L∞,γ (Rn

k,+) and

‖Kα,γ ⊗ f ‖L∞,γ
≤ A1

Q

α
‖f ‖LQ/α,1,γ

.

As a consequence of Theorem 2, we have the following corollaries.

Corollary 3 (Hardy–Littlewood–Sobolev theorem for I�,α,γ f in the Lorentz spaces) Let 0 <

α < Q, 1 ≤ p < q < ∞, and let � be d-homogeneous of degree zero on R
n
k,+ and � ∈

LQ/(Q−α),γ (Sn−1
k,+ ). Then

(1) If 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, f ∈ Lp,r,γ (Rn
k,+) and 1/p − 1/q = α/Q, then I�,α,γ f ∈

Lq,s,γ (Rn
k,+) and

‖I�,α,γ f ‖Lq,s,γ
≤ A2K(p, q, r, s)‖f ‖Lp,r,γ

.

(2) If p = 1, 1 ≤ r ≤ ∞, f ∈ L1,r,γ (Rn
k,+) and 1 − 1/q = α/Q, then I�,α,γ f ∈ WLq,γ (Rn

k,+)

and

‖I�,α,γ f ‖WLq,γ
≤ A2

(
Q

α
+ 1

)
‖f ‖L1,r,γ

.

(3) If p = Q/α, r = 1, and f ∈ LQ/α,1,γ (Rn
k,+), then I�,α,γ f ∈ L∞,γ (Rn

k,+) and

‖I�,α,γ f ‖L∞,γ
≤ A2

Q

α
‖f ‖LQ/α,1,γ

.

Corollary 4 (Hardy–Littlewood–Sobolev theorem for Iα,γ f in the Lorentz spaces) Let 0 <

α < Q and 1 ≤ p < q < ∞.

(1) If 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, f ∈ Lp,r,γ (Rn
k,+) and 1/p − 1/q = α/Q, then Iα,γ f ∈

Lq,s,γ (Rn
k,+) and

‖Iα,γ f ‖Lq,s,γ
≤ A3K(p, q, r, s)‖f ‖Lp,r,γ

.

(2) If p = 1, 1 ≤ r ≤ ∞, f ∈ L1,r,γ (Rn
k,+) and 1 − 1/q = α/Q, then Iα,γ f ∈ WLq,γ (Rn

k,+)

and

‖Iα,γ f ‖WLq,γ
≤ A3

(
Q

α
+ 1

)
‖f ‖L1,r,γ

.
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(3) If p = Q/α, r = 1, and f ∈ LQ/α,1,γ (Rn
k,+), then Iα,γ f ∈ L∞,γ (Rn

k,+) and

‖Iα,γ f ‖L∞,γ
≤ A3

Q

α
‖f ‖LQ/α,1,γ

.

Corollary 5 Let 0 < α < Q, � be d-homogeneous of degree zero on R
n
k,+ and � ∈

LQ/(Q−α),γ (Sn−1
k,+ ).

(1) If 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, f ∈ Lp,γ (Rn
k,+) and 1/p − 1/q = α/Q, then I�,α,γ f ∈

Lq,γ (Rn
k,+) and

‖I�,α,γ f ‖Lq,γ
≤ A4K(p, q)‖f ‖Lp,γ

,

where A4 = Ck,γ (Q/α)(A/Q)(Q−α)/Q, K(p, q) ≡ K(p, q, p, q) = ((Q/α)p1/qq1/p′ +
(p′)1/q(q ′)1/p′

).
(2) If p = 1, f ∈ L1,γ (Rn

k,+) and 1 − 1/q = α/Q, then I�,α,γ f ∈ WLq,γ (Rn
k,+) and

‖I�,α,γ f ‖WLq,γ
≤ A4

Q

α
‖f ‖L1,γ

.

Note that in the case � ≡ 1, Corollary 5 was proved in [9].
In the following theorem, we get the necessary and sufficient conditions for the boundedness

of the rough anisotropic fractional integral operator I�,α,γ in the Lorentz spaces.

Theorem 3 Let 1 ≤ p < q < ∞ and let � be d-homogeneous of degree zero on R
n
k,+ and

� ∈ LQ/(Q−α),γ (Sn−1
k,+ ), 0 < α < Q.

(1) If 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, then the condition 1/p − 1/q = α/Q is necessary and
sufficient for the boundedness of I�,α,γ from Lp,r,γ (Rn

k,+) to Lq,s,γ (Rn
k,+).

(2) If p = 1, 1 ≤ r ≤ ∞, then the condition 1 − 1/q = α/Q is necessary and sufficient for the
boundedness of I�,α,γ from L1,r,γ (Rn

k,+) to WLq,γ (Rn
k,+).

We can give the following corollaries from Theorem 3.

Corollary 6 Let 1 ≤ p < q < ∞ and 0 < α < Q. Let also � be d-homogeneous of degree
zero on R

n
k,+ and � ∈ LQ/(Q−α),γ (Sn−1

k,+ ).

(1) If 1 < p < Q/α, then the condition 1/p − 1/q = α/Q is necessary and sufficient for the
boundedness of I�,α,γ from Lp,γ (Rn

k,+) to Lq,γ (Rn
k,+).

(2) If p = 1, then the condition 1 − 1/q = α/Q is necessary and sufficient for the boundedness
of I�,α,γ from L1,γ (Rn

k,+) to WLq,γ (Rn
k,+).

Corollary 7 Let 1 ≤ p < q < ∞ and 0 < α < Q.

(1) If 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, then the condition 1/p − 1/q = α/Q is necessary and
sufficient for the boundedness of Iα,γ from the Lorentz spaces Lp,r,γ (Rn

k,+) to Lq,s,γ (Rn
k,+).

(2) If p = 1, 1 ≤ r ≤ ∞, then the condition 1 − 1/q = α/Q is necessary and sufficient for the
boundedness of Iα,γ from L1,r,γ (Rn

k,+) to WLq,γ (Rn
k,+).

In the limiting case p = Q/α the boundedness of the rough anisotropic fractional integral
operator I�,α,γ in LQ/α,γ (Rn

k,+) does not hold. However, the following theorem can be regarded
as the substitute of the boundedness for I�,α,γ in this case. This theorem is an analogue of the
Adams theorem given in [1] by the exponential integrability for the Riesz potential of order α

(0 < α < n).
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Theorem 4 Let 0 < α < Q, � be d-homogeneous of degree zero on R
n
k,+ and � ∈

LQ/(Q−α),γ (Sn−1
k,+ ). Then there is a constant C0 = C0(n, k, γ, α) depending only on n, k, γ and

α such that for all f ∈ LQ/α,γ (Ed(0, r))

1

|Ed(0, r)|γ
∫

Ed (0,r)

exp

(
Q

∣∣∣∣ I�,α,γ f (x)

‖�‖LQ/(Q−α),γ
‖f ‖LQ/α,γ

∣∣∣∣
Q/(Q−α)

)
(x ′)γ dx ≤ C0.

In the isotropic case, Theorem 4 was provided in [13].

4. Some auxiliary lemmas

Lemma 1 Let f and g be measurable functions on R
n
k,+ such that sup{f (x) : x ∈ R

n
k,+} ≤ λ

and f vanishes outside of a measurable set E with |E|γ = τ. Then, for all t > 0,

(f ⊗ g)∗∗
γ (t) ≤ λτ min{g∗∗

γ (τ ), g∗∗
γ (t)}. (2)

Proof For a > 0, define

ga =
{

g(x), if |g(x)| ≤ a

0, if |g(x)| > a

and let

ga(x) = g(x) − ga(x).

Then, we can write

f ⊗ g = f ⊗ ga + f ⊗ ga.

If s > a, then ga∗,γ (s) = g∗,γ (s) = 0. If s ≤ a, then we have

ga
∗,γ (s) =

∫
{y:ga(y)>s}

(y ′)γ dy

=
∫

{y:s<ga(y)≤a}
(y ′)γ dy

= g∗,γ (a),

and we have

(f ⊗ ga)∗∗
γ (t) ≤ sup

R
n
k,+

|(f ⊗ ga)(y)|

≤ sup
E

f (y)||ga||L1,γ

≤ λ

∫ ∞

a

ga
∗,γ (s) ds

≤ λτa = λτg∗∗
γ (t).

The last inequality follows from the equality

f ∗∗
γ (t) = f ∗

γ (t) + 1

t

∫ ∞

f ∗
γ (t)

f∗,γ (s) ds, (3)

and thus, the first inequality of the lemma is established.
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To prove the second inequality, set a = g∗(τ ) to obtain

(f ⊗ g)∗∗
γ (t) = 1

t
sup

|A|γ =t

∫
A

|(f ⊗ g)(y)|(y ′)γ dy

≤ sup
R

n
k,+

|(f ⊗ g)(y)|

≤ sup
R

n
k,+

|(f ⊗ ga)(y)| + sup
R

n
k,+

|(f ⊗ ga)(y)|

≤ λτg∗
γ (t) + λ

∫ ∞

g∗
γ (τ )

g∗,γ (s) ds

≤ λτ

[
g∗

γ (t) + 1

τ

∫ ∞

g∗
γ (τ )

g∗,γ (s) ds

]

≤ λτg∗∗
γ (t)

by Equation (3). �

In the following theorem, we show that the O’Neil inequality for rearrangements of the con-
volution associated with the Laplace–Bessel differential operator �B holds. The methods of the
proof used here are close to those in [22].

Theorem 5 (O’Neil inequality for rearrangements of convolutions associated with �B)
If f and g are measurable functions, then for any t > 0

(f ⊗ g)∗∗
γ (t) ≤ tf ∗∗

γ (t)g∗∗
γ (t) +

∫ ∞

t

f ∗
γ (u)g∗

γ (u) du. (4)

Proof Fix t > 0 and select a doubly infinite sequence {yi} whose indices ranges from −∞ to
∞ such that

y0 = f ∗
γ (t)

yi ≤ yi+1

lim
i→∞ yi = ∞
lim

i→−∞ yi = 0.

Let

f (z) =
∞∑

i=−∞
fi(z),

where

fi(z) =

⎧⎪⎨
⎪⎩

0, if |f (z)| ≤ yi−1;
f (z) − yi−1 sgn f (z), if yi−1 < |f (z)| ≤ yi;
yi − yi−1 sgn f (z), if yi < |f (z)|.
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Clearly, the series converges absolutely, and therefore,

f ⊗ g =
( ∞∑

i=−∞
fi

)
⊗ g

=
(

0∑
i=−∞

fi

)
⊗ g +

( ∞∑
i=1

fi

)
⊗ g

= h1 + h2

with

(f ⊗ g)∗∗
γ (t) ≤ (h1)

∗∗
γ (t) + (h2)

∗∗
γ (t).

To evaluate (h2)
∗∗
γ (t), we use inequality (2) with Ei ≡ {z : |f (z)| > yi−1} = E and a = yi −

yi−1 to obtain

(h2)
∗∗
γ (t) ≤

∞∑
i=1

(yi − yi−1)f∗,γ (yi−1)g
∗∗
γ (t)

= g∗∗
γ (t)

∞∑
i=1

f∗,γ (yi−1)(yi − yi−1).

The series on the right is an infinite Riemann sum for the integral

∫ ∞

f ∗
γ (t)

f∗,γ (y) dy,

and provides an arbitrarily close approximation with an appropriate choice of the sequence {yi}.
Therefore,

(h2)
∗∗
γ (t) ≤ g∗∗

γ (t)

∫ ∞

f ∗
γ (t)

f∗,γ (y) dy. (5)

From inequality (2),

(h1)
∗∗
γ (t) ≤

∞∑
i=1

(yi − yi−1)f∗,γ (yi−1)g
∗∗
γ (f∗,γ (yi−1)).

Similarly as in [22, Lemma 1.8.8], we have that

(h1)
∗∗
γ (t) ≤

∫ f ∗
γ (t)

0
f∗,γ (y)g∗∗

γ (f∗,γ (y)) dy

= −
∫ ∞

t

ug∗∗
γ (u) df ∗

γ (u)

= −ug∗∗
γ (u)f ∗

γ (u)|∞t +
∫ ∞

t

f ∗
γ (u)g∗

γ (u) du

≤ tg∗∗
γ (t)f ∗

γ (t) +
∫ ∞

t

f ∗
γ (u)g∗

γ (u) du (6)
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Thus, from (3), (5) and (6),

(h1)
∗∗
γ (t) + (h2)

∗∗
γ (t) ≤ g∗∗

γ (t)

[
tf ∗

γ (t) +
∫ ∞

f ∗
γ (t)

f∗,γ (y) dy

]
+

∫ ∞

t

f ∗
γ (u)g∗

γ (u) du

≤ tf ∗∗
γ (t)g∗∗

γ (t) +
∫ ∞

t

f ∗
γ (u)g∗

γ (u) du.
�

We need the following two generalized Hardy inequalities [19] which are to be used in the
proof of Theorem 2.

Lemma 2 Let 1 ≤ r ≤ s ≤ ∞ and let v and w be two functions such that measurable and positive
a.e. on (0, ∞). Then there exists a constant C independent of the function ϕ such that

(∫ ∞

0

(∫ t

0
ϕ(τ) dτ

)s

w(t) dt

)1/s

≤ C

(∫ ∞

0
ϕ(t)rv(t) dt

)1/r

, (7)

if and only if

K = sup
r>0

(∫ ∞

r

w(t) dt

)1/s (∫ r

0
v(t)1−r ′

dt

)1/r ′

< ∞. (8)

Moreover, if C is the best constant in (7) and K is defined by (8), then

K ≤ C ≤ k(r, s)K. (9)

Here the constant k(r, s) in (9) can be written in various forms. For example [20],

k(r, s) = r1/s(r ′)1/r ′
or k(r, s) = s1/s(s ′)1/r ′

or k(r, s) =
(

1 + s

r ′
)1/s

(
1 + r ′

s

)1/r ′

.

Lemma 3 Let 1 ≤ r ≤ s ≤ ∞, and let v and w be two functions such that measurable and
positive a.e. on (0, ∞). Then there exists a constant C independent of the function ϕ such that

(∫ ∞

0

(∫ ∞

t

ϕ(τ ) dτ

)s

w(t) dt

)1/s

≤ C

(∫ ∞

0
ϕ(t)rv(t) dt

)1/r

(10)

if and only if

K1 = sup
r>0

(∫ r

0
w(t) dt

)1/s (∫ ∞

r

v(t)1−r ′
dt

)1/r ′

< ∞.

Moreover, the best constant C in (10) satisfies the inequalities K1 ≤ C ≤ k(r, s)K1.
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Lemma 4 [1] Let a(s, t) be a non-negative measurable function on (−∞, +∞) × [0, +∞) such
that 0 < s < t

a(s, t) ≤ 1, a.e. if 0 < s < t, (11)

ess sup
t>0

(∫ 0

−∞
+

∫ ∞

t

a(s, t)p
′
ds

)1/p′

= b < ∞. (12)

Then there is a constant C0 = C0(p, b), such that for φ ≥ 0 with

∫ ∞

−∞
φ(s)p ds ≤ 1, (13)

we have ∫ ∞

0
e−F(t) dt ≤ C0, (14)

where

F(t) = t −
(∫ ∞

−∞
a(s, t)φ(s) ds

)p′

. (15)

5. Proof of the theorems

Proof of Theorem 1 Since Kα,γ ∈ WLQ/(Q−α),γ (Rn
k,+), we have

(Kα)∗γ (t) ≤ ‖Kα‖WLQ/(Q−α),γ
tα/Q−1, (Kα)∗∗

γ (t) ≤ Q

α
‖Kα‖WLQ/(Q−α),γ

tα/Q−1.

By using inequality (4), we get inequality (1). Hence, the proof of the theorem is completed. �

Proof of Theorem 2 The proof of the theorem is based on the pointwise rearrangement estimate
of Kα,γ ⊗ f obtained in Theorem 1.

(1) Let 1 < p < Q/α, 1 ≤ r ≤ s ≤ ∞, f ∈ Lp,r,γ (Rn
k,+) and 1/p − 1/q = α/Q. By using

inequality (1), we have

‖Kα,γ ⊗ f ‖Lq,s,γ
= ‖(Kα,γ ⊗ f )∗γ (t)t1/q−1/s‖Ls(0,∞)

≤ A1
Q

α

(∫ ∞

0
t s(α/Q−1)+s/q−1

(∫ t

0
f ∗

γ (s) ds

)s

dt

)1/s

+ A1

(∫ ∞

0

(∫ ∞

t

sα/Q−1f ∗
γ (s) ds

)s

t s/q−1 dt

)1/s

.

From Lemma 2, for the validity of the inequality

(∫ ∞

0
t s(α/Q−1)+s/q−1

(∫ t

0
f ∗

γ (τ ) dτ

)s

dt

)1/s

≤ C1

(∫ ∞

0

(
t1/pf ∗

γ (t)
)r dt

t

)1/r

,
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the necessary and sufficient condition is

sup
t>0

(∫ ∞

t

τ s(α/Q−1)+s/q−1 dτ

)1/s (∫ t

0
τ (r/p−1)(1−r ′) dτ

)1/r ′

= s−1/s

(
1 − α

Q
− 1

q

)−1/s (
p′

r ′

)1/r ′

sup
t>0

tα/Q−1+1/q+1−1/p < ∞

⇐⇒ 1

p
− 1

q
= α

Q
,

where

C1 ≤ s−1/s

(
1 − α

Q
− 1

q

)−1/s (
p′

r ′

)1/r ′

s1/s(s ′)1/r ′ = (p′)1/s

(
p′s ′

r ′

)1/r ′

.

Furthermore, from Lemma 3, for the validity of the inequality

(∫ ∞

0

(∫ ∞

t

τ α/Q−1f ∗
γ (τ ) dτ

)s

t s/q−1 dt

)1/s

≤ C2

(∫ ∞

0

(
t1/pf ∗

γ (t)
)r dt

t

)1/r

,

the necessary and sufficient condition is

sup
t>0

(∫ t

0
τ s/q−1 dτ

)1/s (∫ ∞

t

τ (α/Q−1)r ′−r ′/p+r ′/r dτ

)1/r ′

=
(q

s

)1/s

(r ′)−1/r ′
(

1

p
− α

Q

)−1/r ′

sup
t>0

tα/Q−(1/p−1/q) < ∞ ⇐⇒ 1

p
− 1

q
= α

Q
,

where C2 ≤ (q/s)1/s(r ′)−1/r ′
(1/p − α/Q)−1/r ′

r1/s(r ′)1/r ′ = (qr/s)1/sq1/r ′
.

By using these inequalities, we obtain

‖Kα,γ ⊗ f ‖Lq,s,γ
≤ A1

(
C1

Q

α
+ C2

)
‖f ‖Lp,r,γ

.

(2) Let p = 1, 1 − 1/q = α/Q, 1 ≤ r ≤ ∞ and f ∈ L1,r,γ (Rn
k,+).

From inequality (1), we have

‖Kα,γ ⊗ f ‖WLq,γ
= sup

t>0
t1/q(Kα,γ ⊗ f )∗γ (t)

≤ A1 sup
t>0

t1/q

(
Q

α
tα/Q−1

∫ t

0
f ∗

γ (s) ds +
∫ ∞

t

sα/Q−1f ∗
γ (s) ds

)

= A1
Q

α
sup
t>0

∫ t

0
f ∗

γ (s) ds + A1 sup
t>0

t1/q

∫ ∞

t

s−1/qf ∗
γ (s) ds

≤ A1

(
Q

α
+ 1

)
‖f ∗

γ ‖L1(0,∞) = A1

(
Q

α
+ 1

)
‖f ‖L1,γ

.

(3) Let p = Q/α, r = 1 and f ∈ LQ/α,1,γ (Rn
k,+).
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By using inequality (1), we have

‖Kα,γ ⊗ f ‖L∞,γ
= sup

t>0
(Kα,γ ⊗ f )∗γ (t)

≤ A1 sup
t>0

(
Q

α
tα/Q−1

∫ t

0
f ∗

γ (s) ds +
∫ ∞

t

sα/Q−1f ∗
γ (s) ds

)

≤ A1
Q

α

∫ ∞

0
sα/Q−1f ∗

γ (s) ds = A1
Q

α
‖f ‖LQ/α,1,γ

.

Thus, the proof of Theorem 2 is completed. �

Proof of Theorem 3 Sufficiency of the theorem follows from Corollary 3.
Necessity. (1) Suppose that the operator I�,α,γ is bounded from Lp,r,γ (Rn

k,+) to Lq,s,γ (Rn
k,+)

and 1 < p < Q/α.
Define ft (x) =: f (tdx) for t > 0. Then it can be easily shown that

‖ft‖Lp,r,γ
= t−Q/p‖f ‖Lp,r,γ

, I�,α,γ ft (x) = t−αI�,α,γ f (tdx),

and

‖I�,α,γ ft‖Lq,s,γ
= t−α−Q/q‖I�,α,γ f ‖Lq,s,γ

.

Since the operator I�,α,γ is bounded from Lp,r,γ (Rn
k,+) to Lq,s,γ (Rn

k,+), we have

‖I�,α,γ f ‖Lq,s,γ
≤ C‖f ‖Lp,r,γ

,

where C is independent of f . Then we get

‖I�,α,γ f ‖Lq,s,γ
= tα+Q/q‖I�,α,γ ft‖Lq,s,γ

≤ Ctα+Q/q‖ft‖Lp,r,γ
= Ctα+Q/q−Q/p‖f ‖Lp,r,γ

.

If 1/p < 1/q + α/Q, then for all f ∈ Lp,r,γ (Rn
k,+) we have ‖I�,α,γ f ‖Lq,s,γ

= 0 as t → 0.
If 1/p > 1/q + α/Q, then for all f ∈ Lp,r,γ (Rn

k,+), we have ‖I�,α,γ f ‖Lq,s,γ
= 0 as t → ∞.

Therefore, we get 1/p = 1/q + α/Q.
(2) Suppose that the operator I�,α,γ is bounded from L1,r,γ (Rn

k,+) to WLq,γ (Rn
k,+). It is easy

to show that

‖ft‖L1,r,γ
= t−Q‖f ‖L1,r,γ

and

‖I�,α,γ ft‖WLq,γ
= t−α−Q/q‖I�,α,γ f ‖WLq,γ

.

By the boundedness of I�,α,γ from L1,r,γ (Rn
k,+) to WLq,γ (Rn

k,+), we have

‖I�,α,γ f ‖WLq,γ
≤ C‖f ‖L1,r,γ

,

where C is independent of f . Then we have

(I�,α,γ ft )∗,γ (τ ) = t−Q(I�,α,γ f )∗,γ (tατ ),

‖I�,α,γ ft‖WLq,γ
= t−α−Q/q‖I�,α,γ f ‖WLq,γ

,

and

‖I�,α,γ f ‖WLq,γ
= tα+Q/q‖I�,α,γ ft‖WLq,γ

≤ Ctα+Q/q‖ft‖L1,r,γ
= Ctα+Q/q−Q‖f ‖L1,r,γ

.

If 1 < 1/q + α/Q, then for all f ∈ L1,r,γ (Rn
k,+) we have ‖I�,α,γ f ‖WLq,γ

= 0 as t → 0.
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If 1 > 1/q + α/Q, then for all f ∈ L1,γ (Rn
k,+) we have ‖I�,α,γ f ‖WLq,γ

= 0 as t → ∞.
Therefore, we get the equality 1 = 1/q + α/Q and the proof of the theorem is completed. �

Proof of Theorem 4 First, assume that ‖f ‖LQ/α,γ
= 1. By using the O’Neil inequality (Corollary

1) for the rearrangement of a convolution, we have

(I�,α,γ f )∗γ (t) ≤ (I�,α,γ f )∗∗
γ (t) ≤ Ck,γ

(
A

Q

)1/p′ (
pt−1/p′

∫ t

0
f ∗

γ (s) ds +
∫ D

t

s−1/p′
f ∗

γ (s) ds

)
,

(16)
where p = Q/α, p′ = Q/(Q − α) and D = |Ed(0, r)|γ .

Let

a(s, t) =

⎧⎪⎨
⎪⎩

1, 0 < s < t,

p e(t−s)/p′
, t < s < ∞,

0, −∞ < s ≤ 0,

and

φ(s) = D1/pf ∗
γ (D e−s) e−s/p.

Then we have

sup
t>0

(∫ 0

−∞
+

∫ ∞

t

a(s, t)p
′
ds

)1/p′

= sup
t>0

(∫ ∞

t

(p e(t−s)/p′
)p

′
ds

)1/p′

= p < ∞,

and

∫ ∞

−∞
φ(s)p ds =

∫ ∞

−∞
Df ∗

γ (D e−s)p e−s ds =
∫ ∞

0
f ∗

γ (t)p dt

=
∫ D

0
f ∗

γ (t)p dt =
∫

Ed (0,r)

|f (x)|p(x ′)γ dx ≤ 1.

Thus, a(s, t) and φ(s) satisfy (11)–(13). By Lemma 4, there is a constant C0 depending only
on p such that ∫ ∞

0
e−F(t) dt ≤ C0, (17)

where

F(t) = t −
(∫ ∞

−∞
a(s, t)φ(s) ds

)p′

.

On the other hand, from the definitions of a(s, t) and φ(s), it follows that

F(t) = t −
(∫ t

0
φ(s) ds +

∫ ∞

t

p e(t−s)/p′
φ(s) ds

)p′

= t −
(∫ t

0
D1/pf ∗

γ (D e−s) e−s/p ds +
∫ ∞

t

p e(t−s)/p′
D1/pf ∗

γ (D e−s) e−s/p ds

)p′

.
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By the change of variables, we have

F

(
ln

D

t

)
= ln

D

t
−

(∫ ln(D/t)

0
D1/pf ∗

γ (D e−s) e−s/p ds

+
∫ ∞

ln(D/t)

p e(ln(D/t)−s)/p′
D1/p f ∗

γ (D e−s) e−s/p ds

)p′

= ln
D

t
− (I1 + I2)

p′
.

Here I1 and I2 can be written in the following form:

I1 =
∫ ln(D/t)

0
D1/p f ∗

γ (D e−s) e−s/p ds =
∫ D

t

f ∗
γ (τ )τ−1/p′

dτ,

I2 =
∫ ∞

ln(D/t)

p e(ln(D/t)−s)/p′
D1/p f ∗

γ (D e−s) e−s/p ds

=
∫ ∞

ln(D/t)

p eln(D/t)/p′
e−s/p′

e−s/pD1/p f ∗
γ (D e−s) ds

=
∫ ∞

ln(D/t)

p D t−1/p′
e−s f ∗

γ (D e−s

= pt−1/p′
∫ t

0
f ∗

γ (τ ) dτ.

Then we have

F

(
ln

D

t

)
= ln

D

t

(
p t−1/p′

∫ t

0
f ∗

γ (τ ) dτ +
∫ D

t

f ∗
γ (τ )τ−1/p′

dτ

)p′

. (18)

Combining (16) and (17) with (18), we get

C0 ≥
∫ ∞

0
e−F(t) dt =

∫ D

0
t−1 e−F(ln(D/t)) dt

=
∫ D

0
t−1 exp

{(
p t−1/p′

∫ t

0
f ∗

γ (τ ) dτ +
∫ D

t

f ∗
γ (τ ) τ−1/p′

dτ

)p′

− ln
D

t

}
dt

= 1

D

∫ D

0
exp

{(
p t−1/p′

∫ t

0
f ∗

γ (τ ) dτ +
∫ D

t

f ∗
γ (τ ) τ−1/p′

dτ

)p′}
dt

≥ 1

D

∫ D

0
exp

{
Q

A
[(I�,α,γ f )∗γ (t)]p′

}
dt

= 1

D

∫
Ed (0,r)

exp

(
Q

A
|I�,α,γ f (x)|p′

)
(x ′)γ dx,

i.e.

1

|Ed(0, r)|γ
∫

Ed (0,r)

exp

(
Q

∣∣∣∣ I�,α,γ f (x)

‖�‖LQ/(Q−α),γ

∣∣∣∣
Q/(Q−α)

)
(x ′)γ dx ≤ C0, (19)

where

‖f ‖LQ/α,γ
= 1.
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Now consider the general case. If ‖f ‖LQ/α,γ
�= 1, then we denote g = f/‖f ‖LQ/α,γ

. Thus,

I�,α,γ g(x) = I�,α,γ f (x)

‖f ‖LQ/α,γ

and ‖g‖LQ/α,γ
= 1. From (19), it follows that

1

|Ed(0, r)|γ
∫

Ed (0,r)

exp

(
Q

∣∣∣∣ I�,α,γ f (x)

‖�‖LQ/(Q−α),γ
‖f ‖LQ/α,γ

∣∣∣∣
Q/(Q−α)

)
(x ′)γ dx ≤ C0,

This finishes the proof of Theorem 4. �
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