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We determine spectrum and principal functions of the non-self-adjoint differential operator corresponding to 1-D non-
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1. Introduction and preliminaries

In this paper, we are concerned with the non-self-adjoint boundary-value problem (BVP) corresponding to

−y′′+q(x)y =k2�(x)y, x ∈R+ = [0,∞) (1)

and

y(0)=0, (2)

where k is a complex parameter and � is the discontinuous density function given by

�(x)=
{

�2 if 0�x�a

1 if a<x<∞
and �>1. (3)

The complex-valued function q is assumed to satisfy the condition∫ ∞

0
x|q(x)|dx<∞, (4)

unless otherwise stated.
In the recent years, Sturm–Liouville problems (SLPs) with discontinuous coefficients took a prominent attention since they arise

naturally in diverse fields of application. For instance, SLPs with quasi-periodic boundary conditions have been treated in [1, 2] to
investigate the propagation of harmonic waves in elastic composites with periodic structure. SLPs with discontinuous coefficients
also appear in vibration problems in geophysics (see e.g. [3--5]). Upper and lower bounds for the eigenvalues of a SLP with
discontinuous coefficients arising in heat conduction in a layered composite have been determined by Horgan and Nasser in [6].

For �=1, i.e. �(x)≡1, spectral analysis of the non-self-adjoint BVP (1)–(2) is intensively investigated in [7]. In the case 0<� �=1, the
inverse problem corresponding to BVP (1)–(2) is handled in [4, 8], in which q is assumed to be real-valued function. Note that q is
allowed to take complex values in this study. In addition, the existence of discontinuous coefficient (3) in Equation (1) makes the
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investigation of the problem quite challenging as it strongly influences the structure of Jost solution and hence the treatment of
the problem. For instance, while the Jost solution is given by

f (x, k)=eikx +
∫ ∞

x
K(x, t)eikt dt

in continuous case (see [7, Appendix II, Theorem 2]), the Jost solution in discontinuous case (see [8, Theorem 1]) is obtained as

e(x, k)=e0(x, k)+
∫ ∞

�+(x)
H(x, t)eikt dt, (5)

where

e0(x, k)= 1

2

(
1+ 1√

�(x)

)
ei�+(x) + 1

2

(
1− 1√

�(x)

)
ei�−(x)

and

�±(x)=±x
√

�(x)+a(1∓
√

�(x)).

It is obvious that

e(x, k)= f (x, k) for a<x<∞.

It is worth mentioning that the non-self-adjoint singular BVP

−y′′+q(x)y =��(x)y, x ∈R+ = [0,∞), (6)

with

y′(0)−�
m∑

n=1
�ny(an)+�

∫ ∞

0
G(x)y(x) dx =0 (7)

is handled by [9] in which the adjoint problem is constructed and the discrete and continuous spectrums are determined. However,
convergence properties of the principal vectors corresponding to eigenvalues and spectral singularities are not discussed in [9].

Let L2(0,∞,�(x)) denote the Hilbert space of complex-valued functions having the following property:∫ ∞

0
�(x)|f (x)|2 dx<∞.

Hereafter, we shall denote by L� the differential operator generated by the BVP (1)–(2) in L2(0,∞,�(x)).
The purpose of this paper is two fold: First, we investigate the quantitative properties of spectrum of the operator L� and second,

we introduce the convergence properties of the principal vectors. The treatment of the problem can be outlined as follows:

• Construction of the Jost solution and the solutions S(x, k) and C(x, k) satisfying

S(0, k)=0, S′(0, k)=1

C(0, k)=1, C′(0, k)=0

}
. (8)

• Formulation of the resolvent operator.
• Expression of the sets of eigenvalues and spectral singularities in terms of singularities of the kernel of resolvent operator.
• Use of boundary uniqueness theorems to show that

sup
x∈R+

{exp(�x�)|q(x)|}<∞ for some �>0 and 1
2 ���1 (9)

is the condition guaranteeing finiteness of eigenvalues, spectral singularities, and their multiplicities,
• Determination of the principal vectors corresponding to eigenvalues and spectral singularities and investigation of their

convergence properties.

1.1. Solutions of Equation (1)

Next, we present some preliminary results from [7] and [10] which will be used in our further work.

1.1.1. The solutions S(x, k) and C(x, k). We denote by S(x, k) and C(x, k) the solutions of Equation (1) satisfying (8). S(x, k) and C(x, k)
have the following representations:

S(x, k)= sin k�x

k�
+
∫ x

0
A(x, t)

sin k�t

k�
dt (10)

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1306–1316
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and

C(x, k)=cos k�x+
∫ x

0
B(x, t) cos k�t dt (11)

for x ∈ [0, a], where the kernels A(x, t) and B(x, t) have continuous derivatives with respect to x and t and satisfy

�2

�x2
A(x, t)− �2

�t2
A(x, t) = q(x)A(x, t),

�2

�x2
B(x, t)− �2

�t2
B(x, t) = q(x)B(x, t),

and

A′
x(x, x) = 1

2 q(x), A′
t(x, t)|t=0 =0,

B′
x(x, x) = 1

2 q(x), B′
t(x, t)|t=0 =0.

Therefore, S(x, k) and C(x, k) are entire functions of k and satisfy the following estimates:

S(x, k) = sin k�x

k�

(
1+O

(
1

k

))
as |k|→∞

C(x, k) = cos k�x

(
1+O

(
1

k

))
as |k|→∞

(12)

for x ∈ [0, a] (see [7, Sections 25–26] and [11, Chapter VI]).

1.1.2. Jost solution F(x, k). As mentioned before, (5) is the Jost solution of Equation (1). However, in this paper we will consider
slightly different Jost solution for convenience.

On the interval (a,∞), Equation (1) becomes

−y′′+q(x)y =k2y, a<x<∞, (13)

which has the solution f (x, k) satisfying

lim
x→∞ f (x, k) exp(−ikx)=1,

for k ∈C+ :={k : k ∈C, Imk�0}. In [7], f (x, k) is called the Jost solution of (13). Under the condition (4), f (x, k) has the following
representation:

f (x, k)=exp(ikx)+
∫ ∞

x
K(x, t) exp(ikt) dt for x ∈ (a,∞), (14)

where the kernel K(x, t) is expressed in terms of q, and is continuously differentiable with respect to its arguments. On the other
hand, K(x, t) satisfies

K(x, x) = 1

2
	(x),

|K(x, t)t| � 1

2
	

(
x+t

2

)
exp

(
	1(x)−	1

(
x+t

2

))
, (15)

|Kx(x, t)| � 1

4

∣∣∣∣q
(

x+t

2

)∣∣∣∣+C	

(
x+t

2

)
, (16)

where C>0 is constant and

	(x)=
∫ ∞

x
|q(t)|dt and 	1(x)=

∫ ∞

x
	(t) dt.

Hence, f (x, k) is analytic with respect to k in C+ :={k : k ∈C, Imk>0} and continuous on the real axis. Moreover, for k ∈C+ and
x ∈ (a,∞) the following estimates hold:

f (x, k) = exp(ikx)

[
1+O

(
1

k

)]
as |k|→∞, (17)

f ′x(x, k) = ik exp(ikx)

[
1+O

(
1

k

)]
as |k|→∞. (18)
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By making use of continuity of the functions f and f ′x on the closed interval [0, a], one can obtain the Jost solution F(x, k) of
Equation (1), where

F(x, k)=

⎧⎪⎨
⎪⎩

H(k)S(x, k)+J(k)C(x, k) for x ∈ [0, a],

exp(ikx)+
∫ ∞

x
K(x, t) exp(ikt) dt for x ∈ (a,∞),

(19)

and

H(k) = C(a, k)f ′(a, k)−C′(a, k)f (a, k),

J(k) = f (a, k)S′(a, k)−f ′(a, k)S(a, k),
(20)

for k ∈C+. Note that

F(0, k)= J(k) (21)

Thus, from (12), (17), and (19) the solution F can be represented asymptotically as follows:

F(x, k)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(ika)

[
cos k�(x−a)+ i

�
sin k�(x−a)

][
1+O

(
1

k

)]
, 0�x�a,

exp(ikx)

[
1+O

(
1

k

)]
, a<x<∞,

(22)

for k ∈C+ as |k|→∞ (see [10, Equation 5]).
Observe that the Jost solution given by (5) also satisfies the estimate (22).

1.1.3. The solution F1(x, k). We now give another solution F1(x, k) of Equation (1) on the half-axis [0,∞).
Denote by f1(x, k) the solution of Equation (13) satisfying

lim
x→∞ f1(x, k) exp(ikx)=1,

for x ∈ (a,∞) and k ∈C+ :={k : k ∈C, Im k�0}. It is shown in [7] that

f1(x, k)=exp(−ikx)

[
1+O

(
1

k

)]
as |k|→∞.

Therefore, the solution F1(x, k) can be expressed asymptotically as follows:

F1(x, k)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(−ika)

[
cos k�(x−a)− i

�
sin k�(x−a)

][
1+O

(
1

k

)]
, 0�x�a,

exp(−ikx)

[
1+O

(
1

k

)]
, a<x<∞,

for k ∈C+ as |k|→∞.

2. The resolvent and the spectrum

In this section we construct the resolvent of the BVP (1)–(2), determine the sets of eigenvalues and spectral singularities, and discuss
their quantitative properties.

The resolvent set R(L�) is given by

R(L�)={� :�=k2, Imk>0 and J(k) �=0}.

If �∈R(L�), then the resolvent R�(L�) of the operator L� exists. That is, there exists a solution y(x, k) of the BVP

−y′′+[q(x)−k2�(x)]y = �
, x ∈R+ = [0,∞),

y(0) = 0,

which belongs to L2(0,∞,�(x)). The solution y(x, k) has the following representation:

y(x, k)=R�(L�)
(x)=
∫ ∞

0
G(x, t; k)�(t)
(t) dt for �∈R(L�), (23)
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where 
∈L2(0,∞,�(x)) and G(x, t; k) is Green’s Function given by

G(x, t; k) :=

⎧⎪⎪⎨
⎪⎪⎩

F1(0, k)F(x, k)F(t, k)

2ikJ(k)
− F(x, k)F1(t, k)

2ik
for 0�t�x,

F1(0, k)F(x, k)F(t, k)

2ikJ(k)
− F(t, k)F1(x, k)

2ik
for x<t<∞,

(24)

in which (21) is taken into account.
From the definition of eigenvalues, (17) and (24), we have

	d(L�)={�=k2 : Im k>0 and J(k)=0}, (25)

where 	d(L�) denotes the set of all eigenvalues of the operator L�.
In [9], the adjoint problem of non-self-adjoint singular BVP (6)–(7) is constructed and the continuous spectrum is determined.

Similar to the one in [9, Theorem 5], the continuous spectrum 	c(L�) of the operator L� can be obtained as

	c(L�)= [0,∞).

Spectral singularities are defined to be the poles of the kernel of the resolvent operator, which are embedded in continuous
spectrum [12]. Thus, the set of spectral singularities can be expressed as

	ss(L�)={�=k2 : Imk =0, k �=0 and J(k)=0}. (26)

Hereafter, we will discuss quantitative properties of eigenvalues and spectral singularities of the operator L�. In order to do so, we
should discuss quantitative properties of the set of zeros of J(k) in the upper half-plane C+.

Lemma 1
Suppose (4) holds. Then

(i) the set of eigenvalues is bounded, is no more than countable, and its limits points can lie only in the positive real axis,
(ii) the set of spectral singularities is compact and its linear Lebesgue measure is zero.

Proof
It follows from (14)–(15) that the function J is analytic in C+ and continuous in C+. On the other hand, by (21)–(22) we have the
following estimate:

J(k) = exp(ika)

[
cos k�a− i

�
sin k�a

][
1+O

(
1

k

)]
,

=
[

1

2
eika(1+�)

(
1− 1

�

)
+ 1

2
e−ika(−1+�)

(
1+ 1

�

)][
1+O

(
1

k

)]
, (27)

for k =�+ i�∈C+ as �→∞. Since �>1, the term exp(−ika(�−1)) in (27) explodes while the first term approaches zero as �→∞.
That is, J cannot tend to zero for sufficiently large k ∈C+. Thus, boundedness of the sets 	d(L�) and 	ss(L�) follows from (25) and
(26). Furthermore, from the analyticity of the function J in C+, the set 	d(L�) has at most countable number of elements and its
limit points can lie only in positive semi-axis. From boundary uniqueness theorem of analytic functions [13], we deduce that the
set 	ss(L�) is closed and that its linear Lebesgue measure is zero. �

Henceforth, we will call the multiplicity of a zero of the function J in C+ as the multiplicity of the corresponding eigenvalue and
spectral singularity of the BVP (1) and (2).

In the following, we put an additional restriction on q to guarantee the finiteness of 	d(L�) and 	ss(L�).

Theorem 1
If for every �>0

sup
x∈[0,∞)

{e�x|q(x)|}<∞ (28)

holds, then the operator L� has finite number of eigenvalues and spectral singularities and each of them is of a finite multiplicity.

Proof
It follows from (15) that

|K(a, t)|�C exp
(
− �

2

)
t.

That is, the function J has an analytic continuation from the real axis to the lower half-plane Im k>−� / 2. Thus, the sets 	d(L�) and
	ss(L�) have no limit points on positive real line. As they are bounded, they have finite number of elements. Finally, analyticity of J
in Im k>−� / 2 implies that all zeros of J in C+ has finite multiplicity. �

1
3

1
0
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Let us consider the condition

sup
x∈R+

{exp(�x�)|q(x)|}<∞ for some �>0 and 1
2 ��<1. (29)

Remark 1
The condition (29) is weaker than the condition (28), and under the condition (29) the function J does not have any analytic
continuation from the real axis to the lower half-plane. Therefore, finiteness of eigenvalues cannot be proved in a similar way given
in the preceding theorem.

We classify zeros of the function J in the closed-upper half-plane C+ as follows:

N+ = {k ∈C+ : J(k)=0}, (30)

N = {k ∈R−{0} : J(k)=0}. (31)

Denote by N+
0 and N0 the sets of limit points of N+ and N, respectively. In addition, N∞ represents the set of zeros of J(k) with

infinite multiplicity. From the uniqueness theorem of analytic functions (see [14]), we obtain that

N+∩N∞ =∅, N+
0 ⊂N, N0 ⊂N, N∞ ⊂N.

From continuity of all derivatives of J up to the real axis, we observe that

N+
0 ⊂N∞ and N0 ⊂N∞. (32)

To prove the next result we will employ the following theorem [15]:

Theorem 2
Assume that the function g is analytic in C+, all of its derivatives are continuous up to the real axis, and there exists a T>0 such
that

|g(r)(�)|�Mr for r =0, 1, 2,. . . ,�∈C+, |�|<T

and ∫ −T

−∞
ln |g(x)|
1+x2

dx<∞,

∫ ∞

T

ln |g(x)|
1+x2

dx<∞ (33)

hold. If the set P with linear Lebesgue measure zero is the set of all zeros of the function g with infinite multiplicity and if∫ h

0
ln E(s) d�(Ps)=−∞,

then g(�)≡0, where E(s)= inf{Mrsr / r! : r =0, 1, 2,. . .}, �(Ps) is the Lebesgue measure of the s-neighborhood of P, and h is an arbitrary
positive constant.

Theorem 3
If (29) holds, then

N∞ =∅. (34)

Proof
From (20) we find

J(k)=
2∑

i=1
(−1)i−1Ji(k)Ji+2(k), (35)

where

J1(k) = 1+
∫ ∞

a
K(a, t)eik(t−a) dt,

J2(k) = ik− K(a, a)

2
+
∫ ∞

a
Kx(a, t)eik(t−a) dt,

J3(k) = cos k�aeika + A(a, a)

2

(a, k)+

∫ a

0
Ax(a, t)
(t, k)eik(a−t) dt,

J4(k) = 
(a, k)+
∫ a

0
A(a, t)
(t, k)eik(a−t) dt,


(t, k) = sin k�t

k�
eikt = 1

2�

∫ (1+�)t

(1−�)t
eikr dr.

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1306–1316
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It follows from (10), (11), and (14)–(16) that J is analytic in C+ and all of its derivatives are continuous up to the real axis. As the
set N is bounded, there exists a sufficiently large T>0 such that the function J satisfies the inequalities in (33). On the other hand,
from (15)–(16) and (29) we have ∣∣∣∣ dm

dkm Ji(k)

∣∣∣∣�c1

∫ ∞

a
(2(1+�)t)m exp

(
− �

2

(
t

2

)�
)

dt, i=1, 2, (36)

where k ∈C+, |k|<T , and m=0, 1, 2,. . . . Taking continuity of the functions A and Ax into account we obtain∣∣∣∣ dm

dkm Ji(k)

∣∣∣∣�c2(2a(1+�))m, i=3, 4, (37)

where k ∈C+, |k|<T , and m=0, 1, 2,. . . . Therefore, from (35), (36), and (37) we arrive at∣∣∣∣ dn

dkn J(k)

∣∣∣∣� 2∑
i=1

n∑
s=0

(
n

s

)∣∣∣∣ dn−s

dkn−s Ji(k)

∣∣∣∣
∣∣∣∣ ds

dks Ji+2(k)

∣∣∣∣
� C2n

n∑
s=0

(
n

s

)∫ ∞

a
(a(1+�))s(t(1+�))n−s exp

(
− �

2

(
t

2

)�
)

dt

� C22n(1+�)n
∫ ∞

0
tn exp

(
− �

2

(
t

2

)�
)

dt (38)

for n=1, 2,. . . . We obtain by (27) and (38) that ∣∣∣∣J(k)− 1

2
e−ika(−1+�)

(
1+ 1

�

)∣∣∣∣<∞

and ∣∣∣∣ dn

dkn J(k)

∣∣∣∣�Mn for n=1, 2,. . . and k ∈C+, |k|<T,

where

Mn =C22n(1+�)n
∫ ∞

0
tn exp

(
− �

2

(
t

2

)�
)

dt.

As J is not equally zero, from Theorem 2 we find ∫ h

0
ln E(s) d�(N∞, s)>−∞. (39)

For Mn we have the following estimate:

Mn�Ddnnn(1−�)/�n! , (40)

where D and d are constants depending on C, �, and �. Thus,

E(s) � D inf{Ddnnn(1−�)/�n! : n=0, 1, 2,. . .},

� D exp

{
−1−�

�
e−1/ (1−�)b−�/ (1−�)s−�/ (1−�)

}
. (41)

It follows from � / (1−�)�1, (39), and (41) that ∫ h

0
s−�/ (1−�) d�(N∞, s)<∞,

which is possible only if d�(N∞, s)=0. That is, N∞ =∅. The proof is complete. �

Theorem 4
If (29) holds, then the operator L� has a finite number of eigenvalues and spectral singularities, and each of them is of a finite
multiplicity.

Proof
From Lemma 1, (32), and (34) we conclude that the sets 	d(L�)={�=k2 : k ∈N+} and 	ss(L�)={�=k2 : k ∈N} are countable and
bounded and they have no limit points. Thus, the sets 	d(L�) and 	ss(L�) have finite number of elements. Moreover, it follows from
(34) that eigenvalues and spectral singularities are of finite multiplicity. �

1
3

1
2
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It is natural to ask what happens when 0<�< 1
2 . The next theorem shows that the set of eigenvalues of L� may not have finite

number of elements if the number � is allowed to be less than 1
2 .

Theorem 5
If

sup
x∈[0,∞)

{e�x� |q(x)|}<∞, 0<�< 1
2

holds for every �>0, then ∑
n

(�+
n )(1−2�)/ (1−�)<∞,

where {�+
n } is the sequence of lengths of all finite complementary intervals of N∞.

Proof
By making use of Carleson’s theorem [16], the proof can be done by similar to that of [17, Theorem 4.6]. �

Combining Theorems 1 and 4, we arrive at the next result.

Corollary 1
Given the differential operator corresponding to the BVP (1)–(2). Equation (9) is the condition that guarantees the finiteness of
eigenvalues, spectral singularities, and their multiplicities.

3. The principal vectors

In this section, we determine the principal vectors of the operator L� corresponding to its eigenvalues and spectral singularities.
We start with the following definition.

Definition 1
Let �=�0 be an eigenvalue of L�. If the vectors y(0)(x,�0), y(1)(x,�0),. . . , y(s)(x,�0) satisfy the equations[

− d2

dx2
+q(x)−�0�(x)

]
y(0)(x,�0) = 0

[
− d2

dx2
+q(x)−�0�(x)

]
y(n)(x,�0)−�(x)y(n−1)(x,�0) = 0

for n=0, 1,. . . , s, then the vector y(0)(x,�0) is said to be the eigenvector corresponding to the eigenvalue �=�0 of L�. The vectors

y(1)(x,�0),. . . , y(s)(x,�0) are called associated vectors corresponding to the eigenvalue �=�0. The eigenvectors and associated vectors
corresponding to �=�0 are called the principal vectors of the eigenvalue �=�0. The principal vectors corresponding to the spectral
singularities are defined similarly.

Henceforth, we assume that the condition (28) holds. Let k1, k2,. . . , kp denote the zeros of the function J(k)=F(0, k) in C+ (whose
squares are the eigenvalues of L�) with multiplicities m1, m2,. . . , mp, respectively. Similarly, let kp+1, kp+2,. . . , kq be zeros of J(k) in
R with multiplicities mp+1, mp+2,. . . , mq, respectively. It is obvious that

dn

dkn {W[F, S]}k=kj
=
{

dn

dkn J(k)

}
k=kj

=0 (42)

for n=0, 1,. . . , mj −1 and j=1, 2,. . . , q.

Theorem 6
The formula {

dn

dkn S(x, k)

}
k=kj

=
n∑

s=0

(
n

s

)
�n−s

{
ds

dks F(x, k)

}
k=kj

(43)

holds for x ∈ [0,∞), n=0, 1,. . . , mj −1, and j=1, 2,. . . , q.

Proof
We shall use the mathematical induction. It is evident from (42) that

S(x, kj)=�0F(x, kj)
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for j=1, 2,. . . , q. Suppose that (43) holds for an arbitrary integer n0 such that 1�n0�mj −2. Differentiating the equation[
− d2

dx2
+q(x)−k2�(x)

]
y(x, k)=0 (44)

with respect to k and substituting k =kj , we have[
− d2

dx2
+q(x)−k2

j �(x)

]
y(n0+1)(x, kj)=2�(x)[kj(n0 +1)y(n0)(x, kj)+n0(n0 +1)y(n0−1)(x, kj)], (45)

where

y(n)(x, kj)=
{

dn

dkn y(x, k)

}
k=kj

.

As S(x, k) and F(x, k) solve Equation (44), we obtain by (43)–(45) that[
− d2

dx2
+q(x)−k2�(x)

]
g(n0)(x, kj)=0 for j=1, 2,. . . , q,

where

g(n0)(x, kj)=
{

dn0+1

dkn0+1 S(x, k)

}
k=kj

−
n0+1∑
s=1

(
n0 +1

s

)
�n0+1−s

{
ds

dks F(x, k)

}
k=kj

. (46)

On the other hand, (42) and (46) imply that

W[g(n0)(x, k), F(x, k)]k=kj
= dn0+1

dkn0+1 W[S(x, k), F(x, k)]k=kj
=0,

and therefore,

g(n0)(x, kj)=�n0+1F(x, kj)

for j=1, 2,. . . , q. The proof is complete. �

Now we introduce the vectors

�(n)(x,�j)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

n!

{
dn

dkn S(x, k)

}
k=kj

for x ∈ [0, a]

n∑
s=0

Bn,s

{
ds

dks F(x, k)

}
k=kj

for x ∈ (a,∞)

(47)

for �j =k2
j , we have

Bn,s = 1

n!

(
n

s

)
�n−s,

where n=0, 1,. . . , mj −1 and j=1, 2,. . . , q. It follows from the definition that the vectors �(n)(x,�j), for n=0, 1,. . . , mj −1 and j=1, 2,. . . , p

and the vectors �(n)(x,�j), for n=0, 1,. . . , mj −1 and j=p+1, p+2,. . . , q, are principal vectors corresponding to the eigenvalues and
the spectral singularities of L�, respectively.

Theorem 7

�(n)(x,�j)∈L2(0,∞,�(x)) for n = 0, 1,. . . , mj −1 and j=1, 2,. . . , p, (48)

�(n)(x,�j) /∈L2(0,∞,�(x)) for n = 0, 1,. . . , mj −1 and j=p+1, p+2,. . . , q. (49)

Proof
From (15) and (28) we obtain

K(x, t)�c exp
(
− �

2
(x+t)

)
,

1
3

1
4
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and therefore,

dn

dkn F(x, k)�D

[
xn exp(−xImk)+

∫ ∞

x
tn exp

(
− �

2
x−t

( �

2
+ Imk

))
dt

]
(50)

for x>a, where D is a constant. Since Im kj>0 for the eigenvalues �j =k2
j , j=1, 2,. . . , p, (48) follows from (47) and (50). For the spectral

singularities �j =k2
j , j=p+1, p+2,. . . , q we know that Im kj =0; hence, (47) implies (49). �

Define the following Hilbert spaces:

Hm ={f :‖f‖m<∞} and H−m ={f :‖f‖−m<∞}
for m=1, 2,. . . with norms

‖f‖2
m =

∫ ∞

0
�(x)(1+x)2m|f (x)|2 dx

and

‖f‖2−m =
∫ ∞

0
�(x)(1+x)−2m|f (x)|2 dx,

respectively. It is evident that

H0 =L2(0,∞,�(x))

and

Hm+1�Hm�L2(0,∞,�(x))�H−m�H−(m+1)

As a consequence of the preceding theorem we have the following:

Corollary 2

�(n)(x,�j)∈H−m0 for n=0, 1,. . . , mj −1 and j=p+1, p+2,. . . , q,

where

m0 =max{mp+1, mp+2,. . . , mq}.

4. Summary and conclusions

In this study we have discussed spectral properties of a Sturm–Liouville problem (SLP) with discontinuous density function. This
type of problems has been the topic of many research papers in the existing literature. The reference list is by no means complete;
but we can refer to [2--4, 6, 8--10]. In particular, Gasymov [4] considered the SLP (1)–(2) with a real-valued potential q to show that
it has only a finite number of simple eigenvalues and that the half-axis constitutes its absolutely continuous spectrum. Afterwards,
in [8] Guseinov and Pashaev handled the same BVP to investigate the inverse scattering problem. In [10], Darwish brought a
non-self-adjoint SLP with discontinuous density function under investigation and gave two examples to draw the attention to the
difficulty in the study of distribution and finiteness of eigenvalues.

The BVP (1)–(2) considered in this paper includes a potential function q, which is assumed to be complex valued. Hence, being a
non-self-adjoint problem, the BVP (1)–(2) treated in this study requires a completely different approach. This is not only because of
the existence of spectral singularities embedded in the continuous spectrum but also because of the different structure of the Jost
solutions. The notable achievements of this paper can be summarized as the proposition of sufficient conditions guaranteeing the
finiteness of eigenvalues and spectral singularities (Theorem 4) and the investigation of convergence properties principal vectors
corresponding to eigenvalues and spectral singularities (Theorems 7 and Corollary 2). By using the substitution �=1 in Equation
(1), the problem (1)–(2) can be reduced to the one treated by Naimark in [7, Appendix II, p. 292]. Considering this and the non-self-
adjointness of the problem (1)–(2), the results obtained in this study can be regarded as the extension and generalization of the
respective ones in [4, 8], and [7, Appendix II, p. 292]. Furthermore, this study prepares a groundwork for the applications since its
results can be found significant for the study of inverse scattering problem.
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