
Available online at www.sciencedirect.com
Chaos, Solitons and Fractals 40 (2009) 2590–2596

www.elsevier.com/locate/chaos
Harmonic curvatures and generalized helices in En
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Abstract

In n-dimensional Euclidean space En, harmonic curvatures of a non-degenerate curve defined by Özdamar and Haci-
salihoğlu [Özdamar E, Hacısalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci
Univ Ankara, Ser A1 1975;24:15–23]. In this paper, we give some characterizations for a non-degenerate curve a to be a
generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degen-
erate curve a in n-dimensional Euclidean space En and we show that the generalized Darboux vector D lies in the kernel
of Frenet matrix M(s) if and only if the curve a is a generalized helix in the sense of Hayden.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Natural scientists have long held a fascination, sometimes bordering on mystical obsession for helical structures in
Nature. Helices arise in nanosprings, carbon nanotubes, a-helices, DNA double and collagen triple helix, the double
helix shape is commonly associated with DNA, since the double helix is structure of DNA. This fact was published
for the first time by Watson and Crick in 1953 (see [17]). They constructed a molecular model of DNA in which there
were two complementary, antiparallel (side-by-side in opposite directions) strands of the bases guanine, adenine, thy-
mine and cytosine, covalently linked through phosphodiester bonds. Each strand forms a helix and two helices are held
together through hydrogen bonds, ionic forces, hydrophobic interactions and van der Waals forces forming a double
helix, lipid bilayers, bacterial flagella in Salmonella and E. coli, aerial hyphae in actynomycetes, bacterial shape in spi-
rochetes, horns, tendrils, vines, screws, springs, helical staircases and sea shells (helico-spiral structures) (see [2,3]).

A curve of constant slope or general helix in Euclidean 3-space E3, is defined by the property that the tangent makes
a constant angle with a fixed straight line (the axis of the general helix). A classical result stated by Lancret in 1802 and
first proved by de Saint Venant in 1845 (see [15]) is: A necessary and sufficient condition that a curve be a general helix is
that the ratio of curvature to torsion be constant.
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For a given couple of one variable functions (eventually curvature and torsion parametrized by arclength) one might
like to get an arclength parametrized curve for which the couple works as the curvature and torsion functions. This
problem is usually referred as ‘‘the solving natural equations problem’’. The natural equations for general helices
can be integrated, nor only in R3, but also in the 3-sphere S3 (the hyperbolic space is poor in this kind of curves
and only helices are general helices). Indeed one uses the fact that general helices are geodesics either of right general
cylinders or of Hopf cylinders, according to the curve lies in R3 or S3, respectively (see [1]). If both of k1(s) 5 0, and
k2(s) are constant it is, of course, a general helix. We call it a circular helix. Its known that straight line and circle are
degenerate-helix examples (k1(s) = 0, if the curve is straight line and k2(s) = 0, if the curve is a circle (see [10,11])).

In fact, circular helix is the simplest three-dimensional spirals. One of the most interesting spiral example is k-Fibo-
nacci spirals. These curves appear naturally from studying the k-Fibonacci numbers fF k;ng1n¼0 and the related hyperbolic
k-Fibonacci function. Fibonacci numbers and the related Golden Mean or Golden section appear very often in theo-
retical physics and physics of the high energy particles (see [4,5]). Three-dimensional, k-Fibonacci spirals was studied
from a geometric point of view in [6].

Recall that a curve a is called a W-curve, if it has constant Frenet curvatures. W-curves in the Euclidean space En

have been studied intensively. The simplest examples are circles as a planar W-curves and helices (circular helix) as non-
planar W-curves in E3.

The notion of a generalized helix can be generalized to higher dimension in two way: In [14], the same definition is
proposed but in En, i.e., a generalized helix as a curve a : R! En such that its tangent vector forms a constant angle with
a given direction X at En. Other way, in [8] (see also [12]), a curve called a ‘‘generalized helix’’ which was defined by
Hayden as a curve a : R! En such that all the vectors of the Frenet frame makes a constant angle with the fixed
direction in En. In this case the generalized helix has the following properties:
kn�1

kn�2

¼ const:;
kn�3

kn�4

¼ const:; . . . ;
k2

k1

¼ const:; if n is odd;

kn�1

kn�2

¼ const:;
kn�3

kn�4

¼ const:; . . . ;
k3

k2

¼ const:; if n is even:
We call such helix, generalized helix in the sense of Hayden. In the case n is even, Hayden gave the following impor-
tant result in [9]: ‘‘If the dimension n is even, there not exist a non-degenerate curve whose vectors V1,V2, . . . ,Vn make
constant angles with a parallel vector field along it’’.

In this paper, we give some characterizations for a non-degenerate curve a to be a generalized helix by using har-
monic curvatures of the curve in n-dimensional Euclidean space En. Also, we obtain a vector D for a non-degenerate
curve a and we called it a generalized Darboux vector, then we study the relationship between the generalized Darboux
vector D and the Darboux vector d in the same space.
2. Preliminaries

Let a : I � R! En be arbitrary curve in the Euclidean n- space En. Recall that the curve a is said to be of unit
speed (or parameterized by arclength function s) if ha 0(s), a 0(s)i = 1, where hÆ, Æi is the standard scalar product of En

given by
hX ; Y i ¼
Xn

i¼1

xiyi
for each X = (x1,x2, . . . ,xn), Y ¼ ðy1; y2; . . . ; ynÞ 2 En. In particular, the norm of a vector X 2 En is given by
kXk2 = hX,Xi. Let {V1,V2, . . . ,Vn} be the moving Frenet frame along the unit speed curve a, where Vi

(i = 1,2, . . . ,n) denote ith Frenet vector fields. Then the Frenet formulas are given by
V 01ðsÞ ¼ k1ðsÞV 2ðsÞ;
V 0iðsÞ ¼ �ki�1ðsÞV i�1ðsÞ þ kiðsÞV iþ1ðsÞ; i ¼ 2; 3; . . . ; n� 1;

V 0nðsÞ ¼ �kn�1ðsÞV n�1ðsÞ;

8><
>:
where ki (i = 1,2, . . . ,n � 1) denote ith curvature functions of the curve [7,10]. If all curvatures ki(i = 1,2, . . . ,n � 1) of
the curve nowhere vanish in I � R, then the curve is called a non-degenerate curve.
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Definition 2.1. [13]Let a be a unit curve in En. Harmonic curvatures of a is defined by
H i : I � R! R; i ¼ 0; 1; 2; . . . ; n� 2;

Hi ¼
0; i ¼ 0
k1

k2
i ¼ 1

fV 1½H i�1� þ H i�2kig 1
kiþ1

; i ¼ 2; 3; . . . ; n� 2:

8><
>:
3. Harmonic curvatures and generalized helices

In this section, we give some characterizations for generalized helices by using the harmonic curvatures of the curve.

Theorem 3.1. [13]. Let a(s) be a unit speed generalized helix in n-dimensional Euclidean space En. Let {V1,V2, . . . ,Vn},

{H1,H2, . . . ,Hn�2} be denote the Frenet frame and the higher ordered harmonic curvatures of the curve, respectively. Then

the following equations is holds
hV iþ2;X i ¼ H ihV 1;X i; 1 6 i 6 n� 1; ð1Þ

where X is axis of a helix a.

By using Theorem 3.1, we have the following corollary:

Corollary 3.1. If X is axis of a helix a, then we can write
X ¼ k1V 1 þ k2V 2 þ � � � þ knV n:
From the Theorem 3.1, we get
ki ¼ hV i;X i ¼ H i�2hV 1;X i;
where hV1,Xi = cosh = constant.

By the definition of the harmonic curvature, we obtain
X ¼ cos hðV 1 þ H 1V 3 þ � � � þ H n�2V nÞ: ð2Þ
Also
D ¼ V 1 þ H 1V 3 þ � � � þ H n�2V n
is axis of the helix a.

Definition 3.1. Let a(s) be a unit speed non-degenerate curve in n-dimensional Euclidean space En. Let {V1,V2, . . . ,Vn},
{H1,H2, . . . ,Hn�2} be denote the Frenet frame and the higher ordered harmonic curvatures of the curve, respectively.
The vector
D ¼ V 1 þ H 1V 3 þ � � � þ H n�2V n ð3Þ
is called the generalized Darboux vector of the curve a.

Theorem 3.2. Let a(s) be a unit speed curve in n-dimensional Euclidean space En. Let {V1,V2, . . . ,Vn}, {H1,H2, . . . ,Hn�2}
be denote the Frenet frame and the higher ordered harmonic curvatures of the curve, respectively. Then a is a generalized

helix if and only if D is a constant vector.

Proof. Let a be a generalized helix in En and X be axis of a. From the Corollary 3.1, we get
X ¼ cos hðV 1 þ H 2V 3 þ � � � þ H n�2V nÞ; ð4Þ
where cosh is a constant and so we can easily see that D is constant.
Conversely, if D is constant vector, then we can see that
hD; V 1i ¼ 1:
Thus we get cos h ¼ 1
kDk, where h is constant angle between D and V1. In this case, we can define unique axis of the

helix as follows:
X ¼ ðcos hÞD:
where hX,V1i = cosh = constant. Therefore X is a constant. So, this complete the proof. h
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Corollary 3.2. In three-dimensional Euclidean space, from Eq. (3), we can write the axis of a non-degenerate curve as;
D ¼ V 1 þ
k1

k2

V 3;
where k1 and k2 are curvatures of the curve. If we take derivative of D along the curve, we get
rV 1
D ¼ k1

k2

� �0
V 3: ð5Þ
Thus, from the above equation, if the curve is a generalized helix, then from Theorem 3.2, we have $V1
D = 0, then we get k1

k2

is constant. If k1

k2
is constant, from Eq. (5), we obtain $V1

D = 0 and D is a constant vector. From Theorem 3.2, the curve is a

generalized helix. This is a new proof of the Lancret theorem.

Corollary 3.3. In four-dimensional Euclidean space, from Eq. (3), we get axis of a non-degenerate curve as
D ¼ V 1 þ
k1

k2

V 3 þ
1

k3

k1

k2

� �0
V 4;
where k1, k2 and k3 are curvatures of the curve. If all curvatures of the curve are constants, i.e., the curve is a W-curve, then

we get
D ¼ V 1 þ
k1

k2

V 3: ð6Þ
If we take derivative of Eq. (6) along the curve, we obtain
D0 ¼ rV 1
D ¼ k1k3

k2

� �
V 4: ð7Þ
So, we can easily see that D 0 is not equal to zero, then D is not constant vector. In this case, according to Theorem 3.2, the

curve is not helix.

Remark. In [13], Özdamar and Hacısalihoğlu gave the following characterization for general helices by using harmonic
curvatures of the curve.

Theorem . Let a(s) be a unit speed curve in n-dimensional Euclidean space En with Frenet vectors {V1,V2, . . . ,Vn}, and

harmonic curvatures {H1,H2, . . . ,Hn�2}. Then a is a general helix, if and only if
Pn�2

i¼1 H 2
i ¼ constant.

The above theorem is true for the case necessity but not true for the case sufficiency. The following example show us
why the case sufficiency is not true?

Example. aðsÞ ¼ a cos rffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p s
� �

; a sin rffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p s
� �

; b cos 1ffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p s
� �

; b sin 1ffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p s
� �� �

is a unit speed curve in

E4. It is easily obtain the Frenet vectors and curvatures as follows:
V 1 ¼

�arffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; arffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

;

�bffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; bffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

0
BBB@

1
CCCA;

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r4 þ b2

p
a2r2 þ b2

;

V 2 ¼

�ar2ffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; �ar2ffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

;

�bffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; �bffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

0
BBB@

1
CCCA;

k2 ¼
abrðr2 � 1Þ

ða2r2 þ b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r4 þ b2

p ;
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V 3 ¼

bffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; �bffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

�arffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; arffiffiffiffiffiffiffiffiffiffiffiffi
a2r2þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

0
BBBB@

1
CCCCA;

k3 ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2r4 þ b2
p ;

V 4 ¼

bffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; bffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

�ar2ffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p cos rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

; �ar2ffiffiffiffiffiffiffiffiffiffiffiffi
a2r4þb2
p sin rffiffiffiffiffiffiffiffiffiffiffiffi

a2r2þb2
p s
� �

0
BBBB@

1
CCCCA:
The generalized Darboux vector of the above curve is D ¼ V 1 þ k1

k2
V 3 þ 1

k3

k1

k2

� �0
V 4. Since k1

k2

� �0
¼ 0, we get

D ¼ V 1 þ k1

k2
V 3. Thus we obtain D0 ¼ k1k3

k2
V 4–0. Although H 2

1 þ H 2
2 ¼ constant, D is not constant vector. According

to the Theorem 3.2, a is not a generalized helix. Also, the above example is a good example for Corollary 3.3.

The following theorem is a new characterization of helices.

Theorem 3.3. Let a(s) be a unit speed non-degenerate curve in n-dimensional Euclidean space En with Frenet vectors

{V1,V2, . . . ,Vn}, and harmonic curvatures {H1,H2, . . . ,Hn�2}. If a is a generalized helix, then
Pn�2

i¼1 H2
i ¼ constant.

The following theorem is a explicit characterization for a non-degenerate curve to be a generalized helix.

Theorem 3.4. Let a(s) be a unit speed non-degenerate curve in n-dimensional Euclidean space En with Frenet vectors

{V1,V2, . . . ,Vn}, and harmonic curvatures {H1,H2, . . . ,Hn�2}. Then a is a generalized helix if and only if

V1[Hn�2] + kn�1Hn�3 = 0.

Proof. If we take derivative of D a long the curve a, we get
rV 1 D ¼ ðV 1½Hn�2� þ kn�1Hn�3ÞV n, where $ denotes the Levi–Civita connection in En. Since a is a generalized helix,

D is a constant vector. Thus we obtain rV 1
D ¼ 0 or V1[Hn�2] + kn�1Hn�3 = 0.

Conversely, we assume that the equation V1[Hn�2] + kn�1Hn�3 = 0 holds, we easily obtain that D is a constant
vector, then from Theorem 3.2, we have a is generalized helix in En, which completes the proof. h
4. Geometrical means of the generalized Darboux vector D

It is well known that, when a point moves a long a curve a in Euclidean space E3, its Frenet trihedral (T,N,B), par-
allely translated to the origin, defines a rigid motion around the origin called Frenet motion. The instantaneous axis of
rotation of Frenet motion that we call Darboux axis, is determined by the Darboux vector d = k2T + k1B, where k1 and
k2 are the curvature and the torsion of the curve, respectively.

A rigid motion in Euclidean space has an instantaneous axis of rotation (Darboux axis) only if the space is of odd
dimension.

Lemma 4.1. [16].The Darboux axis of the time s is determined by the kernel of the Frenet matrix given with respect to the

basis T, N, B,
MðsÞ ¼
0 k1 0

�k1 0 k2

0 �k2 0

0
B@

1
CA:
Proposition 4.1. [16]. The Darboux axis of a at the time s is determined by the kernel of the Frenet matrix M(s) given with

respect to the basis T, N1,N2, . . . ,N2k in E2kþ1, k > 2. The Darboux vector is given by as a curve, in E2kþ1, k > 2
d ¼ a0T þ a1N 2 þ � � � þ akN 2k ;
where a0 = k2k4 . . . , k2k, a1 ¼ k1

k2
a0, a2 ¼ k3

k4
a1, . . .,ai ¼ k2i�1

k2i
ai�1.
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Proposition 4.2. [16]. The Darboux vector d = a0T + a1N2 + � � � + akN2k lies in the kernel of the Frenet matrix M(s) in

E2kþ1, k > 2.

Now, we study the relationship between the vectors; the generalized Darboux vector D and the Darboux vector d in
n-dimensional Euclidean space En:

Let a : I � R! En be a non-degenerate unit speed curve with Frenet vectors V1,V2, . . . ,Vn and curvatures
k1,k2, . . . ,kn�1, then the Frenet matrix, M(s) given by
MðsÞ ¼

0 k1 0 � � � 0 0

�k1 0 k2 � � � 0 0

0 �k2 0 � � � 0 0

..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 � � � 0 kn�1

0 0 0 � � � �kn�1 0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Then we get,
MðsÞD ¼

0

0

H 01
H 02

..

.

H 0n�2

2
6666666664

3
7777777775
� ðH 0n�2 þ kn�1H n�3Þ

0

0

0

0

..

.

1

2
6666666664

3
7777777775
: ð8Þ
Now we can ask the question: When does the generalized Darboux vector D lies in the kernel of M(s)? To obtain the
answer of this question, from (7), we have the following cases:

Case I. For n = 3, we have D = V1 + H1V3, then we easily obtain that M(s)D = 0.

Corollary 4.1. In three-dimensional Euclidean space E3, for any non-degenerate unit speed curve a, the generalized Dar-

boux vector D of the curve a lies in the kernel of M(s). Then we get D ¼ 1
k2

d.

Case II. For n > 3, and n even, then M(s) is a regular matrix and there is only zero vector its kernel. Since D 5 0, then,
it can not be in the kernel of M(s).

Case III. For n > 3, and n odd, then from (7) we easily obtain that:
H 2 ¼ H 4 ¼ � � � ¼ H n�3 ¼ 0
and
H 1 ¼
k1

k2

¼ const:;H 3 ¼
k1

k2

k3

k4

¼ const:;H 5 ¼
k1

k2

k3

k4

k5

k6

¼ const:; . . . ;

H n�2 ¼
k1

k2

k3

k4

k5

k6

. . .
kn�2

kn�1

¼ const:
Thus, we get,
k1

k2

¼ const:;
k3

k4

¼ const:; � � � ; kn�2

kn�1

¼ const:
which means that the curve is a generalized helix in the sense of Hayden.

Corollary 4.2. In n-dimensional Euclidean space En(n-odd), for any non-degenerate unit speed curve a, the generalized Dar-

boux vector D of the curve a lies in the kernel of M(s) if and only if the curve a is a generalized helix in sense of Hayden.

In this case, we have D ¼ 1
a0

d, where a0 = k2k4k6 � � �kn�1.

Corollary 4.3. W-curves in n-dimensional Euclidean space En(n-odd), are generalized helix in the sense of Hayden.



2596 Ç. Camcı et al. / Chaos, Solitons and Fractals 40 (2009) 2590–2596
5. Conclusion

Helix one of the most fascinating curve in science and nature. Scientist have long held a fascination, sometimes bor-
dering on mystical obsession, for helical structures in nature. Indeed a helix (also known as circular helix) is a easiest
example of spirals. A curve of constant slope or generalized helix in Euclidean space E3 is defined by the property that
its tangent indicatrix is a planar curve. The straight line perpendicular to this plane is called the axis of the generalized
helix.

In this paper, we give some characterizations for a non-degenerate curve a to be a generalized helix by using har-
monic curvatures of the curve in n-dimensional Euclidean space En. Also, we obtain a vector D for a non-degenerate
curve a and we called it a generalized Darboux vector, then we study the relationship between the generalized Darboux
vector D and the Darboux vector d in the same space.
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