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Solutions for a class of iterated singular equations
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Abstract. Some fundamental solutions of radial type for a class of iterated elliptic
singular equations including the iterated Euler equation are given.
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1. Introduction

Consider the class of equations

Lu =
n∑

i=1

(
r

xi

)p
[
x2
i

∂2u

∂x2
i

+ αixi
∂u

∂xi

]
+ λu = 0, (1)

where λ, αi (i = 1, 2, . . . , n) are real parameters, p (> 0) is a real constant and r is
defined by

rp = x
p

1 + x
p

2 + · · · + x
p
n . (2)

The domain of the operator L is the set of all real-valued functions u(x) of the class
C2(D), where x = (x1, x2, . . . , xn) denotes points in Rn and D is the regularity domain
of u in Rn. Note that (1) includes the Laplace equation and an equidimensional (Euler)
equation as special cases.

In [1] and [2], Altın studied radial type solutions of a class of singular partial differential
equations of even order and obtained Lord Kelvin principle for this class of equations.

In [5], all radial type solutions of eq. (1) are obtained by showing that for all solutions
of the form u = f (rm), f ∈ C2, the function f satisfies

f (rm) = rcm,

where c is a root of the equation

m2c2 +m

(
−p + n(p − 1)+

n∑
i=1

αi

)
c + λ = 0.
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In [4, 6], Özalp and Çetinkaya obtained expansion formulas and Kelvin principle for
the iterates of eq. (1). Lyakhov and Ryzhkov [3] obtained Almansi’s expansions for
B-polyharmonic equation i.e. obtained the solutions of the equation

�m
Bf = 0,

where

�B =
n∑

j=1

Bj +
N∑

i=n+1

∂2

∂x2
i

, Bj = ∂2/∂x2
j +

γj

xj

∂

∂xj
.

In this paper, as a continuation of [4], we consider the class of equations(
q∏

j=1

L
kj
j

)
u = (L

k1
1 L

k2
2 . . . L

kq
q )u = 0, (3)

where q, k1, . . . , kq are positive integers, λj , α
(j)
i (j = 1, 2, . . . , q; i = 1, 2, . . . , n) are

real constants,

Lj =
n∑

i=1

(
r

xi

)p
[
x2
i

∂2

∂x2
i

+ α
(j)
i xi

∂

∂xi

]
+ λj

and the operator L
kj
j denotes, as usual, the successive applications of the operator Lj onto

itself, that is L
kj
j u = Lj (L

kj−1
j u).

2. Solutions for the iterated equation

We first give some properties of the operator Lj (see [4, 5]). By direct computation, it can
be shown that

Lj (r
m) = βj (m)rm, (4)

where

βj (m) = [m(m+ 2φj )+ λj ] (5)

and

2φj = −p + n(p − 1)+
n∑

i=1

α
(j)
i . (6)

The proof of the following lemma can be done easily by using induction argument on
kj . For a special case of the lemma, see [5].

Lemma 1. For any real parameter m,

L
kj
j (rm) = β

kj
j (m)rm,

where the integer kj is the iteration number.
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By the linearity of the operators Lj and by Lemma 1, we have the following result.

Lemma 2. (
q∏

j=1

L
kj
j

)
(rm) =

(
q∏

j=1

β
kj
j (m)

)
rm. (7)

The following theorem, states a class of solutions for the iterated equations which is our
main result.

Theorem 1. The function defined by

u =
∑
v∈I1

kv−1∑
l=0

r−φv

[
Al r

√
φ2
v−λv + Bl r

−
√

φ2
v−λv

]
(ln r)l

+
∑
v∈I2

kv−1∑
l=0

r−φv

[
Cl cos

(√
λv−φ2

v ln r

)
+Dl sin

(√
λv−φ2

v ln r

)]
(ln r)l

+
∑
v∈I3

2kv−1∑
l=0

El r
−φv (ln r)l (8)

is the rm type solution of the iterated equation (3). Here, Al, Bl, Cl,Dl, El are arbitrary
constants, φv is as given in (6) and we divide the index set I = {v = 1, 2, . . . , q} into
three parts:

I1 = {v ∈ I ; φ2
v − λv > 0},

I2 = {v ∈ I ; φ2
v − λv < 0},

I3 = {v ∈ I ; φ2
v − λv = 0}.

Proof. For any v ∈ I, we can rewrite (7) as

(
q∏

j=1

L
kj
j

)
(rm) =

⎛
⎜⎜⎝βkv

v (m)

q∏
j=1
j �=v

β
kj
j (m)

⎞
⎟⎟⎠ rm

or simply (
q∏

j=1

L
kj
j

)
(rm) = βkv

v (m)F (m). (9)

Here, we let F(m) =

⎛
⎜⎝ q∏

j=1
j �=v

β
kj
j (m)

⎞
⎟⎠ rm. Now, since

∂

∂m

(
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L
kj
j

)
(rm) =

(
q∏

j=1

L
kj
j

)(
∂

∂m
rm

)
=

(
q∏

j=1

L
kj
j

)
(rm ln r),
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by taking the derivative with respect to m on both sides of (9), we get(
q∏

j=1

L
kj
j

)
(rm ln r) = ∂

∂m
(βkv

v (m)F (m))

= βkv−1
v (m){kvβ ′v(m)F (m)+ βv(m)F ′(m)}

or simply (
q∏

j=1

L
kj
j

)
(rm ln r) = βkv−1

v (m)	1(m). (10)

Here, we set

	1(m) = kvβ
′
v(m)F (m)+ βv(m)F ′(m).

Now, by taking the derivative with respect to m on both sides of (10), we obtain(
q∏

j=1

L
kj
j

)
(rm(ln r)2) = βkv−2

v (m)	2(m),

where

	2(m) = (kv − 1)β ′v(m)	1(m)+ βv(m)	′1(m).

In a similar fashion, taking the successive derivatives kv − 1 times, with respect to m

on both sides of (9), we finally obtain(
q∏

j=1

L
kj
j

)
(rm(ln r)kv−1) = βv(m)	kv−1(m). (11)

Here,

	kv−1(m) = 2β ′v(m)	kv−2(m)+ βv(m)	′kv−2(m).

Since the roots of the equation

βv(m) = m(m+ 2φv)+ λv = 0

are

m(1)
v = −φv +

√
φ2
v − λv

and

m(2)
v = −φv −

√
φ2
v − λv,
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we conclude from (11) that the functions

rm
(i)
v (ln r)l (i = 1, 2; l = 0, 1, . . . , kv − 1)

are all solutions of eq. (3). Thus, since the equation is linear, by the superposition principle,
the function

q∑
v=1

kv−1∑
l=0

{
Al r

m
(1)
v + Bl r

m
(2)
v

}
(ln r)l (12)

is also a solution of (3).
We have three cases for the roots:

Case 1. If v ∈ I1, then m
(1)
v and m

(2)
v are both real. In this case, from (12), the function

∑
v∈I1

kv−1∑
l=0

r−φv

{
Al r

√
φ2
v−λv + Bl r

−
√

φ2
v−λv

}
(ln r)l . (13)

is a real-valued solution of (3).

Case 2. If v ∈ I2, then m
(1)
v and m

(2)
v are both complex and conjugate. In this case, from

(12), the function

∑
v∈I2

kv−1∑
l=0

r−φv

{
Cl cos

(√
λv − φ2

v ln r

)
+Dl sin

(√
λv − φ2

v ln r

)}
(ln r)l

(14)

satisfies (3). Here, we use the Euler formula

r±i
√

λv−φ2
v = e±i

√
λv−φ2

v ln r

=
[

cos

(√
λv − φ2

v ln r

)
± i sin

(√
λv − φ2

v ln r

)]
,

and Cl = Al + Bl, Dl = i(Al − Bl) and i = √−1 as usual.

Case 3. Finally, if v ∈ I3, then m
(1)
v = m

(2)
v = −φv is a multiple root. Thus, from (12),

the function

∑
v∈I3

kv−1∑
l=0

{El r
m

(1)
v }(ln r)l

is a solution of (3). Now, from (9), since we have(
q∏

j=1

L
kj
j

)
(rm) = βkv

v (m)F (m) = (m−m(1)
v )2kvF (m),
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by taking the derivatives 2kv − 1 times, with respect to m, on both sides of the above
equality and letting m = m

(1)
v , we obtain(∏

v∈I3

Lkv
v

)
(rm

(1)
v (ln(r))l) = 0, l = 0, 1, . . . , 2kv − 1.

Hence, we conclude that the function

∑
v∈I3

2kv−1∑
l=0

El r
−φv (ln r)l (15)

satisfies (3).
Summing up the above three cases with the superposition principle we get (8), which

proves the theorem.

3. General solution for the iterated Euler equations

In this section, we state the general solution of the iterated Euler equations. In [5], for the
Euler equation

Eu = x2 d2u

dx2
+ αx

du

dx
+ λu = 0,

the general solutions for the iterated equations Eku = 0 are given for any integer k, where
α and λ are arbitrary constants. Now consider the Euler equations

Evu = x2 d2u

dx2
+ αvx

du

dx
+ λvu = 0,

where αv and λv (v = 1, 2, . . . , q) are arbitrary constants.
The following result gives the general solutions of the iterated Euler equations.

Theorem 2. The general solution of the iterated Euler equations(
q∏

v=1

Ekv
v

)
u = (E

k1
1 E

k2
2 . . . E

kq
q )u = 0

is

u =
∑
v∈I1

kv−1∑
l=0

x−φv

[
Al x

√
φ2
v−λv + Bl r

−
√

φ2
v−λv

]
(ln x)l

+
∑
v∈I2

kv−1∑
l=0

x−φv

[
Cl cos

(√
λv−φ2

v ln x

)
+Dl sin

(√
λv−φ2

v ln x

)]
(ln x)l

+
∑
v∈I3

2kv−1∑
l=0

El x
−φv (ln x)l.

Proof. In Theorem 1, by letting n = 1, and hence letting r = x1 = x, α
(v)
1 = αv, we

obtain the result for φv = 1
2 (−1+ αv).
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[6] Özalp N and Çetinkaya A, Expansion formulas and Kelvin principle for a class of partial
differential equations, Math. Balkanica (NS) 15(3–4) (2001) 219–226




