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Abstract

Banach has proved that there exist positive linear regular functionals on m such that
they are invariant under shift operator where m is the space of all bounded real
sequences. It has also been shown that there exists positive linear regular functionals L
on m such that L(xx) = 0 for every characteristic sequence xx of sets, K, of natural
density zero. Recently the comparison of such functionals and some applications have
been examined. In this paper we define Sg -limits and B-Banach limits where B is a
sequence of infinite matrices. It is clear that if B = (A) then these definitions reduce
to S4-limits and A-Banach limits. We also show that the sets of all Sos -limits and
Banach limits are distinct but their intersection is not empty. Furthermore, we obtain
that the generalized limits generated by B where B is strongly regular is equal to the
set of Banach limits.

Keywords The Hahn—Banach extension theorem - Banach limit - B-statistical limit
superior and inferior - Sequence of infinite matrices
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1 Introduction

Banach has proved the existence of positive linear regular functionals L on m
such that they are invariant under shift operator, i.e., L(o(x)) = L(x); where
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o(x1,x2,...) = (x2,x3,...) and m is the space of all bounded real sequences
[1,3,8,10]. These functionals are called Banach limits and it has been shown that
the space of all almost convergent sequences can be characterized with the use of
Banach limits [12].

In [17] the authors have noticed that the space of all bounded statistically conver-
gent sequences can be represented as the set of all bounded sequences which have the
same value under some generalized limits with the motivation of a result of Freedman
[5]. It has also been proved that the set of such limits, called S4-limits, and the set of
Banach limits are distinct. The key role in the definition of S4-limits is the A-density
of K € N where A is a nonnegative, regular matrix. Since ‘B-statistical convergence
is a well studied concept of convergence and includes A-statistical convergence, lacu-
nary statistical convergence, uniform statistical convergence as special cases, one can
ask the B-statistical analogues of these results. In this study we examine the results
analogues to those of [17].

An outline of the paper is as follows: The next section contains basic notations and
definitions. In Sect. 3 we show the existence of Sgs-limits and B-Banach limits which
coincide with S4-limits and A-Banach limits in the case B = (A), respectively. In
Sect. 4 we recall the definition of functionals that dominate or generate generalized
limits. We also provide such functionals that dominate or generate Sos-limits. In the
final section we present comparison results concerning the set of all Ses-limits and
B-Banach limits.

2 Notations and definitions

Let ¢ be the space of all convergent real sequences x = (xi). Note that m and c¢ are
normed by ||x|| = sup,, |x,|. Let I" be the class of linear functionals y on m which
are nonnegative and regular, i.e, if x; > 0 for all k € N then y(x) > 0, and also
y (x) = limg x¢, for each x € ¢ which are also called extended limits. If y satisfies
the equality y (o (x)) = y(x) for all x € m then y is called a Banach limit.

Let A = [au] be an infinite matrix. The A-transform of a given sequence x is given
by

(Ax)y =) ank X, ey
k

where the series converges for each n, and denoted as Ax = ((Ax),). If limg x :=
lim, (Ax), exists, then we say that x is A-summable. The space of all A-summable
sequences is denoted by cga, i.e., c4 = {x : limg x exists}. We say that A is regular
[4,14] if lim,, (Ax),, = limy x; for each x € c. .

Let B = (B;) be a sequence of infinite matrices with B; = (b,(l'k) ). Then x € m is
said to be Fgg —convergent (or ‘B—summable) to the value L if

lim(B;x), = 1iglzk:b,§f,3xk = L, uniformly ini > 0.
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In this case we write B — limx = L (see, [2] and [16]). The method ®B is regular if
and only if

o B |< oo
e limb}) =0, forall k > 1, uniformly in i
n

. o . .
° 11,?1 Yk bn'k = 1, uniformly in

where [|B|| := sup,, ; Dk |b,(l'k) | < oo means that there exists a constant M such
that ), |br(,lk)| < M for all n,i and the series ) , |b,(z’k) | converges uniformly in i for
each n.

Kolk [11] introduced the following.

An index set K is said to have B-density denoted by §ss (K) = d, if the character-
istic sequence of K is B—summable to d, i.e.

. 0 _ . N
hrrln Z bnk = d, uniformly in i;
keK

where by an index set we mean a set K = {k,} € N, k, < k,4 for all . Throughout
the paper the statement §s3 (K') 7% 0 will mean either 593 (K) > 0 or that the 28-density
of K does not exist. )

Let R denote the set of all regular methods B with b,(;k) > Qforalln, kandi. Let
B € RT. A sequence x = (xy) is called B-statistically convergent to the number /,
if for every ¢ > 0

Sp({k:lxx — Il =€) =0

and we write sto3 — lim x = [ . We denote the space of all ‘B —statistically convergent
sequences by st(®B). In particular, if 8 = (Cy), then B-statistical convergence is
reduced to the usual statistical convergence. For 8 = (/), the identity matrix, then
$B-statistical convergence is also reduced to the usual convergence. For 8 = (A), itis
reduced to A-statistical convergence. For 28 = 81, it is reduced to uniform statistical
convergence where 8| = (b,(l’k) )

Hw:{ﬁ, ifl4+i<k<n+i
nk 0, otherwise.

Following [5] and [17] we give

Definition 1 Let L be a linear functional on m that satisfies the following properties:

(1) L(x) >0, if x; > 0 for all k,
(2) L(x) = limy x; for x € c,
(3) Forevery K C N such that §93 (K) = 0 implies that L(xg) = O.

We will call such a functional an Sgs-limit, and we will denote their collection by
SLey.
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If B8 = (Cy), then any such L will be called an S-limit and their collection will
be denoted by SL. Freedman [5] proved that the space of all bounded statistically
convergent sequences can be characterized with the use of S-limits.

It is well known that Banach has proved the existence of Banach limits. In [17]
the authors have introduced the notion of an A-Banach limit as a generalization of
Banach limits. In a similar way we introduce the following

Definition 2 (B-Banach limits) Let L be abounded linear functional on m that satisfies
the following conditions:

(1) L(x) = 0if x; > 0 for all k.
(2) L(x) =limg x¢ if x € c, .
(3) L(x) < limsup sup sup Zbr(zlk)xk-irj for every x € m.
n i ]
Any such L will be called a ®8-Banach limit, and the collection of all such func-
tionals will be denoted by B L.

If 6 = (Cy), then we get BLc, = BL where BL is the set of all Banach lim-
its. Lorentz [12] has proved that every Banach limit agree on the set of all almost
convergent sequences which is denoted by ac.

3 The existence of B-limits and B-Banach limits

In this section we will present some results concerning the properties of these func-
tionals.

If for any bounded real sequence x with lim4 x =/ also implies lim4 o x = [ then
the matrix A is translative [14]. A regular matrix A is (boundedly) translative [14] if
and only if

lim D lan k1 — ane| = 0.
n—oo k

It is known that the bounded convergence field of any regular summability method
cannot be equal to ac. A regular matrix A is (boundedly) translative if and only
if A € (ac,c, p), i.e, A sums all almost convergent sequences and preserves their
Banach limits [14]. These methods are called strongly regular. This concept has been
extended for a sequence of matrices 8 by Bell [2].

A sequence of matrices B is called strongly regular, if whenever a sequence x is
almost convergent to /, then Bx converges to /. It has been proved by Bell [2] that a
regular sequence of matrices B8 = (B;) is strongly regular if and only if

li,{n Z |b}(1”)k - b’(;k) | =0, uniformly in i.
k
Now we are ready to prove the following theorem which is an analog of Theorem 2.1

in [17]. It shows not only the existence of Sg-limits and B-Banach limits but also a
little more than it.
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Theorem 1 Let B € RT. Then both B-Banach limits and Se-limits exist. Further-
more, the following results hold:

(1) BLs N SLys # 0.

(2) BL = BLsys if and only if B is strongly regular.

(3) BLNSLy # @ when*B is strongly regular. In particular, if an almost convergent
sequence is also B-statistically convergent then the two limits are equal.

Proof Define the sublinear functional as follows

Qs (x) = lim sup suprr(l’z Xk» X €m.
n i 7

By the regularity of B, we see that O, (x) = limy x; for each x € c. With the use
of Hahn—Banach theorem one can find a bounded linear functional R defined on m so
that

— Op(—x) = R(x) = On(x), x em. @)

Denote the set of all such R by Lgz. We will also show Loz € S Loy which says a little
more than the theorem’s statement.

It is easy to see that R(x) > O for every x > 0 and R(x) = €(x) = limy x; for
every x € c. Next if E is a set with B-density zero, then by (2) one can see that
0 < R(xg) < Oxs(xe) = 0. Hence, R is an Sg-limit. It also belongs to BLsxy
since Qg3(x) < limsup, sup; sup; Dok bfllk)xk+ j» for all x € m, which means that
Loy € BLy N SLsy.

(2)If S € BLs and ‘B is strongly regular, then we get

S(ox —x)| < |lx[ limsup Y |bY) | —bY}| = 0.
n i X ’ )

This gives us BLsg € BL. By taking into account the regularity of B, one can easily
obtain that BL € B Ly with the use of a similar argument in Theorem 19 (c) in [15].

Conversely, if S € BLss = BL, then for any sequence which is almost convergent
to [, we must have S(x) = £, for every S € BLs which implies that

0 = liminf inf inf Y b{}) (xis; — €) = lim supsupsup Y _ b (xirj — €) = 0.
n L n T

This implies that lim,, Y, b’(llk) (xx — £) = 0, uniformly in i. Therefore, ®B is strongly
regular.

(3) Let B be strongly regular. From (2), it is obvious that BL N SLyy # @ and if a
sequence is almost convergent and also ‘B-statistically convergent then the two limits
must be equal.

O
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We will also provide an example which shows it is possible to have BLNSLy =
when ‘B is not strongly regular.

Let us recall the concepts of B —statistical limit superior and 2B —statistical limit
inferior to examine further relationships between various generalized limits. Following
[6], [7] Mursaleen and Edely [13] have defined

supG,, ifGy#0

stsg — limsupx = { oo i G, = 0.

where G, = {b € R : d;m({k € N : xx > b}) # 0}. Also the B-statistical limit
inferior of x is given by

inf Fy, if Fy # 0

Stsg — liminf x = {+oo, if F, = .

where Fy = {a e R: §s({k € N: x; < a}) #0}.
The next result is an analog of Proposition 2.2 in [17].

Proposition 1 If B € " and Py (x) := stsg — limsup x, then the following results
hold.

(a) —Py(—x) = stog — liminf x, forall x € m.

(b) Pp(x+y) < Pp(x)+ Pp(y), forany x,y € m.
(¢) Py(ax) = aPy(x) foranya > 0and x € m.
Proof Since %8 is nonnegative and

Py (—x) = sup { b : lim sup sup Z b:lik) >0
; :

V' ki—xp>b

. o 0 _ N
= —inf { —b : lim sup sup Z by, >0p = —stps — llmnmfx,

n i kixp<—b
we can obtain the proof of (a). For (c), in case of « > 0, we have

P (ax) = sup { b : lim sup sup Z bl >0
R

U kaxg>b

b .
= asup { — : lim sup sup Z b,(l’k) >0 = aPy(x).
« " i kixg>b/a

It is easy to see that for « = 0, Py (0x) = o P (x).
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For part (b), let P (x) = £, and Py (y) = £,. For any ¢ > 0, we therefore have
that

; @@ _ . i) _
hzn sup Z b, =0, hrrln sup Z b, =0.
! koxg>Le+5 ! kiyk>€y,+5

Therefore, we have

. @) : @) : @ _
hrsn sup Z b < hlgn sup Z b + hrfn sup Z b, =0.
Uokxetye> e+ +e Uk l+5 Yokt +5

This gives that Py (x+y) <{,+{y+¢ for all ¢ > 0 which completes the proof. O

4 Domination and generation

In this section we study the relationship between sublinear functional Pg3 and SLgs.
Now let us recall the definitions of functionals that generate (dominate) generalized
limits [15]. By m™ we denote the algebraic dual of m.

Definition 3 Let S and V be sublinear functionals on m and let £ be a collection of
bounded linear functionals on m. Then

(1) S issaid to generate £ if forany 7 € m™* and T'(x) < S(x) for all x € m together
imply that 7 € L.
(i1) V is said to dominate L if for every T € £ we have T (x) < V(x) for all x € m.

A sublinear functional, S, on m generates L if and only if S(x) < W(x) for all x,
where

W(x) := sup{T(x): T € L}, forall x € m.

It is easy to see that a sublinear functional, S, dominates £ if and only if S(x) >
W (x) for all x € m. Considering these two statements together, a sublinear functional
S on m both generates and dominates L-limits if and only if S equals W. The following
theorem shows that Pgs both generates and dominates S L o3 -limits. Motivated by [17]
we have

Theorem 2 Let B = (b,(lik)) € R™. Then the following results hold.
(1) Pss both generates and dominates S Lsg. Therefore,
Py (x) =sup{T(x): T € SLss}, forall x € m.
(i) Qe generates SLog. Furthermore, if B sums a divergent 0, 1 sequence to a
numberl € (0, 1) then Qss does not dominate SLsg.

(iii) Qj dominates S Lss where I is the identity matrix and 5 = (I). Furthermore, if
B sums a divergent 0, 1 sequence to zero then Qf does not generate SLyg.
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Proof Let T € SLsg. If there exists a sequence x € m so that T(x) > Pg(x),
then without loss of generality we may assume that x; > 0 for all k. Then take
p € (Py(x), T(x)) and take E = {k : x;y > p} which implies

lim sup sup Z bl =o0.
"l kkeE

Hence, 893 (E) = 0. Therefore, one can obtain

T(x)=Tkxxg)+ T(xxEe)
< xNT(xe) + pT (xE<)
<pT() =p < TKx)

where e = (1, 1, 1, ...). Then this is a contradiction and we have that 7 (x) < Py (x)
for all x € m which means that Pz dominates S Lgs. The fact that Py generates SLsy
follows by an identical proof as that of part (1) of Theorem 1. So we omit the details
here.

(ii) It is already known that Qs generates S L, by part (1) of Theorem 1. In order
to show that Qs does not dominate SLss, one can find a sequence, x, of zero’s and
one’s which 98 sums to a number ¢ € (0, 1). Let E C N so that xz = x. Note that
Py (xg) = 1. Furthermore,

Qus(xp) =limsup Y byl =€ < 1= Py (xp) = sup(T(xe) : T € SLas).
' kikeE

By part (i), we can write the last equality. Therefore, Qo does not dominate SLgs.
(iii)) Since P (x) < Q;(x) = limsup, sup; 3, 1\¥ xx = limsup,, x, for all x €
m, and Pss dominates SLss, it must be that Q7 dominates SLgs. In order to show
that Q; cannot generate SLgy, we construct a positive regular functional L so that
L(x) < Qy(x) forall x € mbut L ¢ SLg. To produce it, let E € N be an infinite
set so that §3 (E) = 0. Denote the members of E as j; < j» < ---. Define a new
nonnegative regular matrix 8 = (bfflg ) where b, = 1 when k = j, and b, = 0 for
other values of k, for all i. Using the resulting Qs3, and the linear functional limg
on m N css, by the Hahn—Banach theorem, we obtain a bounded linear functional,
L, on m so that L(x) = limg x on m N cs. Certainly, O (x) < Qj(x), and hence
L(x) < Qj(x) for all x € m. However, L(xg) = limgs xg = 1. On the other hand,
dss (E) = 0 which implies that for every T € SLg we must have T (xg) = 0. Hence,
L¢ SLyg. O

In order to sum a divergent sequence of 0’s and 1’s to a number ! € (0, 1) for a matrix,
there are some well known sufficient conditions [9]. ‘
Let 8 € R and consider a class, ‘L’% consists of those € = [cl(jk)] such that

1) Cis nonnegative.
(ii) lim, Y, ¢ = 1, uniformly in i.
(iii) For every K C N with §p3(K) = 0 implies that ¢ (K) = 0.
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Theorem 3 Let B € RT and let € = [cfllg] be a nonnegative method with
sup Z ¢ < 0.
n,i &

Then the following results hold.

() Qc generates SLgg if and only if € € tg;.
(i) If Q¢ dominates SLss then liminf,, inf; 3", ¢ < 1 < lim sup, sup; 3", c*”.

Proof (i) Let € € 74 and L € m* so that L(x) < Q¢(x) for all x € m. Since €
is nonnegative, L is positive. Since Qg¢(e) = 1, we have L(e) = 1 as well. Also,
for every K C N for which §»(K) = 0, we have §¢(K) = 0. This gives that
L(xx) = 0. For x € ¢ with £ = limy x; we have L(x) = limg x; = Q¢ (x). That is,
Q¢ generates SLg. Conversely, assume that Q¢ generates SLgy. Hence, it must be
that Q¢ (x) < P (x) for all x € m which gives that lim,, sup; >, Ci(llk) = 1. Also, if
K C N such that 593 (K) = 0, then

0=—-Py(—xk) < —Qc¢(—xk) < Oc(xk) < Pn(xk) =0.

That is, 8¢ (K) = 0. Hence, € € r%.
(i1) This follows easily from Py (e) = 1 and Py (x) < Q¢(x) forall x € m. O

5 Comparison of SLy; and BLys

In this section we examine the characteristic features of the two types of generalized
limits. We have already proved that, when B € R,

Los € SLoys N BLsys.

We also show that there exist such functionals that generate (dominate) S Lss but does
not generate (dominate) BLg when ‘B is strongly regular, and conversely.

Theorem 4 Let B € R and strongly regular then neither SLgs nor BLgs contains
the other.

Proof In order to see that there exists a functional ¥ in S L« but not in B Lg3, we can
use the same sequence in the proof of Theorem 4.1 in [17]. Again, to see that SLsyg
does not contain B Lsy, it is sufficient to take B = (A) where A is the same as in the
proof of Theorem 4.1 in [17]. O

As a result of the above theorem we can give the following corollary.

Corollary 1 Let B be strongly regular. Then one can find a sublinear functional which
generates(dominates) Ssg -limits but does not generate(dominate) Banach limits, also
a sublinear functional which generates(dominates) Banach limits but does not gener-
ate(dominate) Ssg -limits.
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Now the following example shows that BL and SLgs can be mutually exclusive.

Example 1 Let us consider the matrix A asin [17]. Then define B = [bl(jk)] as follows:

(00 ay ajp -+ [0000ay; ajp ---

00az ax --- 0000ax ax ---
(1) R @ _ |
bnk: - ’ bnk_ c e e

Dl ap a2 v lollap apn -

100 @ & ] (0000 ]

and b,(fk) by adding 2i columns of (s from the beginning for every i. One can eas-
ily see that B € RT. Let x = (1,0,1,0,1,0,...) then limgs x = 1. Notice that,
limgs o (x) = 0, which implies that 98 is not strongly regular. Note that x is B-
statistically convergent to 1 since, for small ¢, the set {k : |xy — 1| > &} consists of
even numbers whose ‘B-density is zero. Similarly, o (x) is B-statistically convergent
to 0, since, for small ¢, the set {k : |o (x)r — 0| > &} consists of even numbers whose
B-density is zero.

Note that for any Banach limit L we have L(1, —1,1, —1,...) = 0. Now to see
that no L € SLgs can be a Banach limit in BL, if there exists an L € SLsgs as well as
L is a Banach limit then

1-0 = L(x—-0x) = L(A,-1,1,—1,...)=0.

Hence, in this case BL N SLy = 0.

By Theorem 1 we immediately obtain that BLgy # BL, since B is not strongly
regular. However, 8 € " then we have BL C BLss where the inclusion must,
therefore, be strict. A simple example can also be constructed from [17] to see the
strict inclusion. Consider the matrix A as in the example of [17] and then let B = (A).

Take x; = O for k even, x; = 1 for k odd and ]%1 odd, and x; = 2 for k odd

and "2i1 even. It is known from [17] that this sequence is almost convergent to % but

not A-almost convergent. Therefore it is not 2B-summable. Hence, there must exist
L1, Ly € BLsy for which Li(x) # L,(x), making at least one of them not in BL.
Therefore this completes the construction of the example for the strict inclusion.
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