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Abstract
Banach has proved that there exist positive linear regular functionals on m such that
they are invariant under shift operator where m is the space of all bounded real
sequences. It has also been shown that there exists positive linear regular functionals L
on m such that L(χK ) = 0 for every characteristic sequence χK of sets, K , of natural
density zero. Recently the comparison of such functionals and some applications have
been examined. In this paper we define SB -limits andB-Banach limits whereB is a
sequence of infinite matrices. It is clear that ifB = (A) then these definitions reduce
to SA-limits and A-Banach limits. We also show that the sets of all SB -limits and
Banach limits are distinct but their intersection is not empty. Furthermore, we obtain
that the generalized limits generated byB whereB is strongly regular is equal to the
set of Banach limits.

Keywords The Hahn–Banach extension theorem · Banach limit · B-statistical limit
superior and inferior · Sequence of infinite matrices

Mathematics Subject Classification 46B45 · 40G15 · 40H05

1 Introduction

Banach has proved the existence of positive linear regular functionals L on m
such that they are invariant under shift operator, i.e., L(σ (x)) = L(x); where
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σ(x1, x2, . . .) = (x2, x3, . . .) and m is the space of all bounded real sequences
[1,3,8,10]. These functionals are called Banach limits and it has been shown that
the space of all almost convergent sequences can be characterized with the use of
Banach limits [12].

In [17] the authors have noticed that the space of all bounded statistically conver-
gent sequences can be represented as the set of all bounded sequences which have the
same value under some generalized limits with the motivation of a result of Freedman
[5]. It has also been proved that the set of such limits, called SA-limits, and the set of
Banach limits are distinct. The key role in the definition of SA-limits is the A-density
of K ⊆ N where A is a nonnegative, regular matrix. Since B-statistical convergence
is a well studied concept of convergence and includes A-statistical convergence, lacu-
nary statistical convergence, uniform statistical convergence as special cases, one can
ask the B-statistical analogues of these results. In this study we examine the results
analogues to those of [17].

An outline of the paper is as follows: The next section contains basic notations and
definitions. In Sect. 3 we show the existence of SB-limits andB-Banach limits which
coincide with SA-limits and A-Banach limits in the case B = (A), respectively. In
Sect. 4 we recall the definition of functionals that dominate or generate generalized
limits. We also provide such functionals that dominate or generate SB-limits. In the
final section we present comparison results concerning the set of all SB-limits and
B-Banach limits.

2 Notations and definitions

Let c be the space of all convergent real sequences x = (xk). Note that m and c are
normed by ‖x‖ = supn |xn|. Let Γ be the class of linear functionals γ on m which
are nonnegative and regular, i.e, if xk ≥ 0 for all k ∈ N then γ (x) ≥ 0, and also
γ (x) = limk xk , for each x ∈ c which are also called extended limits. If γ satisfies
the equality γ (σ (x)) = γ (x) for all x ∈ m then γ is called a Banach limit.

Let A = [ank] be an infinite matrix. The A-transform of a given sequence x is given
by

(Ax)n =
∑

k

ank xk, (1)

where the series converges for each n, and denoted as Ax = ((Ax)n). If limA x :=
limn(Ax)n exists, then we say that x is A-summable. The space of all A-summable
sequences is denoted by cA, i.e., cA = {x : limA x exists}. We say that A is regular
[4,14] if limn(Ax)n = limk xk for each x ∈ c.

Let B = (Bi ) be a sequence of infinite matrices with Bi = (b(i)
nk ) . Then x ∈ m is

said to be FB−convergent (or B−summable) to the value L if

lim
n

(Bi x)n = lim
n

∑

k

b(i)
nk xk = L, uniformly in i ≥ 0.
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In this case we write B − limx = L (see, [2] and [16]). The method B is regular if
and only if

• ‖ B ‖< ∞
• lim

n
b(i)
nk = 0, for all k ≥ 1, uniformly in i

• lim
n

∑
k b

(i)
nk = 1, uniformly in i

where ‖B‖ := supn,i
∑

k |b(i)
nk | < ∞ means that there exists a constant M such

that
∑

k |b(i)
nk | ≤ M for all n, i and the series

∑
k |b(i)

nk | converges uniformly in i for
each n.

Kolk [11] introduced the following.
An index set K is said to haveB-density denoted by δB(K ) = d, if the character-

istic sequence of K isB−summable to d, i.e.

lim
n

∑

k∈K
b(i)
nk = d, uniformly in i;

where by an index set we mean a set K = {kr } ⊆ N, kr < kr+1 for all r . Throughout
the paper the statement δB(K ) �= 0 will mean either δB(K ) > 0 or that theB-density
of K does not exist.

LetR+ denote the set of all regular methodsB with b(i)
nk ≥ 0 for all n, k and i . Let

B ∈ R+. A sequence x = (xk) is called B-statistically convergent to the number l,
if for every ε > 0

δB({k : |xk − l| ≥ ε}) = 0

and we write stB − lim x = l . We denote the space of allB−statistically convergent
sequences by st(B). In particular, if B = (C1), then B-statistical convergence is
reduced to the usual statistical convergence. For B = (I ), the identity matrix, then
B-statistical convergence is also reduced to the usual convergence. ForB = (A), it is
reduced to A-statistical convergence. ForB = B1, it is reduced to uniform statistical
convergence where B1 = (b(i)

nk )

b(i)
nk =

{ 1
n , if 1 + i ≤ k ≤ n + i
0, otherwise.

Following [5] and [17] we give

Definition 1 Let L be a linear functional on m that satisfies the following properties:

(1) L(x) ≥ 0, if xk ≥ 0 for all k,
(2) L(x) = limk xk for x ∈ c,
(3) For every K ⊆ N such that δB(K ) = 0 implies that L(χK ) = 0.

We will call such a functional an SB-limit, and we will denote their collection by
SLB.
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If B = (C1), then any such L will be called an S-limit and their collection will
be denoted by SL . Freedman [5] proved that the space of all bounded statistically
convergent sequences can be characterized with the use of S-limits.

It is well known that Banach has proved the existence of Banach limits. In [17]
the authors have introduced the notion of an A-Banach limit as a generalization of
Banach limits. In a similar way we introduce the following

Definition 2 (B-Banach limits) Let L be a bounded linear functional onm that satisfies
the following conditions:

(1) L(x) ≥ 0 if xk ≥ 0 for all k.
(2) L(x) = limk xk if x ∈ c,
(3) L(x) ≤ lim sup

n
sup
i

sup
j

∑
b(i)
nk xk+ j for every x ∈ m.

Any such L will be called a B-Banach limit, and the collection of all such func-
tionals will be denoted by BLB.

If B = (C1), then we get BLC1 = BL where BL is the set of all Banach lim-
its. Lorentz [12] has proved that every Banach limit agree on the set of all almost
convergent sequences which is denoted by ac.

3 The existence ofB-limits andB-Banach limits

In this section we will present some results concerning the properties of these func-
tionals.

If for any bounded real sequence x with limA x = l also implies limA σ x = l then
the matrix A is translative [14]. A regular matrix A is (boundedly) translative [14] if
and only if

lim
n→∞

∑

k

|an,k+1 − ank | = 0.

It is known that the bounded convergence field of any regular summability method
cannot be equal to ac. A regular matrix A is (boundedly) translative if and only
if A ∈ (ac, c, p), i.e, A sums all almost convergent sequences and preserves their
Banach limits [14]. These methods are called strongly regular. This concept has been
extended for a sequence of matrices B by Bell [2].

A sequence of matrices B is called strongly regular, if whenever a sequence x is
almost convergent to l, then Bx converges to l. It has been proved by Bell [2] that a
regular sequence of matrices B = (Bi ) is strongly regular if and only if

lim
n

∑

k

|b(i)
n,k+1 − b(i)

nk | = 0, uniformly in i .

Now we are ready to prove the following theorem which is an analog of Theorem 2.1
in [17]. It shows not only the existence of SB-limits and B-Banach limits but also a
little more than it.

123



Generalized limits and sequence of matrices 557

Theorem 1 Let B ∈ R+. Then both B-Banach limits and SB-limits exist. Further-
more, the following results hold:

(1) BLB ∩ SLB �= ∅.
(2) BL = BLB if and only if B is strongly regular.
(3) BL∩ SLB �= ∅whenB is strongly regular. In particular, if an almost convergent

sequence is alsoB-statistically convergent then the two limits are equal.

Proof Define the sublinear functional as follows

QB(x) = lim sup
n

sup
i

∑

k

b(i)
nk xk, x ∈ m.

By the regularity of B, we see that QB(x) = limk xk for each x ∈ c. With the use
of Hahn–Banach theorem one can find a bounded linear functional R defined on m so
that

− QB(−x) ≤ R(x) ≤ QB(x), x ∈ m. (2)

Denote the set of all such R by LB. We will also show LB ⊆ SLB which says a little
more than the theorem’s statement.

It is easy to see that R(x) ≥ 0 for every x ≥ 0 and R(x) = �(x) = limk xk for
every x ∈ c. Next if E is a set with B-density zero, then by (2) one can see that
0 ≤ R(χE ) ≤ QB(χE ) = 0. Hence, R is an SB-limit. It also belongs to BLB

since QB(x) ≤ lim supn supi sup j
∑

k b
(i)
nk xk+ j , for all x ∈ m, which means that

LB ⊆ BLB ∩ SLB.
(2) If S ∈ BLB and B is strongly regular, then we get

|S(σ x − x)| ≤ ‖x‖ lim
n

sup
i

∑

k

|b(i)
n,k+1 − b(i)

n,k | = 0.

This gives us BLB ⊆ BL . By taking into account the regularity ofB, one can easily
obtain that BL ⊆ BLB with the use of a similar argument in Theorem 19 (c) in [15].

Conversely, if S ∈ BLB = BL , then for any sequence which is almost convergent
to l, we must have S(x) = �, for every S ∈ BLB which implies that

0 = lim inf
n

inf
i
inf
j

∑

k

b(i)
nk (xk+ j − �) = lim sup

n
sup
i

sup
j

∑

k

b(i)
nk (xk+ j − �) = 0.

This implies that limn
∑

k b
(i)
nk (xk − �) = 0, uniformly in i . Therefore, B is strongly

regular.
(3) LetB be strongly regular. From (2), it is obvious that BL ∩ SLB �= ∅ and if a

sequence is almost convergent and alsoB-statistically convergent then the two limits
must be equal.

�
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Wewill also provide an example which shows it is possible to have BL∩ SLB = ∅
when B is not strongly regular.

Let us recall the concepts of B−statistical limit superior and B−statistical limit
inferior to examine further relationships between various generalized limits. Following
[6], [7] Mursaleen and Edely [13] have defined

stB − lim sup x =
{
supGx , if Gx �= ∅
−∞, if Gx = ∅,

where Gx = {b ∈ R : δB({k ∈ N : xk > b}) �= 0}. Also the B-statistical limit
inferior of x is given by

stB − lim inf x =
{
inf Fx , if Fx �= ∅
+∞, if Fx = ∅,

where Fx = {a ∈ R : δB({k ∈ N : xk < a}) �= 0}.
The next result is an analog of Proposition 2.2 in [17].

Proposition 1 If B ∈ R+ and PB(x) := stB − lim sup x, then the following results
hold.

(a) −PB(−x) = stB − lim inf x, for all x ∈ m.
(b) PB(x + y) ≤ PB(x) + PB(y), for any x, y ∈ m.
(c) PB(αx) = αPB(x) for any α ≥ 0 and x ∈ m.

Proof Since B is nonnegative and

PB(−x) = sup

⎧
⎨

⎩b : lim sup
n

sup
i

∑

k:−xk>b

b(i)
nk > 0

⎫
⎬

⎭

= − inf

⎧
⎨

⎩−b : lim sup
n

sup
i

∑

k:xk<−b

b(i)
nk > 0

⎫
⎬

⎭ = −stB − lim inf
n

x,

we can obtain the proof of (a). For (c), in case of α > 0, we have

PB(αx) = sup

⎧
⎨

⎩b : lim sup
n

sup
i

∑

k:αxk>b

b(i)
nk > 0

⎫
⎬

⎭

= α sup

⎧
⎨

⎩
b

α
: lim sup

n
sup
i

∑

k:xk>b/α

b(i)
nk > 0

⎫
⎬

⎭ = αPB(x).

It is easy to see that for α = 0, PB(αx) = αPB(x).
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For part (b), let PB(x) = �x and PB(y) = �y . For any ε > 0, we therefore have
that

lim
n

sup
i

∑

k:xk>�x+ ε
2

b(i)
nk = 0, lim

n
sup
i

∑

k:yk>�y+ ε
2

b(i)
nk = 0.

Therefore, we have

lim
n

sup
i

∑

k:xk+yk>�x+�y+ε

b(i)
nk ≤ lim

n
sup
i

∑

k:xk>�x+ ε
2

b(i)
nk + lim

n
sup
i

∑

k:yk>�y+ ε
2

b(i)
nk = 0.

This gives that PB(x+y)≤�x+�y+ε for all ε > 0 which completes the proof. �


4 Domination and generation

In this section we study the relationship between sublinear functional PB and SLB.
Now let us recall the definitions of functionals that generate (dominate) generalized

limits [15]. By m∗ we denote the algebraic dual of m.

Definition 3 Let S and V be sublinear functionals on m and let L be a collection of
bounded linear functionals on m. Then

(i) S is said to generate L if for any T ∈ m∗ and T (x) ≤ S(x) for all x ∈ m together
imply that T ∈ L.

(ii) V is said to dominate L if for every T ∈ L we have T (x) ≤ V (x) for all x ∈ m.

A sublinear functional, S, on m generates L if and only if S(x) ≤ W (x) for all x ,
where

W (x) := sup{T (x) : T ∈ L}, for all x ∈ m.

It is easy to see that a sublinear functional, S, dominates L if and only if S(x) ≥
W (x) for all x ∈ m. Considering these two statements together, a sublinear functional
S onm both generates and dominates L-limits if and only if S equalsW . The following
theorem shows that PB both generates and dominates SLB-limits. Motivated by [17]
we have

Theorem 2 Let B = (b(i)
nk ) ∈ R+. Then the following results hold.

(i) PB both generates and dominates SLB. Therefore,

PB(x) = sup{T (x) : T ∈ SLB}, for all x ∈ m.

(ii) QB generates SLB. Furthermore, if B sums a divergent 0, 1 sequence to a
number l ∈ (0, 1) then QB does not dominate SLB.

(iii) QI dominates SLB where I is the identity matrix andB = (I ). Furthermore, if
B sums a divergent 0, 1 sequence to zero then QI does not generate SLB.
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Proof Let T ∈ SLB. If there exists a sequence x ∈ m so that T (x) > PB(x),
then without loss of generality we may assume that xk ≥ 0 for all k. Then take
p ∈ (PB(x), T (x)) and take E = {k : xk > p} which implies

lim sup
n

sup
i

∑

k:k∈E
b(i)
nk = 0.

Hence, δB(E) = 0. Therefore, one can obtain

T (x) = T (xχE ) + T (xχEc )

≤ ‖x‖T (χE ) + pT (χEc )

≤ pT (e) = p < T (x)

where e = (1, 1, 1, . . .). Then this is a contradiction and we have that T (x) ≤ PB(x)
for all x ∈ m which means that PB dominates SLB. The fact that PB generates SLB

follows by an identical proof as that of part (1) of Theorem 1. So we omit the details
here.

(ii) It is already known that QB generates SLB, by part (1) of Theorem 1. In order
to show that QB does not dominate SLB, one can find a sequence, x , of zero’s and
one’s which B sums to a number � ∈ (0, 1). Let E ⊆ N so that χE = x . Note that
PB(χE ) = 1. Furthermore,

QB(χE ) = lim
n

sup
i

∑

k:k∈E
b(i)
nk = � < 1 = PB(χE ) = sup{T (χE ) : T ∈ SLB}.

By part (i), we can write the last equality. Therefore, QB does not dominate SLB.
(iii) Since PB(x) ≤ QI (x) = lim supn supi

∑
k I

(i)
nk xk = lim supn xn for all x ∈

m, and PB dominates SLB, it must be that QI dominates SLB. In order to show
that QI cannot generate SLB, we construct a positive regular functional L so that
L(x) ≤ QI (x) for all x ∈ m but L /∈ SLB. To produce it, let E ⊆ N be an infinite
set so that δB(E) = 0. Denote the members of E as j1 < j2 < · · · . Define a new
nonnegative regular matrix B = (b(i)

nk ) where bnk = 1 when k = jn and bnk = 0 for
other values of k, for all i . Using the resulting QB, and the linear functional limB

on m ∩ cB, by the Hahn–Banach theorem, we obtain a bounded linear functional,
L , on m so that L(x) = limB x on m ∩ cB. Certainly, QB(x) ≤ QI (x), and hence
L(x) ≤ QI (x) for all x ∈ m. However, L(χE ) = limB χE = 1. On the other hand,
δB(E) = 0 which implies that for every T ∈ SLB we must have T (χE ) = 0. Hence,
L /∈ SLB. �

In order to sum a divergent sequence of 0’s and 1’s to a number l ∈ (0, 1) for a matrix,
there are some well known sufficient conditions [9].

Let B ∈ R+ and consider a class, τ ∗
B consists of those C = [c(i)

nk ] such that

(i) C is nonnegative.
(ii) limn

∑
k c

(i)
nk = 1, uniformly in i .

(iii) For every K ⊆ N with δB(K ) = 0 implies that δC(K ) = 0.
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Theorem 3 Let B ∈ R+ and let C = [c(i)
nk ] be a nonnegative method with

sup
n,i

∑

k

c(i)
nk < ∞.

Then the following results hold.

(i) QC generates SLB if and only if C ∈ τ ∗
B.

(ii) If QC dominates SLB then lim infn inf i
∑

k c
(i)
nk ≤ 1 ≤ lim supn supi

∑
k c

(i)
nk .

Proof (i) Let C ∈ τ ∗
B and L ∈ m∗ so that L(x) ≤ QC(x) for all x ∈ m. Since C

is nonnegative, L is positive. Since QC(e) = 1, we have L(e) = 1 as well. Also,
for every K ⊆ N for which δB(K ) = 0, we have δC(K ) = 0. This gives that
L(χK ) = 0. For x ∈ c with � = limk xk we have L(x) = limk xk = QC(x). That is,
QC generates SLB. Conversely, assume that QC generates SLB. Hence, it must be
that QC(x) ≤ PB(x) for all x ∈ m which gives that limn supi

∑
k c

(i)
nk = 1. Also, if

K ⊆ N such that δB(K ) = 0, then

0 = −PB(−χK ) ≤ −QC(−χK ) ≤ QC(χK ) ≤ PB(χK ) = 0.

That is, δC(K ) = 0. Hence, C ∈ τ ∗
B.

(ii) This follows easily from PB(e) = 1 and PB(x) ≤ QC(x) for all x ∈ m. �


5 Comparison of SLB and BLB

In this section we examine the characteristic features of the two types of generalized
limits. We have already proved that, when B ∈ R+,

LB ⊆ SLB ∩ BLB.

We also show that there exist such functionals that generate (dominate) SLB but does
not generate (dominate) BLB when B is strongly regular, and conversely.

Theorem 4 Let B ∈ R+ and strongly regular then neither SLB nor BLB contains
the other.

Proof In order to see that there exists a functional � in SLB but not in BLB, we can
use the same sequence in the proof of Theorem 4.1 in [17]. Again, to see that SLB

does not contain BLB, it is sufficient to take B = (A) where A is the same as in the
proof of Theorem 4.1 in [17]. �

As a result of the above theorem we can give the following corollary.

Corollary 1 LetB be strongly regular. Then one can find a sublinear functional which
generates(dominates) SB-limits but does not generate(dominate) Banach limits, also
a sublinear functional which generates(dominates) Banach limits but does not gener-
ate(dominate) SB-limits.
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Now the following example shows that BL and SLB can be mutually exclusive.

Example 1 Let us consider thematrix A as in [17]. Then defineB =
[
b(i)
nk

]
as follows:

b(1)
nk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a11 a12 · · ·
0 0 a21 a22 · · ·
...

...
...

... · · ·
...

... an1 an2 · · ·
0 0

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, b(2)
nk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 a11 a12 · · ·
0 0 0 0 a21 a22 · · ·
...

...
...

...
...

... · · ·
...

...
...

... an1 an2 · · ·
0 0 0 0

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and b(i)
nk by adding 2i columns of 0′s from the beginning for every i . One can eas-

ily see that B ∈ R+. Let x = (1, 0, 1, 0, 1, 0, . . .) then limB x = 1. Notice that,
limB σ (x) = 0, which implies that B is not strongly regular. Note that x is B-
statistically convergent to 1 since, for small ε, the set {k : |xk − 1| > ε} consists of
even numbers whose B-density is zero. Similarly, σ(x) is B-statistically convergent
to 0, since, for small ε, the set {k : |σ(x)k − 0| > ε} consists of even numbers whose
B-density is zero.

Note that for any Banach limit L we have L(1,−1, 1,−1, . . .) = 0. Now to see
that no L ∈ SLB can be a Banach limit in BL , if there exists an L ∈ SLB as well as
L is a Banach limit then

1 − 0 = L(x − σ x) = L(1,−1, 1,−1, . . .) = 0.

Hence, in this case BL ∩ SLB = ∅.

By Theorem 1 we immediately obtain that BLB �= BL , since B is not strongly
regular. However, B ∈ R+ then we have BL ⊂ BLB where the inclusion must,
therefore, be strict. A simple example can also be constructed from [17] to see the
strict inclusion. Consider the matrix A as in the example of [17] and then letB = (A).
Take xk = 0 for k even, xk = 1 for k odd and k+1

2 odd, and xk = 2 for k odd
and k+1

2 even. It is known from [17] that this sequence is almost convergent to 3
4 but

not A-almost convergent. Therefore it is not B-summable. Hence, there must exist
L1, L2 ∈ BLB for which L1(x) �= L2(x), making at least one of them not in BL .
Therefore this completes the construction of the example for the strict inclusion.
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