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Abstract

In this paper, a known theorem dealing with
∣∣N̄ , pn

∣∣
k
summability methods of

Fourier series is generalized to |A, θn|k summability method by taking normal ma-
trices.
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1 Introduction

Let f be a periodic function with period 2π and integrable (L) over (−π, π).
Without any loss of generality the constant term in the constant term in the
Fourier series of f can be taken to be zero, so that

f(t) ∼
∞∑

n=1

(ancosnt+ bnsinnt) =
∞∑

n=1

Cn(t).(1)
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We write

ϕ(t) =
1

2
{f(x+ t) + f(x− t)} .(2)

It is well known that the convergence of the Fourier series at t = x is a local
property of f (i.e., depends only on the behaviour of f in an arbitrarily small
neighbourhood of x), and so the summability of the Fourier series t = x by
any regular linear summability method is also a local property of f .

2 The Known Results

It has been pointed out by Bosanquet [1] that for the case λn = logn, the defini-
tion of absolutely summable (R, logn, 1) or summable |R, logn, 1| is equivalent
to the definition of the summability |R, λn, 1| used by Mohanty [9], λn being
a monotonic increasing sequence tending to infinity with n.
Matsumoto [7] improved this result by replacing the series

∑
(logn)−1Cn(t) by∑

(loglogn)−pCn(t), p > 1. Bhatt [2] showed that the factor (loglogn)−p in
the above series can be replaced by the more general factor γnlogn where (γn)
is a convex sequence such that

∑
n−1γn is convergent. Borwein [6] general-

ized Bhatt’s result by proving that (λn) is a sequence for which
∑∞

n=1
pn
Pn
|λn| <

∞ and
∑∞

n=1 |Δλn| < ∞, then the summability |R,Pn, 1| of the factored
Fourier series

∑∞
n=1 λnCn(t) at any point is a local property of f . On the other

hand, Mishra [8] proved that if (γn) is as above, and if

Pn = O(npn) and PnΔpn = O(pnpn+1),(3)

the summability |N̄ , pn| of the series
∑∞

n=1 γn
Pn

npn
Cn(t), at any point is a local

property of f . Bor [4] showed that |N̄ , pn| in Mishra’s result can be replaced by
a more general summability method |N̄ , pn|k (see [3]), and Bor ([5]) introduced
the main theorem on the local property of the summability |N̄ , pn|k of the
factored Fourier series, which generalizes most of the above results under more
appropriate conditions then those given in them.

3 The Main Result

Many studies have been done for matrix generalization of Fourier series (see
[11]-[26]). The aim of this paper is to extend Bor’s main theorem in ([5]) for
|A, θn|k summability method (see [10], [18]) by taking normal matrices and by
using Fourier series.
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Theorem 3.1 Let A = (anv) be a positive normal matrix such that

an0 =1, n = 0, 1, ...,(4)

an−1,v ≥ anv, for n ≥ v + 1,(5)
n−1∑

v=1

avvân,v+1 =O(ann).(6)

Let (θnann) be a non increasing sequence. If (λn) and (Xn) are sequences
satisfying the following conditions:

∞∑

n=1

(θnann)
k−1 n−1

{|λn|k + |λn+1|k
}
Xk−1

n < ∞,(7)

∞∑

n=1

(θnann)
k−1 (Xk

n + 1)|Δλn| < ∞,(8)

ΔXn = O(1/n),(9)

where Xn = (nann)
−1, and (θn) is any sequence of positive constants, then

the summability |A, θn|k, k ≥ 1 of the series
∑

λnXnCn(t), at a point can be
ensured by a local property.
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