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Abstract

In this paper, we have generalized a main theorem dealing with quasi-f-power
increasing sequence to |A, 6y, summability method by using Fourier series.
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1 Introduction

A positive sequence (b,) is said to be an almost increasing sequence if there
exists a positive increasing sequence (¢,) and two positive constants M and
N such that Mc, <b, < Ne¢, (see [1]). A positive sequence X = (X,,) is said
to be quasi- f-power increasing sequence if there exists a constant

K = K(X,f) > 1 such that Kf,X,, > fnX,, for all n > m > 1, where
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f=A{falo,8)} = {n7(logn)?), B>0, 0<o <1} (see[18]).
If we take 5 = 0, then we have a quasi-o-power increasing sequence. Let (p;,)
be a sequence of positive real numbers such that

n
Pn:va—M)o as n—oo, (P;=p_;=0, i>1).
v=0
The sequence-to-sequence transformation w, = Pin Yoo DuSu (_iefines the se-
quence (w,) of the weighted arithmetic mean or simply the (N, p,) mean of

the sequence (s,) generated by the sequence of coefficients (p,) (see [9]).
The series Y a, is said to be summable | N, p, o k> 15t (see [2])

o0

Pkl
Z (—") | W — wn_1 |F< 0.
n=1

DPn

Let A = (any) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (s,,) to As = (A, (s)), where

n
s) = E (npSe, n=0,1,..
v=0

The series ) a, is said to be summable |A,6,|,, k > 1, if (see [10],[17])

o

Z@ﬁ_l |AAn(s)|k < 00,

n=1

where (6,,) is any sequence of positive constants and
AA,(s) = Au(s) — An_1(s).

2 An application of absolute matrix summability of trigono-
metric Fourier series

Let f be a periodic function with period 27 and integrable (L) over (—m, ).
The trigonometric Fourier series of f is defined as

f(t) ~ i(ancosnt + bysinnt) = i Ch(t)

where

ag =+ [ f(t)dt, an, =1 [T [(t)cos(nt)dt, b, =
Wewtiic ot) = 3{f(@+ )+ flz — Db 0a(t) = 2

I f(t)sin(nt)dt.

C(t—u) L o(u) du,  (a >

%:\h—t
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0). It is well known that if ¢(t) € BV(0, ), then ¢,(z) = O(1), where t,(x) is
the (C, 1) mean of the sequence (nC,(x)) (see [8]).

The Fourier series play an important role in many areas of applied mathemat-
ics and mechanics. Recently some papers have been done concerning absolute
matrix summability of infinite series and Fourier series (see [3]-[6], [11]-[26]).
Using this fact Bor proved the following theorem concerning a quasi- f-power
increasing sequence.

Theorem 2.1 [7] Let (X,,) be a quasi-f-power increasing sequence. If ¢1(t) €
BV(0,7), and the sequences (X,,), (An), and (p,) satisfy the following condi-
tions

(1) AnXm=0(1) as m — oo,

(2) Y nXuA’X,|=0(1) as m — oo,
n=1

P,
@ o
(4) D Zfta(@)f = O0(Xn) as m—oc,
n=1""
m k
(5) Z [tn()] =0(X,,) as m — oo,
n=1 n
D [tl*
(6) Z F)|(k|1 =0(X,,) as m — oo,
n=1"N"""n
L () |F
(7) Z |n)((’“)_|1 =0(X,,) as m — oo,
n=1 n

then the series . Cy(x)A, is summable | N, p,

o k>

The aim of this paper is to generalize Bor’s the above main theorem involving
quasi- f-power increasing sequence (see ([7])) for |A, 0, |, summability method.
Also, we use the following lemma for the proof of our theorem.

Lemma 2.2 [3] Under the conditions of Theorem 2.1 we have that
(8)  nX,|AN|=0(1) as n— oo,

(9) ) Xu|AN,| < oo

n=1
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