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Şebnem Yıldız

Department of Mathematics
Ahi Evran University
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Abstract

In this paper, we have generalized a main theorem dealing with quasi-f -power
increasing sequence to |A, θn|k summability method by using Fourier series.
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1 Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there
exists a positive increasing sequence (cn) and two positive constants M and
N such that Mcn ≤ bn ≤ Ncn (see [1]). A positive sequence X = (Xn) is said
to be quasi-f -power increasing sequence if there exists a constant
K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1, where
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f = {fn(σ, β)} =
{
nσ(logn)β), β ≥ 0, 0 < σ < 1

}
(see [18]).

If we take β = 0, then we have a quasi-σ-power increasing sequence. Let (pn)
be a sequence of positive real numbers such that

Pn =
n∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation wn = 1
Pn

∑n
v=0 pvsv defines the se-

quence (wn) of the weighted arithmetic mean or simply the (N̄ , pn) mean of
the sequence (sn) generated by the sequence of coefficients (pn) (see [9]).
The series

∑
an is said to be summable

∣∣N̄ , pn
∣∣
k
, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1
| wn − wn−1 |k< ∞.

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ...

The series
∑

an is said to be summable |A, θn|k, k ≥ 1, if (see [10],[17])

∞∑
n=1

θk−1n

∣∣Δ̄An(s)
∣∣k < ∞,

where (θn) is any sequence of positive constants and

Δ̄An(s) = An(s)− An−1(s).

2 An application of absolute matrix summability of trigono-
metric Fourier series

Let f be a periodic function with period 2π and integrable (L) over (−π, π).
The trigonometric Fourier series of f is defined as

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =
∞∑
n=1

Cn(t)

where
a0 =

1
π

∫ π

−π f(t)dt, an = 1
π

∫ π

−π f(t)cos(nt)dt, bn = 1
π

∫ π

−π f(t)sin(nt)dt.

We write φ(t) = 1
2
{f(x+ t) + f(x− t)}, φα(t) =

α
tα

∫ t

0
(t−u)α−1φ(u) du, (α >
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0). It is well known that if φ(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is
the (C, 1) mean of the sequence (nCn(x)) (see [8]).
The Fourier series play an important role in many areas of applied mathemat-
ics and mechanics. Recently some papers have been done concerning absolute
matrix summability of infinite series and Fourier series (see [3]-[6], [11]-[26]).
Using this fact Bor proved the following theorem concerning a quasi-f -power
increasing sequence.

Theorem 2.1 [7] Let (Xn) be a quasi-f -power increasing sequence. If φ1(t) ∈
BV(0, π), and the sequences (Xn), (λn), and (pn) satisfy the following condi-
tions

λmXm =O(1) as m → ∞,(1)
m∑

n=1

nXn|Δ2λn|=O(1) as m → ∞,(2)

m∑
n=1

Pn

n
=O(Pm)(3)

m∑
n=1

pn
Pn

|tn(x)|k =O(Xm) as m → ∞,(4)

m∑
n=1

|tn(x)|k
n

=O(Xm) as m → ∞,(5)

m∑
n=1

pn
Pn

|tn|k
Xk−1

n

=O(Xm) as m → ∞,(6)

m∑
n=1

|tn(x)|k
nXk−1

n

=O(Xm) as m → ∞,(7)

then the series
∑

Cn(x)λn is summable
∣∣N̄ , pn

∣∣
k
, k ≥ 1.

The aim of this paper is to generalize Bor’s the above main theorem involving
quasi-f -power increasing sequence (see ([7])) for |A, θn|k summability method.
Also, we use the following lemma for the proof of our theorem.

Lemma 2.2 [3] Under the conditions of Theorem 2.1 we have that

nXn|Δλn|=O(1) as n → ∞,(8)
∞∑
n=1

Xn|Δλn|<∞.(9)
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[10] Özarslan, H. S., and Kandefer, T., On the relative strength of two absolute
summability methods, J. Comput. Anal. Appl. 11 no. 3, (2009), 576–583.
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[19] Yıldız, Ş., A new theorem on local properties of factored Fourier series, Bull.
Math. Anal. App. 8 (2) (2016), 1–8.
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