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FRACTIONAL MAXIMAL OPERATOR AND ITS
COMMUTATORS IN GENERALIZED MORREY SPACES ON
HEISENBERG GROUP

AHMET EROGLU, JAVANSHIR V. AZIZOV, AND VAGIF S. GULIYEV

Abstract. In this paper we study the boundedness of the fractional
maximal operator M, on Heisenberg group H" in the generalized Mor-
rey spaces M, ,(H™). We shall give a characterization for the strong and
weak type Spanne and Adams type boundedness of M, on the general-
ized Morrey spaces, respectively. Also we give a characterization for the
Spanne and Adams type boundedness of fractional maximal commutator
operator My , on the generalized Morrey spaces.

1. Introduction

Heisenberg groups, in discrete and continuous versions, appear in many parts
of mathematics, including Fourier analysis, several complex variables, geometry,
and topology. We state some basic results about Heisenberg group. More detailed
information can be found in [4, 7, 8] and the references therein. Let H™ be the
2n + 1-dimensional Heisenberg group. That is, H" = C" x R, with multiplication

(z,t) - (w,s) = (z+w,t+ s+ 2Im(z - w)),
n
where z - w = Y zjw;. The inverse element of u = (2,t) is u™! = (—z, —t) and
j=1
we write the identity of H" as 0 = (0,0). The Heisenberg group is a connected,
simply connected nilpotent Lie group. We define one-parameter dilations on H",
for 7 > 0, by 6,(z,t) = (rz,r?t). These dilations are group automorphisms and
the Jacobian determinant is r<, where Q = 2n+2 is the homogeneous dimension
of H™. A homogeneous norm on H" is given by

|Gz, 0)] = (| + [¢) /2.

With this norm, we define the Heisenberg ball centered at u = (z,t) with radius
r by B(u,r) = {v € H" : [u=tv| < r}, and we denote by B, = B(0,7) = {v €
H™ : |v| < r} the open ball centered at 0, the identity element of H", with radius
r. The volume of the ball B(u,r) is Cor?, where Cg is the volume of the unit
ball Bj.
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Using coordinates v = (z,t) = (z + iy, t) for points in H", the left-invariant

vector fields X;, ¥; and T on H" equal to — , —— and En at the origin are

al’j’ayj
given by
0 0 0 0 0
Xi=—+4+2yj—, YVi=— 20—, T=—
1T 0, T T ey, T e T T ar

respectively. These 2n + 1 vector fields form a basis for the Lie algebra of H™
with commutation relations
[Y;, X;] = 4T
for j =1,...,n, and all other commutators equal to 0.
Let f € LY°(H"). The fractional maximal operator M, and the fractional
integral operator I, are defined by

Mo f(u) = sup | B(u, )| ~1+/@ /B L @lave),

r>0

fw)dV(v)
Iof(u)= [ ——5-24, 0<a<Q,
o' o ‘u*lv‘Q o
where @ is the homogeneous dimension of the Heisenberg group H" and |B(u, )|
is the Haar measure of the H"- ball B(u,r). If « = 0, then M = M, is the
Hardy-Littlewood maximal operator on H™. Recall that, for 0 < a < @,

Mof(w) < €3 Llfl(uw).

The operators M, and I, play an important role in real and harmonic analysis
and applications (see, for example [4] and [7]).

In the present work, we shall give a characterization for the Spanne and Adams
type boundedness of the operator M, on the generalized Morrey spaces, including
weak versions. Also we give a characterization for the Spanne and Adams type
boundedness of fractional maximal commutator operator M, , on the generalized
Morrey spaces.

By A < B we mean that A < C'B with some positive constant C' independent
of appropriate quantities. If A < B and B < A, we write A ~ B and say that A
and B are equivalent.

2. Generalized Morrey spaces

In the study of local properties of solutions to of partial differential equations,
together with weighted Lebesgue spaces, Morrey spaces L, x(H"™) play an impor-
tant role, see [9]. They were introduced by C. Morrey in 1938 [17]. The Morrey
space in a Heisenberg group is defined as follows: for 1 <p <o00,0 <A< Q, a
function f € L, \(H") if f € L}JOC(H”) and

A
£z, = S T I £11 2, (Bury) < 00
(It A = 0, then Ly o(H") = L,(H"); if A = Q, then L, o(H") = Loo(H"); if A < 0

or A > @, then L, \(H") = ©, where O is the set of all functions equivalent to 0
on H™.)
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We also denote by WL, y(H") the weak Morrey space of all functions f €
W L¢(H™) for which

_2
||f”vv/;pA = ||f||WLM(Hn) = Ssup 1 °? ||fHWLp(B(u,r)) < 00,
' ’ uweH”, r>0

where WL, (B(u,r)) denotes the weak Ly,-space of measurable functions f for

which
1 fllw L, (Bur) = St1>110>t {v € Blu,r): |f(v)] > t}|'7. (2.1)

We find it convenient to define the generalized Morrey spaces in the form as
follows.

Definition 2.1. Let 1 < p < oo and ¢(u, ) be a positive measurable function on
H"™ x (0,00). The generalized Morrey space M) ,(H") is defined of all functions
VS LéOC(H") by the finite norm

_Q
r p
fllag,, = sup ——||f .
Il i @(u’wﬂ 2, (B(ur)

Also the weak generalized Morrey space WM, ,(H") is defined of all functions
fe LJIDOC(H") by the finite norm

Q
r e
fllwm,., = sup flwe, B .
I fllwa,., ueH",r>090(U,7")H W L, (Bu,r))

The following lemma in the Euclidean setting was proved in [2, 3]

Lemma 2.1. [6] Let ¢(u,r) be a positive measurable function on H"™ x (0, c0).

(i) If

_Q
sup =00 for somet >0 and for all u € H", (2.2)
t<r<oo ©(u,T)
then M, ,(H") = ©.
(i) If
sup @(u,r)"' =00  for some T >0 and for allu € H", (2.3)
O0<r<r

then M, ,(H") = ©.

Remark 2.1. We denote by €, the sets of all positive measurable functions ¢ on
H" x (0, 00) such that for all £ > 0,

_Q

e ‘ < d ( )*1H <
sup oo, and sup ||¢(u,r 00
u€eH™ QO(U,’I”) Lo (t,00) , u€eH” ’ Loo(0,t) ’

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that
v €.

A function ¢ : (0,00) — (0,00) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C' > 0 such that

o(r) < Cp(s) (resp. ¢(r) > Cp(s)) forr < s.
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Let 1 < p < oco. Denote by G, the the set of all almost decreasing functions

¢ : (0,00) — (0,00) such that ¢t € (0,00) — t%go(t) € (0,00) is almost increasing.
Seemingly the requirement ¢ € G, is superfluous but it turns out that this
condition is natural. Indeed, Nakai [18, p. 446] established that there exists
a function p such that p itself is decreasing, that p(t)t?/P < p(r)rQ/P for all
0 <t <7 <ooand that M, 4(H") = M, ,(H").
By elementary calculations we have the following, which shows particularly
that the spaces M, ,(H") and WM, ,(H") are not trivial, see for example, [5].

Lemma 2.2. [6] Let ¢ € G, 1 < p < oo, By = B(uo,r0) and x, s the
0
characteristic function of the ball By, then x, € M, ,(H"). Moreover, there
0

exists C' > 0 such that
o

¢(ro)’

< < <
SO(T'O) — HXBOHWMp,go — HXBOHMPAP -

The following theorem was proved in [14].

Theorem 2.1. [14] Let 1 < p < 0o and @1, g2 € §Q, satisfies the condition

Q Q
sup t 7 esssuppi(u,s)sr < Cea(u,r), (2.4)
r<t<oo t<s<oo
where C' does not depend on w and r. Then for p > 1, the operator M is bounded
from My, (H") to M, ,,(H™) and for p = 1, the operator M is bounded from
M17<P1 (Hn) tO WMl’QOQ (Hn)'

Corollary 2.1. Let 1 <p < oo and ¢ € Q, satisfies the condition

Q Q
sup t » esssupp(u,s)sr < Cp(u,r), (2.5)
r<t<oo t<s<oo
where C does not depend on w and r. Then for p > 1, the operator M is
bounded on M, ,(H") and for p =1, the operator M is bounded from M, ,(H")
to WML@(HTL).

3. Fractional maximal operator in the spaces M, ,(H")

3.1. Spanne type result. The following theorem is valid.

Theorem 3.1. [14] Let1§p<oo,0§oz<%,%:%—%, w1 € Qp, p2 €8y
and the pair (o1, p2) satisfy the condition
_Q Q
sup 7 9 esssuppi(u,s)s? < Cpa(u,t), (3.1)

t<r<oo r<s<oo

©

where C' does not depend on w and t. Then for p > 1 the operator M, is bounded
from My, (H") to My ,,(H") and for p = 1 the operator M, is bounded from
My, (H") to WMg,e, (H").

Remark 3.1. Note that, in the Euclidean setting Theorem 3.1 was proved in [15],
see also [10, 11, 12, 13].

For proving our main results, we need the following estimate.
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Lemma 3.1. If By := B(uo,0), then r§ < C&§2Q*QMQXBO (u) for every u €
Bo.

Proof. Tt is well known that
Mo f(u) < 297" Mo f(u), (3.2)

where Ma(f)(u) = sup | B ™9 [ | (0)|aV (v).
Su
Now let u € By. By using (3.2), we get
Max (1) > 22~ Moy s, (u) > 20~ @sup |B| ™' 73| BN Bo|
B>u

> 2979 Bo| 7174 By N Bo| = C§ 2079

The following theorem is one of our main results.

Theorem 3.2. Let 0 < a < Q, p,q € [1,00), p1 € Q) and @2 € Q.

1. If1<p< % and % = %D — %, then the condition (3.1) is sufficient for the
boundedness of My from My o (H") to WMy ,,(H"). Moreover, if 1 < p < %,
the condition (3.1) is sufficient for the boundedness of M, from M, (H") to
Mq’QOQ (Hn)'

2. If the function ¢1 € Gy, then the condition

t%1(t) < Copa(1), (3.3)

for allt > 0, where C' > 0 does not depend t, is necessary for the boundedness of
M, from My, (H") to WMg,,(H") and M, ,, (H") to My ,,(H").
1 p—

3. Let1<p< % and% =z % If 1 € G, then the condition (3.3) is neces-

sary and sufficient for the boundedness of My from M, ,, (H") to WMy, ,,(H™).

Moreover, if 1 < p < %, then the condition (3.3) is necessary and sufficient for
the boundedness of My from My o, (H™) to My ,,(H").

Proof. The first part of the theorem proved in Theorem 3.1.
We shall now prove the second part. Let By = B(ug,tp) and x € By. By
Lemma 3.1 we have t§f < CMyxp, (7). Therefore, by Lemma 2.2 and Lemma 3.1

o pa(to)
t8‘ S ‘BO| pHMaXBOHLq(BO) g (PQ(tO)HMOéXBOHMq,wz rg ¢2(t0)‘|XBOHMp,¢1 5 @1@0)

or

o < pa(to)
¢1(to)

Since this is true for every tg > 0, we are done.
The third statement of the theorem follows from first and second parts of the
theorem. ]

for all tg > 0 <— tg‘cpl(to) 5 902(250) for all tg > 0.

A=Q p=Q
Remark 3.2. If we take @1(t) =t » and pa(t) = "% at Theorem 3.2, then con-
dition (3.3) is equivalent to 0 < A < @ — ap and % = %, respectively. Therefore,
we get the following Spanne result for Morrey spaces on Heisenberg groups.
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Corollary 3.1. Let 0 < a < @, 1 <p< %, O<A<@—ap and%zl—%.
Then the operator M, is bounded from L, \(H") to WLq,(H") if and only if

% = %. Moreover, if 1 <p < %, then the operator M, is bounded from L, x(H")

to Lq, (H") if and only if% = %.

bS]

3.2. Adams type results. We got the Adams-Guliyev (see, [15]) type result
for the operator M, in the space M, ,(H") in [14, Theorem 3.3]. The following
is a result of Adams-Gunawan (see, [16]) type for the operator M, in the space
M, (H").

Theorem 3.3. (Adams type result). Let0 < a <@, 1 <p<g< oo andyp €,
satisfy condition (2.5) and

ro(u,r)+ sup t*p(u,t) < C(p(u,r)g, (3.4)
r<t<oo

where C does not depend on v € H® and r > 0. Then for p > 1, the operator
M, is bounded from M, ,(H") to M g(H”) and for p = 1, the operator M, is
q’

bounded from M ,(H") to WM %(H")
q?‘p
Proof. Let 1 <p < oo and f € M, ,(H").

Write f = f1+ f2, where f1(v) = fx,;(v), fa(v) = fXg(QB)(U) and B = B(u,r).
Then

Mo f(v) < Mafi1(v) + Mo fa(v).

For M, fi(v), following Hedberg’s trick (see for instance [20], p. 354), for all
v € H" we obtain M, fi(v) < Cir*M f(v).

Let v be an arbitrary point in B. If B(v,t) N B(B(u, 2r)) # (), then ¢t > r.
Indeed, if z € B(v,t) N L‘(B(u, 2r)), then

t> e > ute = Ju | > 2r —r =

On the other hand, B(v,t) N CB(u, 2r) C B(u,2t). Indeed, if z € B(v,t) N
B(B(u, 2r)), then we get [u=1z| < [v7lz| + [u™ly| <t +r < 2t
Hence

1
Me fa(v) = SUPl_a/ o
>0 |B(v,t)|" " @ JB(v,t)n*(B(u2r))

1
B T S — / F(2)]dV (2)
t>r |B(u,2t)|" @ JB(u,2t)

1
:2Q_asupa/ f(2)|dV (z
t>2r|B(u,t)|1_5 B(u,t)| (2)ldV(z)

£ (2)|dV (2)

(3.5)

— 5 ta
< 2@ aC’g sup ————— HfHLp(B(u,t))‘
r<t<oo |B(u’t)’17
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Then from conditions (3.4) and (3.5) and the technique in [19, p. 6492] we
have

(o7

t
Mg fa(v) S M f(v) + sup P 1 £11 2, (Bu,t))
r<t<oo |B( )‘p

< rMf(v)+ sup %77 11| 2y (But))
r<t<oo

<r*Mf(v) + | flla,., sup t%p(u,t) (3.6)
' o0 .

< min{p(u,r) s M f(v), o(u,r) | £, }
< supmin{ss "M f(v), 59| f|lar,. }

s>0
2

= (M),

where we have used that the supremum is achieved when the minimum parts are
balanced. From Corollary 2.1 and (3.6), we get

IMafllar S Wflag, IOLF D s

a9 R

1-2 P
= Il WM A < 1l

ifl<p<g<ooand

1-2 P
IMafllwar 5 S Ul IMES S 1 F Ay
q

a4,

if 1 <p<q<oo. O
The following theorem is one of our main results.

Theorem 3.4. Let 0 <a<Q,1<p<qg<ooandp €.
1. If p(u,t) satisfy condition (2.5), then the condition (3.4) is sufficient for
the boundedness of M, from M, ,(H") to WM (]HI") Moreover, if p > 1,

then the condition (3.4) is suﬁiczent for the boundedness of My from M, ,(H")
to M »(H™).
apd
2. If ¢ € Gp, then the condition

rp(r) < Co(r), (3.7)
for all r > 0, where C > 0 does not depend r, is necessary for the boundedness of
M, from M, ,(H") to WM » (H") and from M, ,(H") to M p (H"), if p > 1.

a1 q,p1
3. If ¢ € G,, then the condition (3.7) is necessary and sufficient for the
boundedness of M, from M, ,(H") to WM » (H™). Moreover, if p > 1, then
q,p9

the condition (3.7) 18 mecessary and sufficient for the boundedness of M, from
g

Proof. The first part of the theorem is a corollary of Theorem 3.3.
We shall now prove the second part. Let By = B(ug,tp) and x € By. By
Lemma 3.1 we have t§ < CMyxB,(z). Therefore, by Lemma 2.2 and Lemma 3.1
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we have

£ 1Bol ™7 1Mo, 12, (80) S ©(t0) ¥ 1Mo lar S 0(t0) T, las,s S 0lt0) 5™
or "
t8o(to) "9 < 1for all tg > 0 <= tp(to) < p(to) .
Since this is true for every v € H"® and ¢y > 0, we are done.
The third statement of the theorem follows from first and second parts of the

theorem. ]

equivalent to 0 < A\ <  — ap and condition (3.7) is equivalent to = — % o

Therefore, we get the following Adams result for Morrey spaces 1n Heisenberg
groups.

A-Q
Remark 3.3. If we take ¢(t) = t ¢ at Theorem 3.4, then conditlo (3.4) is

Corollary 3.2. Let 0 <a<Q,1<p<qg< oo and0<)\<Q—ap Thenthe

operator My is bounded from Ly, x(H"™) to W Lq x(H") if and only zf = — 5 = o>

Moreover, if 1 <p < q < oo then the operator M, is bounded fmm L, x(H™) to
Ly x(H") if and only Zf 2= QL

Remark 3.4. Note that, in the case H™ = R” the sufficient part of the Corollary

3.2 was proved in [1].

4. Fractional maximal commutator operator in the spaces
M, (H")
4.1. Spanne type result. We recall the definition of the space of BMO(H").
Definition 4.1. Suppose that b € L°¢(H"), and let

« = sup = bp(u)ldV 00,
Il = 0 ey o 1) = bV (@) <
where

Bl rB<u,r>\ Bw)
Define

BMO(H") = {b e L°(H") : ||b]|« < co}.

Modulo constants, the space BMO(H") is a Banach space with respect to the
norm || - |[«.
The following lemma is valid.

Remark 4.1. [7, 20] (1) Let b € BMO(H"). Then

1 P
|bl|« = sup ( |b(v) — bB(u7T)|pdV(v)> (4.1)

uweH™,r>0 |B(u7 T)| B(u,r)

for 1 < p < 0.
(2) Letbe BMO(H”) Then there is a constant C' > 0 such that

}bB(u ) — DB(u,r) | < C||b]|« log— for 0 < 2r <, (4.2)

where C is independent of f, u, r and 7.
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For the fractional maximal commutator operator M
My, (f)(u) = Sup |Bu,7)|" e /B( : [b(u) = b(v)|[f(v)|dV (v)

the following statement is true [14].

Theorem 4.1. [14] Let 1 <p<oo, 0 < a < %, % = % -4 b€ BMO(H") and

w1 € 8y, @2 € Qy satisfies the condition

Q
P

_Q t
sup t“ 7 log (e + 7> ess sup p1(u, s)s» < C@a(u,r), (4.3)

r<t<oo T/ t<s<oo

where C' does not depend on uw and 7.
Then the operator My is bounded from M, ,, (H™) to My ,,(H"). Moreover

[ My,oflI0y0 S N0l N2, -
In the case @ = 0 and @1 = @9 from Theorem 4.1 we get the following corollary.

Corollary 4.1. Let1 < p < 00, b € BMO(H") and ¢ € §,, satisfies the condition

_Q t Q
sup t » log (e + 7) ess sup p(u,s)s? < Cop(u,r), (4.4)
r<t<oo T/ t<s<oo

where C' does not depend on v and r.
Then the operator My = My is bounded on My ,(H™).

For proving our main results, we need the following estimate.

Lemma 4.1. If b € L(H") and By := B(ug,r0), then
Ty |b(u) — bp,| < ZO‘_QCgMb,QXBO (u) for every u € By.
Proof. Tt is well-known that
Mo f(u) < 2970 My f(u), (4.5)

where Myo(£)(w) 1= sup [ B8y [b(u) — be)]| £(0)| dV (v).

Now let x € By. By using (4.5), we get

My o xB, (1) > 2% My x5, (1)

2@ sup B G [ Jpfa) - bV ()
B>z BNBy

> 2B [ b))V (0

BoNBy

> 20Q By [& || B[ / (b(w) — b(v))dV ()|

By

= 20‘_6203 ry |b(u) — bp,|-

The following theorem is one of our main results.
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Theorem 4.2. Let p,q € [1,00), 0 < a < Q, v1 € Qp, p2 € Q, and b €
BMO(H").

1. Letl<p< %, % = % — %, then the condition
t Q Q
sup (1 +1In f) ta esssuppi(s)sr < Cpa(r)
r<t<oo r t<s<oo

for all v > 0, where C' > 0 does not depend on r, is sufficient for the boundedness
of My from My, (H") to My, ,,(H").

2. If o1 € Gy, then the condition (3.3) is necessary for the boundedness of
My« from M, (H") to My, (Hn)

3. Letl<p< Q, i ]l) . If 1 € G, satisfies the condition
t
sup (1 +In 7) t*p1(t) < Cr%pi(r) (4.6)
r<t<oco r

for allr > 0, where C > 0 does not depend on r, then the condition (3.3) is nec-
essary and sufficient for the boundedness of My o from My o, (H") to Mg o, (H™).

Proof. The first part of the theorem is a Theorem 4.1.
We shall now prove the second part. Let By = B(ug,79) and = € By. By
Lemma 4.1 we have r§|b(u) — bp,| S Mp.axB,(u). Therefore, by Remark 4.1

|| baXBo||Lq (Bo)
0 ~Y
Hb( ) - bBoHLq By)

~ HMb OcXBOHLq (Bo) |BO| q

pa(ro)
S 02(ro) [Mb,axBo My o, S P2(ro)llXBollng, ., S :

Since this is true for every rg > 0, we are done.
The third statement of the theorem follows from the first and second parts of
the theorem. O

4.2. Adams type result. In this section we shall give a characterization for
the Adams type boundedness of the operator M, in generalized Morrey spaces
defined on Heisenberg groups.

The following lemma is the analogue of the Hedberg’s trick for M, .

Lemma 4.2. If0 < a < Q and f,b € L'°°(H"), then for all u € H" and r > 0
we get

/B(u " m* b(u) — b(v)|dV (v) S r* My f(u). (4.7)
Proof.

FO
L g o v

R Z/ 279r)\B(u,2=31r ul{E)TC)?’—a ‘b(u) - b(U)‘dV(U)

£ [ @)~ bV @) £ M)

j=0
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The following is a result of Adams type.

Theorem 4.3. Let 1 < p < g < 00, 0 < a < Q, b € BMO(H") and let
o(u,-) € Q, satisfy the conditions (4.4) and

t 2

r“o(u,r) + sup log (e + 7> t% o(u,t) < Cw(u,r)g, (4.8)
r<t<oo r

where C' does not depend on u € H" and r > 0.

Then My o is bounded from M, ,(H") to M g(H")
R

Proof. Let 1 <p<qg<oo,0<a< % and f € M, ,(H"). For arbitrary « € H",
set B = B(u,r) for the ball centered at u and of radius r. Write f = f; + fo with
fi=fxz2p and f2 = fxey,p.

For z € B we have

Mo fol2) S sup o=@ /B IRCOR CIIARILLD

t>0

~ sup 2@ /B 1) = ) o)V ().

t>2r

)

Analogously section 4.1, for all p € (1,00) and z € B we get

e t
My fa(z) S supt™ » (1 + log *) 1 £1 2, (Bu,t))- (4.9)
t>2r r

Then from conditions (4.8) and (4.9) we get

N _Q t
My f(2) S 7% My f (2) + bll. sup ¢* (1+10g -~ ) 112,500
t>2r r

(0% t «
<7 Myf(2) 4 bl 17, sup (14 Tog )1 (o 1

S My f(2) + [[blls p(u, r) (| flla, o

. 27 B
< sup min {597 My f(2), 50 £ 121, }
s>
p

= (M) I,

where we have used that the supremum is achieved when the minimum parts are
balanced. From Corollary 4.1 and (4.10), we get

(4.10)

q
e’

1-2 P
1Ml p S 17T, IO () s

(s q,¢

Q3

1-2 P
= " My S W F gy

The following theorem is one of our main results.
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Theorem 4.4. Let 0 <a <@, 1<p<g<oo, p€Q, andbec BMO(H").
1. If 1 < p < oo and ¢(t) satisfies
t\ _n n
sup (1 +In 7> t 7 esssupp(s)sr < Cop(r)
r<t<oo r t<s<oo
for allr >0 and C > 0 does not depend on r, then the condition
t P
r®o(r)+ sup <1 +1In 7) t*po(t) < C’cp(r)fz)
r<t<oo r

for all r > 0 and C > 0 does not depend on r, is sufficient for the boundedness

of My from M, ,(H") to M %(]H[")
4%
2. If ¢ € Gp, then the condition

% p(r) < Cp(r)

for allr > 0 and C > 0 does not depend on r, is necessary for the boundedness
of My from M, ,(H™) to M %(Hn)
T

3. Letl <p<qg< 0. Ifg07 € Gp satisfies the condition

D
q

(4.11)

t

sup (1 +In 7) t* p(t) < Cr®*o(r)

r<t<oo r

for allr >0 and C > 0 does not depend on r, then the condition (4.11) is nec-

essary and sufficient for the boundedness of My o from M, ,(H") to M %(Hn)
q7<p

Proof. The first part of the theorem is a corollary of Theorem 4.3.

We shall now prove the second part. Let By = B(ug,r9) and x € By. By
Lemma 4.1 we have r§|b(u) — bp,| S My axB,(v). Therefore, by Remark 4.1 and
Lemma 2.2

| M0 X Bo |l £, (Bo) 1
S ’ L < | Mo xBo | 1y (Bo) | Bol @
O~ 1b(-) — byl 1, (Bo) @A B0l Lq(Bo)

P P
S ¢(ro) [[Myaxsllar S ¢(ro) e [Ixsolla, . < #(ro)

q,09

2_j
q

Since this is true for every rg > 0, we are done.
The third statement of the theorem follows from the first and second parts of
the theorem. O
A=Q
In the case p(u,r) =r » , 0 < X\ < Q from Theorem 4.4 we get the following
Adams type result for the commutator of fractional maximal operator.

Corollary 4.2. Let 0 < aa < @, 1 < p < g <00, 0 <A< Q—ap and
b€ BMO(H™). Then the operator My o is bounded from L, x(H") to Ly (H") if

and only zf% ﬁ

1
q
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